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Abstract

Odontoblasts are cells that contribute to the formation of the dental pulp complex. The differentiation of dental
tissue-derived mesenchymal stem cells into odontoblasts comprises many factors and signaling pathways.
Noncoding RNAs (ncRNAs), comprising a substantial part of poly-A tail mature RNAs, are considered “transcriptional
noise.” Emerging evidence has shown that ncRNAs have key functions in the differentiation of mesenchymal stem
cells. In this review, we discussed two major types of ncRNAs, including microRNAs (miRNAs) and long noncoding
RNAs (IncRNAs), in terms of their role in the odontogenic differentiation of dental tissue-derived stem cells. Recent

differentiation

findings have demonstrated important functions for miRNAs and IncRNAs in odontogenic differentiation. It is
expected that ncRNAs will become promising therapeutic targets for dentin regeneration based on stem cells.
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Introduction

Mesenchymal stromal cells are derived from the meso-
derm, and among these, there are stem cells (mesenchy-
mal stem cells, MSCs) [1]. The International Society for
Cellular Therapy (ISCT) (2006) proposed minimal
criteria for MSCs due to the heterogeneity of isolation
and cultivation procedures among different laboratories.
In short, MSCs must adhere to plastic using standard
culture, and express some specific cell surface markers,
besides having the potential of differentiating into chon-
drocytes, osteocytes, and adipocytes [2]. However, these
criteria are not competent to purify the homogenous
MSC populations. Actually, it will produce heteroge-
neous, nonclonal cultures of stromal cells containing
stem cells with different multipotential properties,
committed progenitors, and differentiated cells when
isolating MSCs according to the current criteria [3].
Hence, the definition of MSCs needs to be more
standardized.
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Currently, the dental tissue-derived MSCs refer to a
class of cells isolated from oral tissues with MSC-like
quality including the capacity for self-renewal and multi-
lineage differentiation potential [4]. Dental tissues are
specialized tissues that do not undergo continuous
remodeling, and dental mesenchyme is termed “ectome-
senchyme” due to its earlier interaction with the neural
crest. Therefore, dental tissue-derived MSCs are derived
from the neural crest, not from mesoderm [5, 6]. Oral
tissues contain cells that originate from the neural crest,
and among these, there are stem cells, which included
human dental pulp stem cells (DPSCs) (in 2007 by
Gronthos et al. [7]), periodontal ligament stem cells
(PDLSCs) (in 2004 by Seo et al. [8]), stem cells from
apical papillae (SCAPs) (in 2006 by Sonoyama et al. [9]),
dental follicle progenitor cells (DFPCs) (in 2005 by
Morsczeck et al. [10]), stem cells from exfoliated decidu-
ous teeth (SHED) (in 2003 by Miura et al. [11]), stem
cells from gingival tissue (GMSCs) (in 2009 by Zhang et
al. [12] and in 2010 by Mitrano et al. [13]), MSCs from
palatal connective tissue (in 2013 by Roman et al. [14]),
and stem cells from alveolar bone (ABMSCs) (in 2005
by Matsubara et al. [15]). The identification of MSCs is
essential for further investigation after isolation and
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cultivation. There are some surface markers that are
generally expressed in dental tissue-derived MSCs:
CD13, CD29, CD73, CDY0, and CD105 [12, 13, 16-18],
as shown in Table 1.

Odontoblasts are highly specialized cells related to the
deposition and mineralization of the dentin matrix [19, 20].
They are derived from DPSCs, which originate from the
neural crest. Odontoblasts contribute to the formation of
the dentin pulp complex, and the process of odontogenesis
is very similar to that of osteogenesis. The odontogenic
activity can be stimulated in dental tissue-derived MSCs
after being cultured in odontogenic medium containing
dexamethasone, p-glycerophosphate, and ascorbic acid
[21-27]. Tt is a classic and most commonly used inductive
medium for odontogenic differentiation in vitro. And also,
there were some other protocols such as LPS conducted for
odontogenic differentiation [28-30]. Under these condi-
tions, cells have been shown to subsequently express an
osteoblast-associated gene profile, including alkaline phos-
phatase (ALP), collagen type 1 (COL-I), dentin matrix acid
phosphoprotein 1 (DMP1), dentin sialophosphoprotein
(DSPP), matrix extracellular phosphoglycoprotein (MEPE),
osterix (OSX), osteocalcin (OCN), and osteopontin (OPN)
[31]. Some of these genes regulate the expression of runt-
related transcription factor 2 (RUNX2), OSX, and COL-I at
the early stage of odontoblast differentiation, while OCN
participates in the later stage of differentiation [32]. The
control of odontogenic differentiation of dental tissue-
derived MSCs shows great potential in the application
of oral regenerative medicine and cytology treatment.
Although some progress has been made in the differ-
entiation of dental tissue-derived MSCs into odonto-
blasts [33-35], the precise underlying mechanisms
have not been fully elucidated.

Noncoding RNAs (ncRNAs) are a class of RNAs that
do not code for proteins. Following the discovery of
ncRNAs, researchers identified several ncRNAs containing
short open reading frames (ORFs), which could be
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translated into peptides at a very low level [36]. Currently,
there is no uniform standard of ncRNA classification.
ncRNAs can be classified and named according to the
length of the ncRNA strand, the position relationship be-
tween the ncRNAs strand and coding gene, and the func-
tion and characteristics. For example, according to
subcellular localization, ncRNAs can be classified into
cytoplasmic and nuclear ncRNAs. In addition, according
to the difference in biological function, ncRNAs can be
classified into housekeeping and regulatory ncRNAs [37,
38]. Traditionally, regulatory ncRNAs have been subject-
ively categorized into IncRNAs with lengths greater than
200 nt and small ncRNAs (sncRNAs) with lengths less
than 200 nt. The latter can be further subcategorized into
a variety of categories, including miRNAs, PIWI-interact-
ing RNAs (piRNAs), and small interfering RNAs (siRNAs)
[39], as shown in Fig. la. Although these ncRNAs may
collectively or individually alter the cell differentiation, this
review focuses on the two most important ncRNAs cur-
rently identified in odontogenic differentiation, miRNAs
and IncRNAs.

MicroRNAs analysis during odontogenesis

MiRNAs are widely present in eukaryotic cells. They
are the single-strand small molecule of endogenous
noncoding RNAs, and their lengths are typically
20~24 nucleotides [40]. In the canonical pathway, pri-
miRNAs in the nucleus can be identified and cata-
lyzed into pre-miRNAs by Drosha and Dicer. RNA
polymerase III Dicer processes pre-miRNAs into ma-
ture miRNAs [41]. Studies have shown that mature
miRNAs bind with the 3'-UTR of target mRNA com-
pletely or incompletely, which influences the stability
of mRNAs or inhibits their translation and eventually
downregulates protein expression [42-44]. In addition
to this main mechanism, other unconventional mech-
anisms are gradually being explored (Fig. 1b) [45]. In
the human genome, over 1000 kinds of miRNAs have

Table 1 Surface markers for dental tissue-derived mesenchymal stem cells

SHED DPSCs SCAP PDLSCs DFPCs GMSCs MSCs from palatal tissue ABMSCs
STRO-1 + + + + + / / /
CcD13 + + + + + / / +
CD29 + + + + + + + +
CD44 + + + + + + + +
CcD73 + + + + + + + +
CD90 + + + + + + + +
CD105 + + + + + + + +
CD146 + + + + / + / +
CD166 + + + + + + / +

“+" indicates surface markers of cell expression; “/” indicates not reported
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been identified, and some studies have clarified that
over 30% of human genes are modulated by miRNAs,
which are involved in the regulation of most cellular
processes [46, 47].

MicroRNA profiles

The main methods used to analyze miRNAs expression
levels include Northern blot, microarray, high-throughput
sequencing, in situ hybridization, quantitative reverse
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transcription polymerase chain reaction (qQRT-PCR), and
small RNA sequencing. Among these methods, miRNA
microarrays are a high-throughput method and are the
most effective [48]. We found that there were no relevant
studies discussing miRNA profiles during odontogenic
differentiation of dental tissue-derived mesenchymal stem
cells. Microarray research conducted in 2012 by Gong et al.
[49] showed that 22 miRNAs are differentially expressed
after a 14-day odontogenic induction of human dental pulp
cells (DPCs). Further bioinformatic analysis showed that
the target genes of these miRNAs are related to the mito-
gen-activated protein kinase (MAPK) and the Wnt
signaling pathways; both pathways are of particular interest
to odontogenesis.

Pro-odontogenic differentiation miRNAs

miRNAs are involved in regulating transcription factors,
which influence odontogenic differentiation at the tran-
scriptional level. In 2018, Xu et al. [50] showed that the
upregulated expression of miR-21 and expression of sig-
nal transducer and activator of transcription 3 (STAT3)
expressions are associated with increased odontogenic
differentiation in a tumor necrosis factor-a (TNF-o)-me-
diated odontogenesis experimental model. They showed
that increasing the expression level of mature miR-21,
which was able to promote phosphorylated STAT3
expression, could also be induced by upregulating p-
STAT3 expression at low concentrations (1~10 ng/mL)
of TNF-a. The results suggested that there is a positive
reciprocal feedback loop in the miR-21/STATS3 signaling
pathway that may enhance the process of odontogenic
differentiation of human DPSCs.

In 2019, Huang et al. [51] showed that miR-223-3p is
expressed at a higher level in inflamed pulp tissues com-
pared with healthy tissues. miR-223-3p knockdown was
shown to increase transcription of SMAD family mem-
ber 3 (SMAD3), an intracellular effector of the TGF-1
signal transduction pathway, which further inhibits
odontogenic differentiation. Molecular analysis demon-
strated that miR-223-3p suppresses SMAD3 transcrip-
tion by dissociating from the bone morphogenetic
protein 4 (BMP4) promoter 3'-UTR. These discrepan-
cies suggested that the overexpression of miR-223-3p
accelerates the odontogenic differentiation of DPSCs in
an inflammatory environment by inhibiting the expres-
sion of SMAD3.

In 2014, Sun et al. [52] found that miR-34a inhibits
Notch signaling to promote odontogenic differentiation of
human SCAPs, whereas NOTCH activation in SCAPs
inhibits cell differentiation and upregulates the expression
of miR-34a. When miR-34a is overexpressed, NOTCH2
mRNA expression is downregulated, and delta-like protein
3 (DLL3), hairy and enhancer of split-1 (HES1), DSPP,
RUNX2, OSX, and OCN mRNA expression is upregulated,
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while NOTCH2, Notch2 intracellular domain (N2ICD),
and HESI protein expression is downregulated. The oppos-
ite effects were observed when downregulating miR-34a.
The study suggested that miR-34a inhibits Notch signaling
by suppressing the expression of NOTCH2, N2ICD, and
HES1 by directly targeting the 3'-UTR. miR-34a represses
the translocation of N2ICD into the nucleus, which could
suppress gene transcription by combining them, to pro-
mote the expression of related genes. In JAGI-treated
SCAPs, Notch activation was shown to upregulate miR-34a
transcription and suppress cell differentiation, as indicated
by inhibited DSPP, ALP, RUNX2, OSX, OCN, and OPN
expression. The crosstalk for miR-34a-triggered Notch
repression results in cell differentiation, and activa-
tion of Notch signaling in SCAPs results in elevated
miR-34a transcription that promotes cell differenti-
ation including odontoblastic differentiation.

In addition, when the dental pulp is stimulated by
trauma or infection such as pulpitis, DPSCs contained in
dental pulp tissue can proliferate and migrate to the
damaged area and differentiate into odontoblasts to form
a restorative dentin, which can protect the dental pulp
from further damage. The research conducted by Zhong
et al. [53] identified differential expression of miRNAs in
inflamed and healthy human dental pulps. A recent
study indicated that miR-223-3p was upregulated in
inflamed pulp tissues comparing with healthy ones.
Further, overexpression miR-223-3p promoted odonto-
genic differentiation of DPSCs by targeting SMADS3.
These results suggested that miR-223-3p is implicated in
the regulation of odontogenic differentiation, which may
be involved in the process of pulpitis repair [51]. There-
fore, some miRNAs might be involved in the promotion
of odontogenic differentiation of DPSCs under pulp
inflammation.

Anti-odontogenic differentiation miRNAs

Although several miRNAs promote odontogenic differ-
entiation of dental tissue-derived MSCs, some results
from recent research have revealed miRNAs that inhibit
odontogenic differentiation of dental tissue-derived
MSCs, including miR-143-5p, miR-140-5p, miR-488, and
hsa-let-7c.

In 2018, Zhan et al. [54] investigated the role of miR-
143-5p during the odontogenic differentiation of human
DPSCs. Their results suggested miR-143-5p targets
RUNX2 by regulating the osteoprotegerin/receptor acti-
vator of the nuclear factor-xB ligand (OPG/RANKL)
signaling pathway, which has been confirmed to be in-
volved in odontogenesis, particularly the differentiation
of dental pulp stem cells into odontoblasts. This suggests
that miR-143-5p could be developed as a target of genet-
ically modified stem cell therapy for pulp regeneration.
Another study of Wang et al. [55] also identified the
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inhibitory role of miR-143-5p in the odontogenic differ-
entiation of human DPSCs. They showed that the down-
regulated miR-143-5p expression induced the expression
of the p38 MAPK signaling pathway-related gene
MAPK14 and odontogenesis-related markers. The mech-
anism might be that downregulated miR-143-5p expres-
sion augments MAPK14 expression by inhibiting to the
binding to the MAPK14 3'-UTR, activating the p38
MAPK signaling pathway to promote odontogenic differ-
entiation of human DPSCs.

In 2017, Sun et al. [56] showed that miR-140-5p en-
hanced the proliferation of human DPSCs and inhibited
the differentiation of human DPSCs by downregulating
the expression of Toll-like receptor 4 (TLR-4) in a lipo-
polysaccharide (LPS)-mediated differentiation model.
TLR-4 activation is significant in the progression of
odontogenic differentiation promoted by LPS. Their
results showed that an miR-140-5p inhibitor increased
the mRNA and protein expression levels of TLR-4, while
miR-140-5p mimics functioned oppositely. The de-
creased miR-140-5p expression level could activate TLR-
4 by reducing bindings to the 3'-UTR of TLR-4 mRNA.
Thus, it was concluded that during LPS-mediated odon-
togenic differentiation, a decreased miR-140-5p expres-
sion level could enhance TLR-4 expression and then
promote odontogenic differentiation.

In 2019, Yu et al. [57] showed that a decreased miR-
488 expression level enhances the odontoblastic differ-
entiation of human DPSCs through the p38 MAPK
signaling pathway by targeting MAPK1. Downregulated
miR-488 expression was shown to enhance odonto-
blastic differentiation, likely by augmenting MAPK1
expression through decreased binding to the 3'-UTR of
MAPK1 mRNA. Then, the p38 MAPK signaling pathway
was activated and subsequently promoted odontogenic
differentiation, as indicated by the increased expression
levels of MAPKI1, Ras, mitogen-activated protein kinase
kinase 3/6 (MKK3/6), DSPP, ALP, and OCN.

In 2016, Ma et al. [32] showed that the insulin-like
growth factor-1 (IGF-1)/IGF-1R/hsa-let-7c axis exerts a
key influence on the odontogenic differentiation of IGF-
1-treated SCAPs as well as the MAPK signaling pathway.
IGEF-1 activity is mostly facilitated through IGF-1R and
is therefore known as the IGF-1/IGF-1R axis. The results
indicated that IGF-1R is a potential target gene of hsa-
let-7c and is negatively correlated with hsa-let-7c, both
of which are upstream regulators of the MAPK pathway.
JNK and p38 MAPK signaling pathways were shown to
be activated by hsa-let-7c underexpression and IGF-1R
overexpression then translocate into the nucleus and
phosphorylate transcription factors and subsequently ac-
tivate downstream odontogenic gene expression to aug-
ment odontogenic differentiation, which was indicated
by the upregulated expression of several odontogenic
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markers in vitro. The odontogenic differentiation of
IGF-1-treated SCAPs was shown to be inhibited by the
IGF-1/IGEF-1R/hsa-let-7c axis by suppressing the JNK
and p38 MAPK signaling pathways. Additional valid-
ation of the role of the downstream signals of the MAPK
pathway, especially changes in the level of transcription
factors is needed.

Long noncoding RNAs involved in odontogenesis

LncRNAs are a class of RNA molecules whose transcript
length exceeds 200 nt. They do not encode proteins but
regulate gene expression at various levels (epigenetic
regulation, transcriptional regulation, posttranscriptional
regulation, etc.) [58—60]. Initially, IncRNA was consid-
ered to be the “noise” of genomic transcription and a
byproduct of RNA polymerase II transcription with no
biological function. However, recent studies have shown
that IncRNA is involved in many important regulatory
processes, such as X chromosome silencing, genomic
imprinting, chromatin modification, transcriptional acti-
vation, transcriptional interference, and intranuclear
transport [61].. These regulatory roles of IncRNAs have
also begun to attract wide attention. The transcripts of
4~9% of mammalian genome sequences are IncRNAs
(the corresponding proportion of protein-coded RNA is
1%) [62]. Although research on IncRNA has rapidly pro-
gressed in recent years, the function of most IncRNAs
remains unclear. Currently, the functions of IncRNAs
cannot be speculated only from their sequences or struc-
tures. According to their positions relative to protein-
coding genes in the genome, they can be divided into
five types as follows: sense, antisense, bidirectional, in-
tronic, and intergenic [63]. Thus far, more IncRNA regu-
latory mechanisms have been revealed (Fig. 1c).

Long noncoding RNA profiles

In 2016, Zheng and Jia [64] compared the profiles of
freshly isolated and cultured mouse dental mesenchymal
cell IncRNAs with RNA sequencing. The analysis indi-
cated that there are a total of 144 IncRNAs (among
which 108 were upregulated and 36 were downregu-
lated) that participate in odontogenic differentiation.
They also constructed 54 coexpression relationships in
the odontogenic process, as well as an IncRNA-mRNA
coexpression network. Further analysis showed that up-
regulation of maternally expressed 3 (Meg3), metastasis-
associated lung adenocarcinoma transcript 1 (Malatl),
X-inactive specific transcript (Xist), distal-less homeobox
1, antisense (Dlxlas) expression is associated with the
promotion of the odontogenic process. Moreover,
Dlxlas, which is negatively correlated with DIx1, acts as
a positive modulator in the odontogenic process of den-
tal mesenchymal cells. Their results suggested that the
dysregulation of IncRNAs is associated with the loss of
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odontogenic potential in mouse dental mesenchymal
cells. In 2016, Chen et al. [65] used IncRNA microarray
profiling to examine the IncRNA expression during the
odontogenic differentiation of human dental pulp cells
(DPCs). A total of 139 IncRNAs with a greater than two-
fold change were shown to be dysregulated in the 14-
day induction group compared with the noninduced
control group. Among these IncRNAs, 67 were upregu-
lated while 72 were downregulated. Pathway analysis
was used to reveal the biological functions of IncRNAs
with their target genes, in which the cell cycle, extracel-
lular matrix receptor interaction, and transforming
growth factor-p (TGEF-P) signaling pathways were impli-
cated. These results indicate that IncRNAs might play
crucial roles in this process and regulate odontogenesis-
related pathways. Further functional analysis of these
IncRNAs is needed to provide conclusive evidence sup-
porting an underlying regulatory mechanism during
odontogenesis.

H19

Notably, IncRNA H19 is a highly conserved imprinted
gene that encodes an ~ 2.6-kb polyadenylated IncRNA
and exerts a variety of functional activities both in the
nucleus and in the cytoplasm [66]. H19 has many different
biological functions including regulatory roles in cell pro-
liferation and differentiation and in cancer as oncogene
and tumor suppressor gene [67—69]. In addition, H19 is
both epigenetically regulated and utilizes epigenetic mech-
anisms to regulate the odontogenic differentiation of
human DPSCs. In 2018, Zeng et al. [70] demonstrated that
overexpression of H19 could decrease the expression level
of S-adenosylhomocysteine hydrolase (SAHH), which is
the only enzyme to catalyze S-adenosylhomocysteine
(SAH) into homocysteine in humans. The decreased
expression level of SAHH was shown to reduce the
expression level of SAH, which can block the methylation
activity of DNMTs. Thus, H19, along with the downregu-
lated SAHH, could repress the activity of DNA methyl-
transferase 3B (DNMT3B). Upregulated H19 expression
significantly repressed SAHH and DNMT3B activities,
which then enhanced the DLX3 expression by inhibiting
the DNMT3B-medicated methylation of DLX3. Addition-
ally, H19 overexpression reduced the expression levels of
DSPP, DMP-1, ALP, Nes, DLX3, and DLX5, whereas the
opposite effect was observed when H19 was downregu-
lated. Therefore, the H19/SAHH axis epigenetically pro-
motes the odontogenic differentiation of human DPSCs.
In a recent study [71], miR-675 was shown to promote the
odontogenic differentiation of human DPCs by inhibiting
the DNMT3B-mediated methylation of DLX3. Therefore,
we speculate that H19 and miR-675, which are two related
ncRNAs, are involved in odontogenic differentiation.
More studies are needed to investigate the regulatory
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mechanism of H19/miR-675 axis during odontogenic
differentiation.

What is more, Li et al. [72] reported that overexpres-
sion of H19 led to the enhanced odontogenesis of
SCAPs, whereas knockdown of H19 inhibited these ef-
fects. Further mechanical study showed that H19
bounded to miR-141 as competing endogenous RNA
(ceRNA) and consequently led to increasing SPAGOY,
which is important in the activation of p38 and JNK
MPAK signaling pathways through significantly elevating
phosphorylated levels of p38 and JNK. This study re-
vealed that IncRNA-H19/miR-141/SPAGY axis modu-
lates the odontogenic differentiation of SCAPs via
MAPK pathways.

DANCR

In 2012, Kretz et al. [73] identified a IncRNA, which was
downregulated during stem cell differentiation and re-
quired to maintain epidermal stem cells and osteoblast
cells in an undifferentiated cell state. This IncRNA was
named anti-differentiation noncoding RNA (ANCR, sub-
sequently named differentiation antagonizing nonprotein
coding RNA (DANCR)). Based on previous studies,
Chen et al. [65] reported that DANCR exerts negative
effects on the differentiation of human DPCs into
odontoblast-like cells. Based on molecular mechanisms,
the expression level of p-catenin and the phosphoryl-
ation level of GSK-3p were decreased in DANCR-over-
expressing DPCs. The inhibition of GSK-3p was shown
to contribute to the translocation of p-catenin into the
nucleus, where it combines some transcriptional factors
to affect the expression of DSPP and DMP-1. It was indi-
cated that DANCR cause subsequent suppression of the
Wnt/p-catenin signaling pathway and odontoblastic differ-
entiation. As a result, DANCR might act as an important
modulator of the odontoblast-like differentiation of hu-
man DPCs.

Conclusions

In summary, numerous ncRNAs are involved in the
odontogenic differentiation of dental tissue-derived stem
cells (Fig. 2). ncRNAs offer an exciting avenue of odon-
togenesis-related gene regulation that has not yet been
fully explored. With the discovery of miRNAs and
IncRNAs involved in this process, it could be possible to
use these ncRNA-based therapeutic strategies in the field
of dental pulp regeneration and repair.

Based on previous studies, the research of ncRNAs
during odontogenic differentiation of dental tissue-de-
rived stem cells is mainly focused on miRNAs. The dem-
onstrated mechanism includes the inhibition of target
gene mRNA (miR-143-5p, miR-488, miR-223-3p, miR-
34a, hsa-let-7, and miR-140-5p) and upregulation pro-
tein expression (miR-21). Other unconventional
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Table 2 Noncoding RNAs involved in the odontogenic differentiation of dental tissue-derived mesenchymal stem cells

ncRNA  Gene ID Effects Modes of action Associated targets Cell References
or pathways category
INcRNA H19 (imprinted maternally Promotes odontogenic (1) H19/SAHH axis DNMT3B decreases Human  Zeng et al.
expressed transcript) differentiation and DLX3 increases DPSCs 2018
[70, 71]
(2) H19/miR-141/ p38 and JNK MAPK Human  Lietal
SPAG9 axis pathway SCAPs 2019 [72]
INcRNA  DANCR (differentiation Blocks odontoblast-like GSK-3( and B-catenin  Canonical Wnt/B-catenin Human  Chen et al.
antagonizing nonprotein  differentiation suppression signaling pathway DPCs 2016 [65]
coding RNA)
mMiRNA  miR-21 Positively modulates (1) Increasing A positive feedback Human  Xu et al.
odontoblastic p-STAT3 loop in the miR-21/STAT3 DPSCs 2018 [50]
differentiation () Increased by signaling pathway
p-STAT3
miRNA  miR-143-5p Inhibits the differentiation (1) Interacting with (1) RUNX2 suppression OPG/ Human  Zhan et al.
of human DPSCs RUNX2 3"-UTR RANKL signaling pathway DPSCs 2018 [54]
i [
Into odontoblasts (2) Interacting with (2) MAPK14 suppression p38 Wang et al.
the MAPK14 3-UTR MAPK signaling pathway 2019 [55]
miRNA  miR-140-5p Inhibits odontogenic Interacting with the  LPS/TLR-4 signaling Human  Sun et al.
differentiation TLR-4 3"-UTR pathway DPSCs 2017 [56]
miRNA  miR-223-3p Promotes odontoblastic  Interacting with the ~ SMAD3 suppression Human  Huang et al.
differentiation BMP4 3-UTR TGF-B1 signal DPSCs 2019 [51]
transduction pathway
miRNA  miR-448 Blocks odontogenic Interacting with the ~ p38 MAPK signaling pathway Human  Yuetal.
differentiation MAPK1 3"-UTR DPSCs 2019 [57]
miRNA  hsa-let-7¢ Inhibits the odontogenic  IGF-1/IGF-1R/ JNK and p38 MAPK Human  Ma et al.
differentiation of hsa-let-7c axis signaling pathways SCAPs 2016 [32]
IGF-1-treated
human SCAPs
miRNA  miR-34a Promotes odontogenic (1) Interacting with Crosstalk between miR-34a Human  Sun et al.
differentiation NOTCH2 and and Notch signaling SCAPs 2014 [52]
HES1T 3-UTR

(2) Activated by
Notch signaling

ALP alkaline phosphatase, BMP4 bone morphogenetic protein 4, COL-/ collagen type 1, DLX3 distal-less homeobox 3, DNMT3B DNA methyltransferase 3B, DMP1
dentin matrix acid phosphoprotein 1, DSPP dentin sialophosphoprotein, GSK-38 glycogen synthase kinase 3, HES hairy/enhancer of split, IGF-1 insulin-like growth
factor-1, JNK c-Jun N-terminal kinase, LPS lipopolysaccharide, MAPK mitogen-activated protein kinase, N2/CD Notch2 intracellular domain, NICD Notch intracellular
domain, OCN osteocalcin, OPG/RANKL osteoprotegerin/receptor activator of the nuclear factor-kB ligand, OPN osteopontin, OSX osterix, RUNX2 runt-related
transcription factor 2, SAHH S-adenosylhomocysteine hydrolase, SMAD3 SMAD family member 3, SPAG9 sperm-associated antigen 9, STAT3 signal transducer and
activator of transcription 3, TGF-f transforming growth factor-B, TNF-a tumor necrosis factor-a, TLR-4 Toll-like receptor 4

[B-catenin signaling pathway (Fig. 3 and Table 2). Other
types of ncRNAs deserve further exploration.

With the advent of high-throughput sequencing and
next-generation microarrays, novel ncRNAs with regula-
tory functions can be discovered more quickly and
accurately based on the bioinformatics database predic-
tion. Currently, conventional methods, including overex-
pression/inhibition, luciferase reporting, qRT-PCR, and
Western blot, are utilized to explore the regulatory mech-
anism. However, some new methods have emerged,
including CRISPR/Cas9; RIP; chromatin isolation by RNA
purification (ChIRP); RNA pull-down; cross-linking im-
munoprecipitation (CLIP); cross-linking, ligation, and se-
quencing of hybrids (CLASH); and capture hybridization
analysis of RNA targets (CHART), which can also be com-
bined with mass spectrometry technology. The emergence

of these new technologies provides an ideal research plat-
form for elucidating the binding mechanism of specific
proteins. In addition, research on the mechanisms of miR-
NAs is mainly focused on the inhibition of target genes to
regulate odontogenic differentiation. However, there are
few studies on the nonconventional mechanism men-
tioned in these studies. Fewer studies focusing on
IncRNAs have been conducted. Interest in the contri-
bution of ncRNAs to the odontogenesis of dental tis-
sue-derived mesenchymal stem cells is flourishing, but
more effort is currently required to determine the full
extent of this contribution and the mechanisms by
which ncRNAs exert their potential effects.
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