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Exosomes derived from mature @
chondrocytes facilitate subcutaneous stable
ectopic chondrogenesis of cartilage

progenitor cells

Yahong Chen', Ke Xue', Xiaodie Zhang', Zhiwei Zheng®**" and Kai Liu"

Abstract

Background: Developing cartilage constructed with the appropriate matrix composition and persistent chondrogenesis
remains an enduring challenge in cartilage defects. Cartilage progenitor cell (CPO)-based tissue engineering has attracted
recent attention because of its strong chondrogenic differentiation capacity. However, due to the lack of a suitable
chondrogenic niche, the clinical application of CPC-regenerated cartilage in the subcutaneous environment remains a
challenge. In this study, exosomes derived from chondrocytes (CC-Exos) were used to provide the CPC constructs with a
cartilage signal in subcutaneous environments for efficient ectopic cartilage regeneration.

Methods: Rabbit CPC-alginate constructs were prepared and implanted subcutaneously in nude mice. CC-Exos were
injected into the constructs at the same dose (30 pg exosomes per 100 pL injection) after surgery and thereafter weekly
for a period of 12 weeks. Exosomes derived from bone mesenchymal stem cells (BMSC-Exos) were used as the positive
control. The mice in the negative control were administered with the same volume of PBS. At 4 and 12 weeks after
implantation, the potential of CC-Exos and BMSC-Exos to promote chondrogenesis and stability of cartilage tissue in a
subcutaneous environment were analyzed by histology, immunostaining, and protein analysis. The influences of BMSC-
Exos and CC-Exos on chondrogenesis and angiogenic characteristics in vitro were assessed via coculturing with CPCs and
human umbilical vein endothelial cells.

Results: The CC-Exos injection increased collagen deposition and minimized vascular ingrowth in engineered constructs,
which efficiently and reproducibly developed into cartilage. The generated cartilage was phenotypically stable
with minimal hypertrophy and vessel ingrowth up to 12 weeks, while the cartilage formed with BMSC-Exos was
characterized by hypertrophic differentiation accompanied by vascular ingrowth. In vitro experiments indicated
that CC-Exos stimulated CPCs proliferation and increased expression of chondrogenesis markers while inhibiting
angiogenesis.

Conclusions: These findings suggest that the novel CC-Exos provides the preferable niche in directing stable
ectopic chondrogenesis of CPCs. The use of CC-Exos may represent an off-the-shelf and cell-free therapeutic
approach for promoting cartilage regeneration in the subcutaneous environment.
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Background

The structural and functional repair of sizeable subcutane-
ous cartilage defects remains a challenge in plastic and re-
constructive surgery [1, 2]. Strategies for cartilage defects
include autologous chondrocytes implantation and
matrix-assisted chondrocyte implantation [3, 4]. While
successful in some respects, each of these therapies has
limitations, including donor limitation, donor morbidity,
and degradation of the graft tissue [5, 6]. In recent years,
stem cell-based cartilage tissue engineering has shown
great promise [7]. Cartilage progenitor/stem cells (CPCs),
which are considered an attractive cell source, have been
increasingly investigated in cartilage regeneration because
of their strong chondrogenic potential [8—10]. Unfortu-
nately, the lack of a suitable chondrogenic niche still hin-
ders efficient and stable ectopic chondrogenesis of
progenitor cells in subcutaneous environments [11, 12].

Indeed, the tissue regeneration niche plays a crucial
role in determining the ultimate phenotype of implanted
stem cells [13-15]. Chondrocytes are one of the major
niche cell types in cartilage and play an essential role in
the maintenance of the cartilage microenvironment.
Many studies have demonstrated the improved chondro-
genesis of stem cells after coculturing with chondrocytes
[1, 16]. Chondrocytes can also create a proper chondro-
genic niche for stabilizing the chondrogenic phenotype
of stem cells in ectopic cartilage regeneration [17]. Fur-
thermore, it is hypothesized that the chondrocytes em-
power the chondrogenic efficacy of progenitor cells
mainly through the paracrine effects of trophic factors
[16, 18, 19].

Among the numerous factors secreted, exosomes have
been identified as the principal agent in mediating the
therapeutic efficacy of endogenous or grafted cells in
several disease indications [20, 21]. Exosomes are nano-
sized (30-200 nm), bi-lipid membrane vesicles secreted
by most cell types. Exosomes have been found to contain
various types of bioactive microRNAs, nucleic acids,
proteins, and unique gene products [22-24]. Addition-
ally, it was reported that exosomes could transfer trophic
factors to neighboring cells and serve as mediators of
intercellular communication [25]. In contrast to the con-
ventional cell-based therapy, the use of exosomes is ad-
vantageous from the perspectives of off-the-shelf and
cell-free regenerative medicine approach and the ease of
minimally invasive injection.

However, it is still unknown whether chondrogenesis
can be enhanced by exosomes derived from chondro-
cytes (CC-Exos). Moreover, the interaction between
CC-Exos and cartilage hypertrophy has not been eluci-
dated. Here, the central hypothesis that CC-Exos pro-
motes cartilage regeneration and stabilizes the cartilage
tissue phenotype via the inhibition of angiogenesis is
tested using a CPC-based subcutaneous cartilage
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regeneration model. In addition, the exosomes derived
from bone mesenchymal stem cells (BMSC-Exos) have
now been used for in situ cartilage defect repair with ro-
bust cartilage tissue formation [21, 26]. BMSC-Exos
were recently reported to accelerate neo-tissue filling
and enhance matrix synthesis of type II collagen and sul-
fated glycosaminoglycan [27-30]. In this study,
BMSC-Exos were used as the positive control to test the
null hypothesis that there is no difference between
CC-Exos and BMSC-Exos in cartilage regeneration.

Methods

Isolation and culture of CPCs, BMSCs, and chondrocytes
CPCs in the auricular cartilage tissue of rabbits (pro-
vided by Shanghai Chuansha Breeding Factory, n=6)
were harvested via differential adhesion to fibronectin as
described previously [31, 32]. Briefly, cells were seeded
onto 100-mm plastic petri dishes (pretreated with 10 pg/
mL fibronectin overnight at 37 °C) in low-glucose Dul-
becco’s modified Eagle’s medium (DMEM, Gibco, USA).
After 20 min, the cells were rinsed twice with
phosphate-buffered saline (PBS) and cultured in
low-glucose DMEM containing 10% fetal bovine serum
(FBS, Gibco, USA). BMSCs and chondrocytes from rab-
bits were isolated and expanded according to previously
established methods [31, 33]. The isolated cells were cul-
tured in DMEM supplemented with 10% FBS and
expanded to passage 2 (P2) to extract exosomes.

Preparation of CC-Exos and BMSC-Exos

After reaching 80% confluency, chondrocytes and
BMSCs were rinsed with PBS and cultured with
serum-free medium for 48 h. CC-Exos and BMSC-Exos
were both isolated and purified from the conditioned
medium following a previous protocol [34]. In detail, the
obtained conditioned medium was centrifuged at 3000xg
for 30 min at 4 °C, followed by filtering with a 0.45-pm
and a 0.22-pm filter (SteritopTM, Millipore, USA) to re-
move the remaining cells and cellular debris. Finally,
exosomes were isolated by size fractionation and con-
centrated 50x by centrifugation using an Ultra-clear
tube (Millipore) with a molecular weight cutoff of
100 kDa. Exosomes were stored at — 80 °C for the fol-
lowing experiments. Nano-Sight (NS300, Malvern, Eng-
land), transmission electron microscopy (TEM, JEOL
microscope, JSM-7001TA, Tokyo, Japan), and Western
blot were used to identify exosomes.

Exosome labeling and exosome uptake studies

Isolated CC-Exos or BMSC-Exos were labeled with
CM-Dil red fluorescent membrane linker dye (Invitrogen,
Waltham, MA, USA) as previously described [35, 36].
Briefly, 1 uM cell-labeling solution was added to 200 pg
exosomes suspended in 1 mL PBS and was incubated for
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5 min at 37 °C and 15 min at 4 °C. Subsequently, the mix-
ture was washed to remove unbound CM-Dil. CPCs were
incubated with CM-Dil-labeled exosomes (30 pg/mL) for
12 h according to a previous study [21]. Then, cells were
washed twice with PBS, fixed in 4% paraformaldehyde,
and stained with phalloidin and DAPI. Finally, cells were
observed under a Zeiss Confocal LSM 710 microscope
(Carl Zeiss, Jena, Germany) to determine the uptake of
the labeled exosomes.

In vivo chondrogenesis of CPCs induced by exosome in
subcutaneous non-chondrogenic sites

All procedures were approved by the Animal Research
Committee of Shanghai Jiao Tong University Affiliated
Ninth People’s Hospital. Implants were formed by encap-
sulating 1 million CPCs in 100 pL 1.5% (wt/vol) sodium
alginate (Aladdin, China) using 100 mM CaCl, [37]. The
engineered tissues were implanted subcutaneously as pre-
viously reported [17, 37] in 30 female nude mice; each
mouse was randomly assigned to receive a local injection
of PBS, CC-Exos, or BMSC-Exos. Exos solutions in PBS
were prepared under sterile conditions. CC-Exos and
BMSC-Exos (30 pg exosomes per 100 pL injection) were
administered subsequently on a weekly basis [38, 39]. Five
injection sites evenly distributed in the construct were de-
termined, and 20-pL solution was injected per site. The
same volume of PBS was used as the negative control.
The detailed process is shown in Scheme 1.

Histology

At 4 weeks or 12 weeks, the samples were explanted and
histologically analyzed. After gross observation, samples
were fixed in 4% paraformaldehyde for 24 h. The sam-
ples were dehydrated with a graded alcohol series,
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embedded in paraffin, and sectioned perpendicularly to
the implants into 5-um-thick sections. Hematoxylin and
eosin (H&E), safranin-O/fast green (S-F), and toluidine
blue (T-B) were used for histological observations.

Immunohistochemistry and immunofluorescence
Immunohistochemistry was performed as previously de-
scribed [12, 27]. Dewaxed sections were washed in PBS,
and endogenous peroxidase activity was quenched by
immersion in 2% (v/v) hydrogen peroxide for 5 min. Anti-
gen retrieval was carried out by incubating the sections
with a sodium citrate buffer for 30 min. After additional
washes in PBS, the sections were blocked with 1.5% goat
serum for 30 min at room temperature followed by incu-
bation with the primary antibody (COL II or COL X
Abcam, Cambridge, UK) overnight at 4 °C. The sections
were then incubated with a peroxidase-conjugated sec-
ondary antibody, visualized with a 3,3-diaminobenzidine
solution (DAB Substrate Kit, Burlingame, CA, USA), and
counter-stained with hematoxylin.

For immunofluorescence examination, the sections were
incubated with primary antibodies (anti-CD31, Abcam)
overnight at 4 °C. An Alexa Fluor 594-labeled secondary
antibody was applied under light protection. The nuclei
were counter-stained with 0.1 mg/mL DAPI, and the
stained sections were examined using a Zeiss Confocal
LSM 710 microscope (Carl Zeiss, Jena, Germany).

Western blot

The protocol and procedure for Western blot were per-
formed as described in previous reports [40]. For each sam-
ple, the 30 pg extracted total protein was loaded onto a 10—
15% SDS/PAGE gel. The gel-separated protein was then
transferred to a PVDF membrane (Millipore) and incubated
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with the primary antibodies of anti-transforming growth
factor-p (TGF-B, Abcam), anti-SMAD2/3 (Abcam),
anti-collagen type II (COL II, Abcam), anti-SOX-9 (Abcam),
anti-collagen type X (COL X, Abcam), anti-Indian hedge-
hog (IHH, Affinity, OH, USA), anti-matrix metalloprotein-
ase 13 (MMP 13, Affinity), anti-stem cell-derived factor 1
(SDF-1, Affinity), anti-vascular endothelial growth factor
(VEGE, Affinity), and anti-B-actin (Invitrogen) at 37 °C for
2 h, followed by incubation with horseradish
peroxidase-conjugated secondary antibodies. Protein ex-
pression was visualized, and the values were normalized
against p-actin.

Cell proliferation

The various effects of exosomes on the proliferation of
CPCs were evaluated using a Cell Counting Kit-8
(CCKS8, Dojindo Laboratories, Kumamoto, Japan). CPCs
pretreated with 10 ug/mL or 30 pg/mL of the two differ-
ent exosomes were seeded into 96-well plates, the media
were changed every other day for 7 days, and cell prolif-
eration curves were constructed by measuring with a
microplate reader at a wavelength of 450 nm.

Ki67 staining was used to determine the effect of exo-
somes on CPC proliferation. CPCs were incubated with
CM-Dil-labeled exosomes (10 pg/mL or 30 pg/mL) for
12 h, and the cells cultured without exosomes were used
as the negative control. Then, cells were fixed with 4% for-
maldehyde for 30 min at room temperature, washed twice
with PBS, and permeabilized with ice-cold methanol for
5 min at 4 °C. Blocking was performed with 5% goat
serum for 30 min at 37 °C, followed by incubation with
anti-Ki67 at a concentration of 1:1000 (Abcam) overnight
at 4 °C, then washed twice with PBS. Incubation with
anti-rabbit fluorescent-conjugated secondary antibody for
1 h at room temperature in the dark was then performed.
CPCs were washed twice with PBS and stained with DAPIL.
Ki67, CM-Dil, and DAPI immunofluorescence images
were captured using a confocal microscope.

Quantitative real-time polymerase chain reaction

Total RNA was isolated and reverse transcription for cDNA
synthesis was performed as previously described [21, 41].
Quantitative real-time PCR (qRT-PCR) was performed
using a Power SYBR Green PCR Master Mix (Applied Bio-
systems) in a real-time thermal cycler (Stratagene, La Jolla,
CA, USA). Glyceraldehyde 3-phosphate dehydrogenase
(GADPH) was used as an internal control gene to
normalize the expression of the other mRNAs. The results
obtained after calibration with the GADPH expression level
were calculated using the 22T method and presented as
fold increases relative to the negative control. The primers
for qRT-PCR analysis are listed in Table 1.
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Table 1 Primers used for real-time RT-PCR

Genes  Sequence (5-3)

COL Il F: TCC TGT GCG ACG ACA TAA TCT; R: GCA GTG GCG AGG TCA
GTA G

SOX-9  F: AGG TGC TCA AGG GCT ACG AG; R: TTG ACG TGG GGC TTG
TICT

VEGF F: CCT TTG TGG TGG ACG CTA TC; R: CCG AAG TGA CTT GGG
AAC TTG

SDF-1  F: ATC CTC AAC ACG CCC AAC TG; R: TGA CCC GCC TCT CAC
ATC TT

GAPDH F: ATG GTG AAG GTC GGA GTG A; R: AAC ATC CAC TTT GCC
AGA GTT A

In vitro migration assay

The migration effects of CPCs with various exosomes
was evaluated using a transwell assay [42, 43]. CPCs
were placed in the upper chamber of transwell inserts
(Corning, NY, USA). Different culture medium was
added in the lower chamber according to the group des-
ignation: negative control (NC)—DMEM medium with
1% FBS; positive control (PC)—DMEM medium with
10% FBS; CC-Exos group (CC-Exos)—DMEM medium
with 1% FBS and 30 pg/mL CC-Exos; BMSC-Exos group
(BMSC-Exos)—DMEM with 1% FBS and 30 pg/mL
BMSC-Exos. After incubating at 37 °C for 6 h or 12 h,
cells on the lower side of the insert filter were stained
with phalloidin for F-actin and DAPI for nuclei, and the
numbers of cells were counted. Migration of CPCs cul-
tured with various exosomes was further evaluated using
a scratch wound assay as described previously [23]. The
cells that migrated from the original wound edge at O h,
12 h, and 24 h were counted from the photographs.

Apoptosis

To assess the effect of different treatments on cell apop-
tosis, treated CPCs were doubly stained with Annexin
V-FITC and PI and analyzed by flow cytometry. CPCs
(1 x 10° cells) from each group (CPCs cultured in different
culture medium for 12 h; negative control (NC)—DMEM
medium with 1% FBS; positive control (PC)—DMEM
medium with 10% FBS; CC-Exos group (CC-Exos)—
DMEM medium with 1% FBS and 30 pg/mL CC-Exos;
BMSC-Exos group (BMSC-Exos)—DMEM with 1% FBS
and 30 pg/mL BMSC-Exos) were incubated with
FITC-labeled Annexin V and propidium iodide (BD Bio-
sciences, San Jose, CA, USA) for 15 min at room
temperature in the dark. The percentage of apoptotic cells
was determined by flow cytometry (BD FACSCalibur,
Beckman Coulter).

In vitro angiogenesis assay

In vitro tubular formation assay was conducted using
Matrigel (BD Bioscience, Oxford, UK). The Matrigel was
coated onto 48-well plates at 37 °C for 30 min to



Chen et al. Stem Cell Research & Therapy (2018) 9:318

complete gelation according to the manufacturer’s in-
structions. Human umbilical vein endothelial cells
(HUVECs) were seeded into pretreated plates, and 1%
EBS, 10% EBS, or 30 pug/mL of different exosomes were
added to each well. After 3 h, cells were photographed
using an inverted light microscope. Triplicate samples
were tested for each condition, and five random micro-
scopic images were collected for the measurement.

Statistical analysis

Numerical data are presented as the mean + standard de-
viation (SD) and were analyzed with a one-way ANOVA
followed by Tukey’s post hoc test. Statistical analysis was
performed using GraphPad Prism version 5.0 (GraphPad
Software, San Diego, CA, USA). Among the various
groups, P < 0.05 was considered to indicate a significant
difference.

Results

Characterization of BMSC-Exos and CC-Exos

TEM clearly revealed that the exosomes purified from
CCs and BMSCs both showed a cup-shaped or
round-shaped form with a diameter of 30-200 nm,
which was verified by the Nano-Sight analysis (Fig. 1a).
Exosome-associated markers, CD9, CD63, and CD8I,
were shown by Western blot (Fig. 1b). The above results
showed two kinds of exosomes were successfully iso-
lated. In addition, fluorescence microscope images re-
vealed CM Dil-labeled exosomes in the cytoplasm of the
CPCs (Fig. 1c), confirming the successful internalization
of both kinds of exosomes at 12 h.

CC-Exos promotes ectopic cartilage regeneration

The effect of CC-Exos on promoting chondrogenesis of
CPCs was evaluated in subcutaneous non-chondrogenic
sites. At week 4, the CPC constructs supplied with PBS did
not lead to noticeable cartilage matrix deposition. The
addition of CC-Exos improved the matrix formation, which
demonstrated similar morphological characteristics to those
in native cartilage, with chondrocytes located within typical
chondrocytes lacunae and surrounded by abundant cartil-
aginous matrix (Fig. 2). In addition, BMSC-Exos, as ex-
pected, also improved the cartilage regeneration of the CPC
constructs. By 12 weeks, the BMSC-Exos and CC-Exos
groups could maintain their cartilage-like appearance, and
the histological results revealed significantly more contigu-
ous cartilage matrix deposition than was observed at
4 weeks in each group. The new cartilage tissue exhibited
intense staining of both S-F and T-B and showed
cartilage-like tissue with typical histological structure and
specific matrix deposition. More intense staining was noted
in the CC-Exos and BMSC-Exos groups compared with the
PBS group. In addition, the expression of typical cartilage
markers such as COL II and SOX-9 was significantly
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enhanced in the BMSC-Exos and CC-Exos groups after
12 weeks (Fig. 3a, b), which indicated superior matrix
formation in the implants.

CC-Exos are conducive to maintain the phenotypic
stability of engineered cartilage

We next explored whether the two kinds of exosomes
were sufficient to steer the chondrogenesis of engineered
tissues toward permanent cartilage-like tissues. Import-
antly, CPC constructs in the CC-Exos groups stained
negatively for COL X (Fig. 3a), indicating tissue hyper-
trophy. However, implants in the BMSC-Exos group
stained intensely for COL X. It is noteworthy that the
hypertrophic cartilage-enriched markers of COL X,
MMP 13, and IHH were strongly upregulated under
long-term use of BMSC-Exos compared with CC-Exos
(Fig. 3c). These observations suggested that CC-Exos are
conducive to maintain the phenotypic stability of engi-
neered tissue compared with BMSC-Exos.

Leijten reported that hypertrophic differentiation and
subsequent calcification are associated with vascular in-
vasion [44]. The angiogenesis in the engineered tissues
was then investigated. In gross, the implants in the
BMSC-Exos group appeared macroscopically vascular-
ized, whereas CC-Exos implants were predominantly
avascular, with some tiny blood vessels visible only in
discrete peripheral regions (Fig. 3d). In fact, CD31 stain-
ing demonstrated the devoid presence of blood vessels
in CC-Exos group. However, the MVD value (microves-
sels/hotspot) in the BMSC-Exos group was the highest
among the three groups (P < 0.05, Fig. 3d). These results
were further confirmed by the expression of angiogenic
hallmarks, such as SDF-1 and VEGEF, which were higher
in samples from the BMSC-Exos group than those from
the CC-Exos group (Fig. 3e).

Exosome uptake and promote CPC proliferation and
migration

To strengthen our in vivo findings, we next analyzed the
underlying mechanism in vitro by assessing the effect of
exosomes on the migration, proliferation, and matrix
synthesis of CPCs.

There was no difference between the two kinds of
exosomes internalized by CPCs according to the
mean fluorescence intensity of the same number of
cells (Fig. 4a). At a concentration of 30 pg/mL, both
BMSC-Exos and CC-Exos can stimulate CPC prolifer-
ation when compared to NC (P<0.05, Fig. 4c). Fur-
thermore, BMSC-Exos had a much stronger effect on
CPC proliferation than CC-Exos (P < 0.05), whereas at
a concentration of 10 pg/mL, there were no marked
differences among the CC-Exos, BMSC-Exos, and NC
groups (P >0.05).
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under transmission electron microscopy. Scale bars =100 nm. b Western blot analysis of exosome-specific markers CD9, CD63, and CD81. ¢ Representative
immunofluorescence photomicrograph of CM-Dil (red)-labeled exosomes absorbed by CPCs at 12 h, the F-actin of which were stained by phalloidin

(green), and the nuclei were stained by DAPI (blue). Scale bars =20 um

To further assess the different exosome-induced
CPC proliferation, nuclear Ki67 staining was carried
out as a surrogate for CPC proliferation (Fig. 4b).
After incubating CPCs for 12 h on the substrates,
10 pg/mL of both BMSC-Exos and CC-Exos had a
higher Ki67 expression than the negative control,
which was more evident at 30 pg/mL. These results
suggest that both CC-Exos and BMSC-Exos increase
the mitogenic effect of the CPCs.

An in vitro transwell assay was performed to investigate
the exosome-stimulating effects of migration on CPCs.
CC-Exos did not stimulate migration of CPCs after 12 h (P
<0.05, Fig. 5a, b). In contrast, CPC migration increased sig-
nificantly in the presence of BMSC-Exos after 6 and 12 h,
when compared with the NC or CC-Exos groups (P < 0.05),
and the number of migrated cells approached the number
identified in the PC group (P > 0.05). We also performed a

cell apoptosis analysis at 12 h, which revealed no significant
difference between the four groups (Fig. 5¢). Based on these
findings, we believe the different migration cell number
was attributed to the different chemotaxis effect of the exo-
somes. Scratch wound assays further proved that
BMSC-Exos were more effective than CC-Exos in increas-
ing the motility of CPCs at 24 h (P <0.05, Fig. 5d, e). The
above results confirmed that the extracted BMSC-Exos and
CC-Exos could promote the proliferation of CPCs, with
BMSC-Exos exerting a stronger effect, while only
BMSC-Exos can increase the migration of CPCs.

CC-Exos promote the differentiation of CPCs

COL II and SOX-9 expression were then evaluated as in-
dicators of chondrogenic differentiation. Importantly,
when exposed to two kinds of exosomes, genes associ-
ated with chondrogenic differentiation and matrix
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Fig. 2 Histological analysis. H&E staining, safranin O/fast green (S-F) staining, and toluidine blue (T-B) staining in 4 weeks or 12 weeks showed
enhanced ectopic cartilage formation in the BMSC-Exos and CC-Exos groups, compared to the PBS group. The enlarged images detailed the
chondrocytes surrounded by a cartilaginous matrix, where more chondrocytes were found in the CC-Exos group, followed by BMSC-Exos and PBS
groups. At week 4, the CPC constructs supplied with PBS did not lead to obvious cartilage matrix deposition. The addition of both BMSC-Exos
and CC-Exos improved the matrix formation, compared with the PBS group. By 12 weeks, the BMSC-Exos and CC-Exos groups could maintain
their cartilage-like appearance, and the histological results revealed significantly more contiguous cartilage matrix deposition than was observed
at 4 weeks in each group. Black rectangles: typical chondrocytes, which are in high magnification. Scale bars =200 um
J

synthesis, such as COL II and SOX-9, were significantly
increased at the mRNA levels, with the CC-Exos exert-
ing a stronger effect (P <0.05, Fig. 4d). Since TGF-p sig-
naling pathway is one of the main pathways to
determine the chondrogenesis [45, 46], we also per-
formed a preliminary study on the expression change of
TGEF-B signaling pathway after BMSC-Exos and
CC-Exos treatment. CC-Exos stimulated the protein ex-
pression of TGF-p and SMAD2/3 (Fig. 4e). The down-
stream expression of COL II and SOX 9 were also
increased. Thus, CC-Exos internalized by CPCs exerted

chondrogenic effects possibly through the TGF-B/SMAD
signaling pathway.

Furthermore, the factors involved in vascularization,
such as VEGF and SDF-1, were significantly increased at
the mRNA and protein levels in the BMSC-Exos group
compared to the NC and CC-Exos group (P<0.05,
Fig. 4d, f). Interestingly, the mRNA levels of VEGF and
SDEF-1 in CPCs cultured with CC-Exos were lower than
those in CPCs cultures with NC (P < 0.05), but the pro-
tein levels of the two groups had no discernible
difference.
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hypertrophy and was expressed in the BMSC-Exos group, indicating that several of the chondrocytes were exhibiting a hypertrophic phenotype.
The black arrows point to the positively stained regions. Scale bars =50 um. b, ¢ Western blot of Col II, SOX-9 (markers of chondrogenesis), and
Col X, IHH, and MMP13 (markers of hypertrophy) secreted by the implants exposed to different exosomes and PBS. d Gross appearances and
immunostaining of CD31 of in vivo implants at 12 weeks. The gross observation showed that the implants with CC-Exos did not lead to any
obvious blood vessel formation. However, the BMSC-Exos induced the formation of blood vessels surrounding the implants. CD31 immunostaining
and quantification of the density of CD31+ microvessels (MVD) revealed CC-Exos reduced angiogenesis when compared to the control. On the other
hand, angiogenesis was promoted in the BMSC-Exos group. Green rectangles: typical CD31-positive vessels, which are in high magnification. In these
images, CD31+ are red, and nuclei are blue (DAPI). “v": CD31-positive blood vessels. Scale bars = 50 um. e Western blot of VEGF, and SDF-1 secreted by
the implants exposed to different exosomes and PBS

BMSC-Exos and not CC-Exos promote HUVEC migration
and angiogenesis
An in vitro transwell assay was performed to investigate
the exosome-stimulating effects on HUVECs. HUVEC
migration increased significantly in the presence of
BMSC-Exos, compared to the NC and CC-Exos group
(P<0.05, Fig. 6a, b), and the number of migrated cells
approached the number identified in the PC group (P >
0.05). However, CC-Exos had no significant effect on
HUVEC migration, even compared with the NC group
(P>0.05).

Furthermore, the classical Matrigel assay demon-
strated that BMSC-Exos exhibited the capacity to

promote the formation of capillary-like structures
compared with the NC or CC-Exos group (P <0.05,
Fig. 6c—e). Contrary to the angiogenic role of
BMSC-Exos, the CC-Exos produced shorter networks
with the least number of mesh, values that were not
significantly different than the NC group (P> 0.05).

In short, these findings indicate that although
BMSC-Exos could promote CPCs proliferation and mi-
gration, it was also prone to angiogenesis and hyper-
trophic differentiation. On the other hand, the CC-Exos
displayed a robust chondral matrix formation with
minor angiogenesis, which circumvented the inherent
drawbacks of BMSC-Exos. The results further
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corroborated its preferable cartilage regeneration and
stability of CC-Exos in vivo.

Discussion

Cartilage defect treatment represents a major clinical
problem worldwide because of the increasing incidences
of trauma, disease, or aging [47, 48]. In clinics, autogen-
ous cartilage is typically required to implant to the de-
fect sites in order to restore normal appearance and
function [49-51], which was fraught with a couple of

shortcomings [5, 52, 53]. Tissue-engineered cartilage
grafts have emerged as a promising alternative to over-
come these problems and satisty the ever-increasing
clinical need [54-56]. Currently, exosomes have been
identified as the principal agent in mediating the
therapeutic efficacy of the cell-based regenerative
medicine approach [20, 21, 57, 58], and BMSC-Exos
have been reported for promoting in situ cartilage de-
fect repair [21, 26]. However, the therapeutic outcome
for subcutaneous cartilage defect repair is still limited
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Exos group compared to BMSC-Exos groups

rates at 12 h and 24 h. Scale bar =200 um. *P < 0.05, compared to negative control (NC), Ap <005, compared to positive control (PQ), *p <005, CC-

because of the lack of a suitable pro-chondrogenic
environment [17, 40, 59]. Meanwhile, previous studies
have also shown that chondrocytes could steer the
chondrogenesis of stem cells in vitro and in vivo
through paracrine effects [1, 7, 60]. In the present
study, using a CPC-based cartilage tissue engineering
approach, the potential of CC-Exos in promoting

ectopia chondrogenesis and stabilizing cartilage regen-
eration in a subcutaneous environment was further
investigated.

The current study demonstrated that CPC constructs
supplied with CC-Exos could form homogeneous
cartilage-like tissue with minimal hypertrophy in a sub-

cutaneous environment, with no help from any
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chondrogenic factors. Furthermore, a series of in vitro
experiments further confirmed that CC-Exos signifi-
cantly promoted chondrogenesis-related factors at the
mRNA and protein levels in CPCs, such as SOX-9 and
COL II. Importantly, angiogenesis was inhibited by
CC-Exos, which is known to be detrimental to cartilage
regeneration leading to hypertrophic differentiation and
subsequent calcification [44]. The observed contribu-
tions of CC-Exos to cartilage regeneration in vivo cor-
roborate the in vitro findings and further support that
CC-Exos alone could provide a preferable chondrogenic
environment and help maintain the stability of cartilage
tissue. Compared with BMSC-Exos where samples show
more hypertrophic cartilage, the cartilage regeneration
results achieved with the use of CC-Exos are signifi-
cantly more favorable. Hence, the null hypothesis that
there is no difference between CC-Exos and BMSC-Exos
in cartilage regeneration results must be rejected.

To date, tissue engineering has offered promising solu-
tions for clinical issues involving congenital and acquired
cartilage defects [7, 61, 62]. However, the cartilage for-
mation in subcutaneous environments is limited due to
the lack of a proper chondrogenic niche [11, 12, 59].
Imitating the chondrogenic niche is a well-accepted ap-
proach to promote the ectopic chondrogenesis of pro-
genitor cells [16, 18]. Exosomes have been studied
extensively for their potential in participating in the
maintenance of normal physiology via delivering various
types of bioactive microRNAs, nucleic acids, proteins,
and unique gene products [22, 63]. Recent studies have
shown that chondrocytes and chondrocyte-related fac-
tors play key regulatory roles in the maintenance of the
cartilage microenvironment and the ultimate cartilage
phenotype of implanted stem cells [13-15]. In the
present study, we further demonstrate that CC-Exos
modulates CPC migration, proliferation, and cartilage
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matrix synthesis. Expression of SOX-9 and COL II by
CPCs is upregulated in the presence of CC-Exos, which
promotes chondrogenesis. This may be attributed to the
TGF-B/SMAD signaling pathway, which is reported to
play an essential role in chondrocyte differentiation and
matrix maturation [41, 45, 64]. More investigations are
needed to acquire the whole picture of the pathway in-
volved in CC-Exos-induced chondrogenesis.

Additionally, reproducibly generating stable cartilage re-
mains an unsolved challenge. Avoiding vessel ingrowth
and hypertrophy is a critical factor in building stable car-
tilage [65, 66]. In the present study, compared to the posi-
tive control groups (BMSC-Exos), CC-Exos could
maintain a stabilized phenotype of constructed cartilage at
least within the investigated time frame, as evidenced by
the presence of significantly less COL X-positive staining
and minimal protein expression of COL X, IHH, and
MMP 13 secreted by hypertrophic chondrocytes at
12 weeks. In addition, less CD31-positive microvessels are
observed in the neo-cartilage of the CC-Exos group. How-
ever, after the addition of BMSC-Exos, expression of
SDF-1 and VEGF is upregulated, which promotes cell
homing and angiogenesis. This is beneficial for cartilage
engineering during the early stage of implantation [40],
which may account for the better neo-cartilage formation
in the BMSC-Exos, as reported [21, 26]. However, it also
has a disadvantage as evidenced by promoting associated
ectopic cartilage hypertrophy. Recent studies have also
shown that vascular invasion is one of the major mecha-
nisms involved in hypertrophic cartilage differentiation [5,
44]. In vitro results also revealed that HUVEC migration
and tube formation are reduced by CC-Exos when com-
pared with BMSC-Exos. These results collaborate with
data collected from an in vivo experiment, which shows
CC-Exos have the ability to decrease angiogenesis in sub-
cutaneous cartilage repair. Because CC-Exos can promote
CPC migration, proliferation, and matrix synthesis in
vitro, a more favorable prognosis is anticipated for
long-term cartilage regeneration.

A novel method of imitating the chondrogenic niche is
explored in the present work via the use of CC-Exos.
After local injection of CC-Exos, the CPCs are rapidly
directed to form neo-cartilage, when stimulated by
chondroinductive mediators. Importantly, the engi-
neered cartilage here can maintain the stabilized pheno-
type in non-chondrogenic niches, which is probably
related to antiangiogenic factors secreted by CC-Exos
that prevent neovascularization and hypertrophy. Be-
cause strategies that provide the conventional cartilage
environment often require cell-based therapy [54, 55],
the use of CC-Exos is advantageous from the perspec-
tives of off-the-shelf and cell-free regenerative medicine
approach for cartilage repair, and the ease of minimally
invasive injection of CC-Exos concentrate.
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Despite these encouraging results, the exact compo-
nent(s) is yet to be elucidated. It is plausible that a myr-
iad of components is present in the CC-Exos that can
orchestrate cartilage regeneration including chondrogen-
esis and stability. However, the detailed mechanism of
CC-Exos treatment to CPCs that caused the difference
from that of BMSC-Exos is still unclear, and further in-
vestigation of RNA-seq is needed to dissect the compo-
nents present in CC-Exos and to investigate their
underlying mechanisms in cartilage repair. In addition,
chondrogenesis is a complex process which is related to
various signaling pathways, such as wnt, TGF-f, and
hedgehog pathway. Here, we preliminarily demonstrated
the induction of TGF-B and downstream SMAD2/3 ex-
pression after CC-Exos treatment. Further investigation
is needed to acquire the entire picture of the pathway.

Conclusions

In summary, this study demonstrated that a novel exo-
some from chondrocytes could imitate the chondrogenic
niche in a subcutaneous environment, which could facili-
tate chondrogenesis and maintenance of cartilage stability.
This may contribute to its preferable chondroinductive
niches coupled with its antiangiogenic properties. Thus,
CC-Exos may represent a promising biologic-based thera-
peutic approach for the treatment of ectopic cartilage
defects.
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