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Stem cell therapy for treating osteonecrosis
of the femoral head: From clinical
applications to related basic research
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Abstract

Osteonecrosis of the femoral head (ONFH) is a
refractory disease that is associated with collapse of
the femoral head, with a risk of hip arthroplasty in
younger populations. Thus, there has been an
increased focus on early interventions for ONFH that
aim to preserve the native articulation. Stem cell
therapy is a promising treatment, and an increasing
number of recent studies have focused on this topic.
Many clinical studies have reported positive outcomes
of stem cell therapy for the treatment of ONFH. To
improve the therapeutic effects of this approach,
many related basic research studies have also been
performed. However, some issues must be further
explored, such as the appropriate patient selection
procedure, the optimal stem cell selection protocol,
the ideal injection number, and the safety of stem cell
therapy. The purpose of this review is to summarize
the available clinical studies and basic research related
to stem cell therapy for ONFH.
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Background
Osteonecrosis of the femoral head (ONFH) is a refrac-
tory disease that is characterized by compromised sub-
chondral microcirculation, necrosis of the bone, and
microfracture accumulation without sustained remodel-
ing [1, 2]. ONFH is a global problem, and an estimated
20,000 to 30,000 new patients are diagnosed with osteo-
necrosis annually in the United States [3]; in addition,
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8.12 million cases of nontraumatic ONFH are diagnosed
annually among the Chinese general population aged
15 years and older [4].
Although total hip arthroplasty (THA) can provide

satisfactory clinical outcomes for hip dysfunction pa-
tients, one challenge for surgeons is that ONFH occurs
predominantly in patients aged 30 to 40 years. The out-
comes of THA for these young and active patients are
not ideal, primarily due to the limited lifetime and dur-
ability of the prosthesis. Thus, there has been an increas-
ing focus on early interventions for ONFH that aim to
preserve the native articulation. A wide variety of
joint-preserving methods have been reported, including
pharmacologic or physical treatment and surgical tech-
niques ranging from core decompression (CD) to vari-
ous vascularized and nonvascularized bone-grafting
procedures [5]. However, the outcomes of these studies
have varied. Thus, studies that aim to identify a better
treatment are ongoing.
Stem cells are a group of cells with the ability to

self-renew and form differentiated cells. These cells play
important roles in development and disease. They are
also important “seed” cells in the process of regenerative
therapy. Stem cell research is currently focused mainly
on adult stem cells, embryonic stem cells and induced
pluripotent stem cells. Adult stem cells, which include
mesenchymal stem cells (MSCs), have been reported as
a promising approach for the regeneration of various tis-
sues. MSCs were first described in human bone marrow
and called bone marrow stem cells (BMSCs); these cells
can be isolated from many other sources, including adi-
pose tissue, the synovial membrane and the umbilical
cord, in addition to the bone marrow [6, 7]. Since the in-
jection of autologous MSCs combined with standard CD
for treating ONFH was first described in 1993 and the
first mid-term results were reported in 2002 [8], there
has been an increased focus on this approach [9]; with
the development of both the technology and the
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concept, stem cell therapy has been shown to be a
promising approach for treating ONFH.
The aim of this paper is to present a review of current

clinical and basic research related to stem cell therapy
for treating ONFH.

Outcomes in clinical applications
General outcome
An increasing number of clinical studies have evaluated the
therapeutic effect of stem cells on ONFH in recent years.
Studies with high levels of evidence (Levels I and II) are
shown in Table 1. Most of the authors demonstrated posi-
tive clinic outcomes, including reduced pain, improved
function and motion, delayed progression or the avoidance
of THA [10–17]. However, several researchers had reserva-
tions about this approach. Pepke et al. reported that there
was no significant benefit from the additional injection of
concentrated bone marrow aspirate compared with the ef-
fects of CD alone in the short term (Level of Evidence: I)
[18]. In addition, several retrospective comparative studies
(Level of Evidence: III) drew conclusions similar to those
reported by Pepke [19, 20]. A recent meta-analysis showed
that the implantation of autologous MSCs into the CD
track, particularly in the early (precollapse) stages of
ONFH, could improve the survivorship of femoral heads
and reduce the need for hip arthroplasty [21]. Another
meta-analysis (including eight randomized controlled trials)
also demonstrated that compared with CD alone, the com-
bination of CD with regenerative techniques provides a sig-
nificant improvement in survivorship over time [9].
Thus, although some controversy exists, it seems that

the general outcomes of the use of stem cells to treat
ONFH are positive. The reasons for the different conclu-
sions may be the heterogeneity among studies, including
differences in patient selection, cell harvesting, cell pro-
cessing, and cell delivery. Thus, these heterogeneities
warrant further investigation.

Patient selection
Numerous studies confirmed that the outcome of treat-
ment was ascociated with patient condition. The most
important factor may be the stage of ONFH. Ma et al.
reported that the stage of ONFH might affect the out-
come of stem cell therapy [14]. Hauzeur et al. reported
that the implantation of bone marrow aspirate concen-
trate (BMAC) after CD did not produce any improve-
ment in the evolution of stage III ONFH [22]. Thus,
stage III and stage IV cases may be prone to poor out-
comes, and early-stage (stage I or II) patients should be
a more appropriate choice. In addition, Sen et al. [12] re-
ported that patients with posttraumatic osteonecrotic
hips had better outcomes than did patients with non-
traumatic hips, which suggested that etiology is another
a factor that affects clinical outcomes. Furthermore,

Houdek et al. suggested that patients with a low modi-
fied Kerboul grade may achieve better results [23]. It
seems that the stage, size, morphology and even etiology
of ONFH may be important factors associated with the
treatment outcome. Thus, to achieve better results, it is
critical to select appropriate cases.
Moreover, it has been reported that aging is associated

with decreases in the number of MSCs isolated from a
donor and the proliferation ability of those cells [24, 25].
Stenderup et al. [26] found that although MSC function
was decreased in cells isolated from older donors in
vitro, this difference did not affect the ability of the cells
to differentiate in vivo. The authors concluded that
MSCs isolated from older donors maintained normal
cellular function but showed a proliferative defect. In
addition, Aksu et al. [27] found that sex may affect the
differentiation potential of human adipose-derived stem
cells. However, Sen et al. [12] reported that patient vari-
ables, such as sex differences, side of involvement, and
opposite side involvement, had no effect on outcomes.
Whether these factors influence the treatment efficiency
in ONFH patients has not been well studied. Additional
studies that are focused on subgroup analysis and the
proper inclusion criteria for stem cell therapy in ONFH
patients are needed in the future.

Cell selection
Various types of MSCs have been used to treat ONFH,
including bone marrow-derived MSCs (BMMSCs),
adipose-derived MSCs (ADMSCs), allogeneic human
umbilical cord-derived MSCs (hUCMSCs) and periph-
eral blood MSCs (PBMSCs). Among the various kinds
of MSCs derived from different tissues, BMMSCs are
the most commonly used type. BMMSCs are used
mostly as bone marrow concentrate (BMC) and are
more rarely cultured or used simply as bone marrow
aspirates [9]. Rastogi et al. [13] compared isolated
mononuclear cells with unprocessed bone marrow in-
jections and found that there were considerable im-
provements in hip function, as measured by the Harris
hip score, in both groups. There was a decrease in the
lesion size in the processed isolated mononuclear cell
group, and 3 of 30 hips in the unprocessed bone mar-
row injection group required total hip replacement. It
seems that the more effective procedure had better out-
comes than did unprocessed bone marrow injection for
the treatment of ONFH.
In addition to BMMSCs, ADMSCs are another choice

for cytotherapy in patients with ONFH. This method of
acquiring MSCs is not only less expensive but also less
invasive and painful than that used for bone marrow
harvesting [28]. An in vitro study demonstrated that
adipose-derived MSCs may provide a more robust
growth rate and bone differentiation potential than bone
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marrow-derived MSCs [29]. As adipose-derived MSCs
are more abundant and show a superior functional
phenotype for this purpose, they may prove to be a more
effective therapeutic approach. Although the results of
these studies were promising, there is a lack of
well-designed prospective in vivo clinical studies to fur-
ther confirm this conclusion.
Moreover, it has been demonstrated that the osteogen-

esis and proliferation of MSCs are decreased in
alcohol-induced and steroid-induced ONFH patients
[30–33]. Therefore, the transfusion of autologous stem
cells isolated from these patients may have different
therapeutic effects. Thus, allogeneic stem cells derived
from healthy humans may be an alternative for treating
ONFH. Interestingly, there is evidence for the accumula-
tion of low-immunogenicity MSCs, which allows the
MSCs to be transplanted between human leukocyte anti-
gen (HLA)-incompatible individuals [34]. hUCMSCs
may be a good candidate for this approach, because um-
bilical cord (UC) collection is easy and ethically feasible.
The yield of UCMSCs is high, and the cells have low
immunogenicity. UCMSCs are easy to separate and can
be amplified in vitro; placental UCMSCs can typically be
passaged for 30–40 generations, while adult BMMSCs can
grow only 6–10 generations with the same performance.
Cai et al. [35] evaluated the cotransplantation of au-

tologous BMMSCs and allogeneic UCMSCs for treating
ONFH and observed therapeutic effects without severe
adverse effects at 12 months after transplantation. Chen
et al. [36] analyzed the clinical effects of transplanting
allogeneic hUCMSCs for the treatment of ONFH and
achieved clear results with no obvious side-effects after a
three-year follow-up. However, there were only 30 cases
and 9 cases in the studies of Cai et al. and Chen et al.,
respectively. Studies with larger numbers of patients and
longer follow-up times are needed to further evaluate
the efficiency and safety of the use of allogeneic
hUCMSCs in treating ONFH.

Number of injected cells
The prevalence of connective tissue progenitors in the
bone marrow in the iliac crests of patients was approxi-
mately one per 30,000 nucleated cells [37]. Hernigou et
al. reported that according to the mean nucleated cell
count per ml (18 × 106 cells), the bone marrow harvested
from the iliac crest by aspiration contained an average of
approximately 600 progenitors per ml [38]. If expansion
is performed in vitro, more cells will be harvested.
It was reported that good outcomes may be associated

with high nucleated cell counts [20, 23]. However, the
optimum number of cells for injection remains un-
known. The average volume repair was 15 cm3 in a
series of osteonecrosis patients, as indicated by MRI ob-
servations and histologic observations that demonstrated

that the proportion of trabecular bone was 1/3 in the
femoral head, with the other 2/3 being fat and
hematologic cells [39]. Based on a mean bone matrix of
33% in cancellous bone, it was estimated that there are ap-
proximately 20 million osteoblasts or osteocytes per cm3

of new bone [39]. Thus, approximately 3 × 108 (20 million
cells/cm3 × 15 cm3) osteoblasts or osteocytes are needed
for new bone repair. However, achieving an objective
number of osteoblasts or osteocytes depends not only on
the number of stem cells injected but also on how many
times the stem cells can proliferate and how many cells
can effectively differentiate into osteoblasts or osteocytes,
especially in the ischemic and anoxic microenvironment
of the necrotic area of the femoral head. On the other
hand, whether the injection of more stem cells is better
and whether there is a safe threshold for the maximum in-
jection of stem cells remain unknown.
Based on current reported studies, except for patients

injected with approximately 24 × 103 to 25 × 103 cells in
early studies reported by Hernigou et al. [8, 40], the
number of cell used in most other studies ranged from
106 to 109, and the most frequently used number was
108 cells [11–13, 18, 20]. Thus, based on current data,
the injection of 106 to 109 cells may be reasonable. How-
ever, the optimal number still needs to be investigated.

Delivery techniques and combined treatment
Various techniques for cell delivery have been reported
in recent studies, and such techniques were commonly
combined with CD [10–12, 16, 18]. Other techniques in-
cluded impaction allogeneic bone grafting [41, 42], auto-
iliac cancellous bone grafts [43, 44], porous tantalum
rod implantation procedures [15], porous tantalum rod
implantation combined with vascularized iliac grafting
[45], interconnected porous calcium hydroxyapatite
(IP-CHA) [46] and porous nanohydroxylapatite [47].
In addition to the topical application of MSCs in the

necrotic zone of the femoral head, some studies also ap-
plied the MSCs through arterial injection. Cai et al.
transplanted MSCs into the medial circumflex femoral
artery, the lateral circumflex femoral artery or the obtur-
ator artery through digital subtraction angiography and
observed a therapeutic effect on avascular necrosis of
the femoral head (ANFH) without severe adverse effects
[35]. Mao et al. reported the intra-arterial infusion of
PBMSCs and found that this approach could enhance
the efficacy of biomechanical support during the treat-
ment of ONFH [15]. These two studies demonstrated
that intra-artery infusion could be another effective way
to treat ONFH. In addition, these studies also provided
evidence that MSCs could effectively act on ischemic
areas. However, determining whether the topical applica-
tion or intra-arterial infusion of MSCs is more effective
requires further investigation.
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Some studies also combined local injection with
platelet-rich plasma (PRP) [48], pharmacological treatments,
such as intravenous iloprost [49] and oral bisphosphonates
[19], or physical therapy, such as low-intensity pulsed ultra-
sound (LIPUS) [50]. Most of these studies reported satisfac-
tory outcomes, but some studies had lower levels of
evidence; thus, whether such combinations support better
outcomes must be further confirmed. Moreover, compari-
sons between various methods have rarely been reported.
Note that, in general, regardless of which delivery

technique and combined treatment were used, all of the
approaches yielded improved results.

Safety
One of the major concerns in cell therapy is safety. Stem
cells have some features of cancer cells, including a long
lifespan, relative apoptosis resistance, and the ability to
replicate for extended periods of time. In addition, simi-
lar growth regulators and control mechanisms are in-
volved in both cancer and stem cell maintenance.
Therefore, stem cells may undergo malignant transform-
ation, which is often seen as a key obstacle to the safe
use of stem-cell-based medicinal products [51]. It was
reported that the transplantation of embryonic stem
cells may increase the risk of teratoma formation [52].
Other concerns, including immune rejection and genetic
modification, also limit the clinical use of directly trans-
planted stem cells for ONFH.
After a review of current studies that used stem cells in

the treatment of ONFH, we found that most studies re-
ported that no severe complications were observed. Only
a few studies reported that patients had complications,
such as flushing, mild headache and fever [44, 49]. Thus,
based on the current studies, it seems that the application
of stem cells for the treatment of ONFH is relatively safe.
However, additional studies and long-term follow-up are
still needed to further confirm this conclusion.
In addition, for cell therapy, which requires cell expan-

sion in vitro, the entire process must be supervised to en-
sure that the cells maintain their overall phenotype and
functional potential and to ensure that the cultured cells
remain untransformed with no microbiological contamin-
ation [51]. Thus, standardization with respect to the quan-
titative and qualitative characterization of cellular
therapies may need to be established in the future.

Advances in related basic research
Rationale behind cell therapy
Although overall, clinical trials have achieved promising
results, it is undeniable that a few studies were not valid.
Thus, stem cell therapy remains controversial, which has
limited its widespread use. Therefore, to improve the
treatment effect of stem cell therapy, many exploratory

studies, including cell experiments and animal experi-
ments, have been performed.
A major concern of stem cell therapy is the fate and

potential osteogenic activity of MSCs in the ischemic
and hypoxic microenvironment at the osteonecrotic site,
where the apoptosis of bone cells may occur [53]. It was
reported that transplanted stem cells exhibit a low sur-
vival rate in ischemic tissue [54].
Yan et al. [55] transplanted autologous MSCs after de-

compression in traumatic dog models. They found that
green fluorescent protein (GFP)-labeled MSCs were present
in the necrotic area up to 12 weeks after transplantation,
and their number increased from 15% in the 2nd week to
38% in the 12th week. Immunohistochemical staining for
osteocalcin was positive in 90% of the GFP-labeled MSCs
in vivo. The percentages of trabecular bone volume were
9.36% and 8.42% in the 2nd week (p > 0.05), 22.82% and
14.72% in the 8th week, and 31.08% and 20.66% in the 12th
week for the MSC-treated and control groups, respectively,
and new trabecular bone in the MSC-transplanted group
was significantly increased compared to that of the saline
(control) group in the 8th and 12th weeks. This finding
demonstrated that the transplanted MSCs could survive,
proliferate, and differentiate into osteoblasts directly.
Jin et al. [56] drew a conclusion similar to that re-

ported by Yan. They found that intra-arterially infused
MSCs could migrate into the necrotic field in the fem-
oral head and differentiate into osteoblasts, improving
necrosis of the femoral head.
Moreover, Ciapetti et al. demonstrated that proliferation,

colony formation and osteogenic commitment are not
hampered by a low-O2 microenvironment [57]. In their
study, the cells were expanded and induced to undergo
osteogenic differentiation under a 2% pO2 atmosphere
(hypoxia), in contrast to their behavior under the standard
21% pO2 atmosphere (normoxia). Those authors found
that both proliferation and colony-forming ability were
significantly enhanced in hypoxia-exposed BMMSCs com-
pared with those of BMMSCs grown under normoxic
conditions. The expression of bone-related genes, includ-
ing alkaline phosphatase, type I collagen, and osteocalcin,
was significantly increased under hypoxic conditions.
Moreover, mineral deposition after osteogenic induction
was not hampered and was even enhanced in some cases
under low oxygen tension. These findings suggest that
MSCs can survive and maintain their function in a hyp-
oxic microenvironment.
Fan et al. [58] found that compared with BMMSCs

from normal rabbits, BMMSCs from osteonecrotic rab-
bits showed a significantly reduced proliferative ability,
reduced expression of stemness genes, decreased osteo-
blast formation, and increased adipocyte formation.
However, after low-oxygen (2%) treatment, BMMSCs
from osteonecrotic rabbits showed not only increased
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proliferation and osteogenic potential but also decreased
adipogenic potential. Further, those authors demon-
strated that the transplantation of 2% O2 versus 20% O2

MSCs after CD resulted in an increase in angiogenic
function and a decrease in local tissue apoptosis in a
rabbit model. Hypoxia-preconditioned BMMSCs could
reverse the impairment of osteonecrotic BMMSCs and
enhance their therapeutic effects [59]. Other studies
drew the similar conclusion that an osteogenic pheno-
type can be promoted if MSCs are exposed to hypoxia
during the initial steps of differentiation [60–62].
Thus, transplanted cells can survive, proliferate, and

differentiate into osteoblasts in osteonecrotic areas in
animal models. Interestingly, a low-O2 microenviron-
ment does not seem to harm MSCs and even promoted
the osteogenic phenotype in cellular experiments; these
findings must be confirmed in humans.

Subpopulations of MSCs
A definition for MSCs was provided by the International
Society for Cellular Therapy in 2006 [63]. First, MSCs
must be plastic adherent when maintained under stand-
ard culture conditions. Second, MSCs must express
CD105, CD73 and CD90 and lack the expression of the
CD45, CD34, CD14 or CD11b, CD79alpha or CD19 and
HLA-DR surface molecules. Third, MSCs must differen-
tiate into osteoblasts, adipocytes and chondroblasts in
vitro. Although this definition is currently widely ac-
cepted, evidence that MSC subpopulations may feature
distinct characteristics and regeneration potentials has
been reported, and different subpopulations have dis-
tinct potentials to promote differentiation into osteo-
blasts or chondrocytes [64].
Levi et al. [65] demonstrated that compared with either

CD105(high) or unsorted cells, FACS-sorted CD105(low)
ADMSCs were significantly enhanced in osteogenic differ-
entiation and bone regeneration; this effect is likely due to
reduced TGF-beta1/Smad2 signaling. Additionally,
Leyva-Leyva et al. [66] observed that CD105- cells showed
stronger expression of secreted protein acidic and rich in
cysteine (SPARC) and osteonectin, which was associated
with more effective calcium deposition, than did CD105+
cells. Furthermore, through in vivo trials, it was demon-
strated that grafts containing CD105- cells promoted ad-
equate graft integration, improved host vascular
infiltration, and facilitated efficient repair through intra-
membranous ossification. By contrast, grafts containing
CD105+ cells showed abundant fibrocartilaginous tissue
and deficient endochondral ossification [67].
While conflicting data have been reported for BMSCs,

Aslan et al. [68] found that in the bone marrow, CD105+
cells displayed significantly more fibroblast colony-forming
units than did unseparated mononuclear cells. Similarly,
Jarocha et al. [69] reported that expanded CD105 and

CD271 populations possess higher expression levels of
RUNX2 and OCN.
CD90 is another marker for subpopulation selection.

Yamamoto [70] found that CD90+ cells are more capable
of forming bone both in vitro and in vivo. In addition,
CD90 may be a more effective marker than CD105 for iso-
lating a highly osteogenic subpopulation. Rada et al. [71]
reported that the cells isolated with an anti-CD90 anti-
body (ab), an anti-CD49d ab and an anti-p75 ab exhibited
a high osteogenic differentiation potential but demon-
strated the lowest chondrogenic differentiation potential.
On the other hand, the cells isolated with an anti-CD73
ab exhibited a high chondrogenic differentiation potential
but the lowest osteogenic potential.
In addition, Harumichi et al. [72] reported that al-

though significant differences in proliferation capacity
were not seen, the adipogenic and osteogenic differenti-
ation capacities were higher in aldehyde dehydrogenase
(ALDH)-high subpopulations than in ALDH-low sub-
populations. All these studies revealed that osteogenic
potential is related to different subpopulations.
To date, preclinical and clinical studies of ONFH

treatments used unsorted MSCs, which may consist of
various cell subpopulations; this factor may be one of
the most important reasons for the inconsistent results
of previous studies. Thus, the accurate selection of a
subpopulation may enhance treatment efficiency for
ONFH and may be a direction for future research.

Gene-modified MSCs
Some studies have also focused on the use of genetic
engineering to modify MSCs, such as bone morpho-
genetic protein-2 (BMP-2), basic fibroblast growth
factor (bFGF), hepatocyte growth factor (HGF), vascu-
lar endothelial growth factor (VEGF), calcitonin gene-
related peptide (CGRP) or their combinations.
Tang et al. [73] used BMP-2-modified BMMSCs to repair

experimentally induced ONFH in goats and obtained good
results. Pend et al. demonstrated that BMP-2- and bFGF-
modified BMSCs could successfully repair ONFH in a dog
model by promoting bone formation and angiogenesis
[74]. VEGF alone or combined with BMP-2-modified
MSCs also yielded positive results in dog and rabbit
experiments [75, 76].
In addition, the ability of HGF, a pleiotropic cytokine,

to exert potent mitogenic effects and promote nutrient
absorption and utilization to facilitate tissue repair in
the liver, heart and muscle was also evaluated. Wen et
al. [77] demonstrated that the combination of CD and
the transplantation of HGF-transgenic autologous
BMSCs enhanced blood vessel regeneration and bone re-
construction in a rabbit ANFH model. This positive out-
come was also confirmed by Pan et al. [78].
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Gene-modified MSCs may be a promising technique
for improving treatment efficiency in ONFH patients.
However, all these results were obtained in animal ex-
periments. The efficiency and safety of these approaches
in ONFH patients require further evaluation.

MSC-derived exosomes for cell-free therapy
It was originally thought that MSCs exert their thera-
peutic effect by migrating to sites of damage, engrafting,
and subsequently differentiating into the desired cells for
tissue regeneration. However, accumulated evidence has
indicated that the therapeutic benefit of MSCs is attrib-
utable not only to their differentiation but also to the
factors they secrete [79–81]. In addition to growth fac-
tors, cytokines, chemokines, and bioactive lipids secreted
by stem cell therapeutics, cells can communicate with
neighboring cells or with distant cells through the secre-
tion of extracellular vesicles (EVs). EVs are composed of
a lipid bilayer that contains transmembrane proteins and
encloses cytosolic proteins and RNA. Cells can secrete
different types of EVs, such as exosomes and microvesi-
cles (MV), which have been classified according to their
subcellular origins [82]. Exosomes are vesicles that are
smaller than 150 nm in diameter and enriched in
endosome-derived components [83].
Guo et al. demonstrated that exosomes from human

synovial-derived MSCs could prevent glucocorticoid-
induced ONFH in rats by enhancing proliferation and
antiapoptotic effects [84]. Liu et al. further reported
that exosomes secreted from human-induced pluripo-
tent stem cell-derived MSCs could prevent ONFH by
promoting angiogenesis [85].
This cell-free treatment plays an increasingly important

role in regenerative therapy. However, unlike pharmaceut-
ical treatments that deliver a single agent at a specific dose,
MSCs are site-regulated and secrete bioactive factors and
signals at variable concentrations in response to local mi-
croenvironmental cues [86]. Thus, whether MSC-derived
vesicles can fully replace MSCs must be further evaluated.
In addition, the potential risks of using exosomes

should be considered. Accumulating evidence has indi-
cated that cells communicate via the release and delivery
of microRNAs (miRNAs) packed into tumor-released
(TR) exosomes [87]. It was also reported that exosome
vehicles could transfer toxic proteins associated with
neurodegenerative diseases [88]. Thus, the safety of
using MSC-derived vesicles must also be evaluated.
Finally, there is much work to be done before MSC-de-

rived vesicle therapy can be used clinically, including stan-
dardized production, vesicle characterization, improved
isolation and yield optimization, reproducibility, the devel-
opment of an assay for potency, and a determination of the
doses for particular clinical indications.

Conclusion
Extensive research activities over the last decade have
explored the potential of MSCs and have shown promis-
ing results in both animal experiments and clinical ap-
plications. Although some controversy exists, it seems
that the general outcomes of the use of stem cells to
treat ONFH are positive in terms of not only efficiency,
but also safety.
For clinical applications, the different conclusions may

be due to the heterogeneity among studies. It seems that
patients in ARCO I and ARCO II stages and patients with
a low modified Kerboul grade are good candidates for this
technique. BMMSCs were still the most commonly used
cells, while other types of stem cells, such as ADMSCs,
show a more promising prospect, with a robust growth
rate and bone differentiation potential, and could be con-
sidered as an alternative to BMMSCs. In addition, it was
reported that the good outcomes may be associated with
high nucleated cell counts. Although the most proper
number of cells for injection was not determined, based
on the current available data, injection of 106 to 109 cells
may be reasonable. Further clinical applications should be
aware of the appropriate patient selection procedure, the
optimal stem cell selection protocol and the ideal injection
number to achieve better outcomes.
For the related basic research, inspiring advanced pro-

gress has been made. Preconditioning of MSCs and accur-
ate selection of a subpopulation may enhance treatment
efficiency for ONFH. Use of genetic engineering to modify
MSCs, such as BMP-2 and VEGF, also constituted good
attempts to use MSCs more efficiently. Recently, cell-free
treatment has played an increasingly important role in re-
generative therapy and may develop as an alternative to
stem cell therapy. However, much work must be done be-
fore these experimental approaches can be applied in clin-
ical practice, in terms of not only efficiency, but also
safety. Standardization with respect to the quantitative
and qualitative characterization of cellular therapies is ur-
gently needed in the future.
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