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TSG-6 released from intraperitoneally
injected canine adipose tissue-derived
mesenchymal stem cells ameliorate
inflammatory bowel disease by inducing
M2 macrophage switch in mice
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Abstract

Background: Inflammatory bowel disease (IBD) is an intractable autoimmune disorder that markedly deteriorates
one’s quality of life. Mesenchymal stem cells (MSCs) alleviate inflammation by modulating inflammatory cytokines in
inflamed tissues, and have been suggested as a promising alternative for IBD treatment in human and veterinary
cases. Furthermore, tumor necrosis factor-α-induced gene/protein 6 (TSG-6) is a key factor influencing MSC
immunomodulatory properties; however, the precise mechanism of TSG-6 release from canine MSCs in IBD remains
unclear. This study aimed to assess the therapeutic effects of canine adipose tissue-derived (cAT)-MSC-produced
TSG-6 in an IBD mouse model and to explore the mechanisms underlying the immunomodulatory properties.

Methods: Mice with dextran sulfate sodium-induced colitis were administered cAT-MSCs intraperitoneally; colon
tissues were collected on day 10 for histopathological, quantitative real-time polymerase chain reaction, and
immunofluorescence analyses.

Results: cAT-MSC-secreted TSG-6 ameliorated IBD and regulated colonic expression of pro- and anti-inflammatory
cytokines such as tumor necrosis factor-α, interleukin-6, and interleukin-10. To investigate the effect of cAT-MSC-
secreted TSG-6 on activated macrophages in vitro, a transwell coculture system was used; TSG-6 released by cAT-
MSCs induced a macrophage phenotypic switch from M1 to M2. The cAT-MSC-secreted TSG-6 increased M2
macrophages in the inflamed colon in vivo.

Conclusions: TSG-6 released from cAT-MSCs can alleviate dextran sulfate sodium-induced colitis by inducing a
macrophage phenotypic switch to M2 in mice.

Keywords: TSG-6, Mesenchymal stem cells, Inflammatory bowel disease, Canine, Cell therapy, Immunomodulation,
M2 macrophage

* Correspondence: hyyoun@snu.ac.kr
1Department of Veterinary Internal Medicine, College of Veterinary Medicine,
Seoul National University, Seoul 08826, Republic of Korea
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Song et al. Stem Cell Research & Therapy  (2018) 9:91 
https://doi.org/10.1186/s13287-018-0841-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s13287-018-0841-1&domain=pdf
mailto:hyyoun@snu.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Inflammatory bowel disease (IBD) is an intractable auto-
immune disease that leads to abdominal pain, diarrhea,
fever, or other symptoms that may be caused by chronic
inflammation of the digestive system. Depending on the
pattern and site of inflammation, IBD can be categorized
as either Crohn’s disease or ulcerative colitis [1]. Although
the exact underlying pathogenesis of IBD is unknown, it is
thought to be associated with genetic and environmental
factors and gut flora [2, 3]. In addition, the disease occurs
naturally in dogs by a similar pathogenesis, and data from
therapeutic trials for canine IBD may be excellent refer-
ences for human IBD [4]. Although IBD leads to a
decreased quality of life in both humans and dogs, no
effective treatments for IBD have been developed.
Macrophages are important immune cells related to

inflammatory diseases and release inflammatory cyto-
kines which are associated with acquired immune cells,
such as lymphocytes [5]. In inflamed tissues, macro-
phages can be classified into two subtypes: M1 and M2
macrophages [6, 7]. M1 macrophages induce inflamma-
tory responses by secreting cytokines such as tumor
necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6,
whereas M2 macrophages exert anti-inflammatory re-
sponses by releasing anti-inflammatory cytokines such
as IL-10 [8]. According to several recent studies, M1
macrophages are present predominantly in inflamed tis-
sues of inflammatory disease model animals; however,
the percentage of M2 macrophages increased markedly
when the model animals recovered.
Mesenchymal stem cells (MSCs) have been suggested

as a promising tool for treating various inflammatory
diseases, including pancreatitis, peritonitis, rheumatoid
arthritis, and atopic dermatitis, as well as IBD [9–13]. In
addition, the mechanisms underlying the therapeutic
effects have been investigated and several studies have
shown that MSCs exert anti-inflammatory effects
through secretory factors [14]. TNF-α-induced gene/
protein 6 (TSG-6) is a well-known secretory factor
responsible for immunomodulation, and several recent
studies have shown that it plays important roles in redu-
cing inflammatory responses in lung injury, corneal
injury, skin wound, peritonitis, pancreatitis, and IBD
[15–20]. Moreover, MSCs derived from dogs, cats, or
horses have been shown to have immunomodulatory
effects on activated immune cells and cell-based therapy
using MSCs is a potential treatment for intractable
inflammatory diseases in veterinary medicine [21–23].
In canine medicine, however, few studies have charac-

terized secretory factors from canine MSCs, and cross-
talk mechanisms between canine MSCs and immune
cells are not well understood. Evaluating the efficacy of
canine MSCs and accumulating therapeutic results from
canine medicine would be useful in human medicine as

well as veterinary medicine, particularly for intractable
inflammatory diseases such as IBD. Therefore, in this
study, we assessed the anti-inflammatory effects and
mechanisms of canine adipose tissue-derived (cAT)-MSCs
in a dextran sulfate sodium (DSS)-induced colitis model.

Methods
Isolation and characterization of cAT-MSCs
Canine adipose tissues were collected using a protocol
approved by the Institutional Animal Care and Use
Committee (IACUC) of Seoul National University (SNU;
protocol no. SNU-170724-6). MSCs were isolated from
the tissues and cultured as described in Additional file 1:
Supplementary materials. Cells were characterized for
the expression of several stem cell markers by flow
cytometry before they were used in the experiments
(Additional file 2: Figure S1). Additionally, the differenti-
ation ability of the cells was confirmed (Additional file 3:
Figure S2), and isolated cAT-MSCs at passage 3–4 were
used in the following experiments.

Small interfering RNA (siRNA) transfection of cAT-MSCs
When cAT-MSCs reached approximately 70% confluence
they were transfected with TSG-6 siRNA or control
siRNA (sc-39,819 and sc-37,007, respectively; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) for 24 h using
Lipofectamine RNAiMAX (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s instructions. TSG-6
knockdown was confirmed by quantitative reverse
transcription polymerase chain reaction (qRT-PCR)
(Additional file 4: Figure S3). cAT-MSCs transfected with
siRNA were used for further experiments immediately
after the transfection protocol was completed.

Animal experiments
Male C57BL/6 J mice aged 6 weeks were purchased
from Nara Biotech (Seoul, Korea) and housed under
controlled temperature, humidity, and light cycle condi-
tions. Only male mice were used in this study to simplify
interpretation of the results by avoiding the effects of
gender-related differences. All experimental procedures
involving animals were approved by the IACUC of SNU
(protocol no. SNU-170804-2), and the protocols were
performed in accordance with approved guidelines (n =
4 for the naive group, n = 6 for the other groups). Colitis
was induced by ad libitum administration of 3% DSS
(36–50 kDa; MP Biomedical, Solon, OH, USA) in the
drinking water from day 0 to day 7, whereas mice receiv-
ing normal drinking water were used as the naive group.
On day 1 the following experiments were performed: 2
× 106 cAT-MSCs transfected with TSG-6 siRNA in 200
μL phosphate-buffered saline (PBS); 2 × 106 cAT-MSCs
transfected with scrambled siRNA control in 200 μL PBS;
2 × 106 control cAT-MSCs in 200 μL PBS; or the identical
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volume of PBS was injected intraperitoneally into the col-
itis mice. The body weight of each mouse was assessed
every 24 h. The mice were sacrificed on day 10 and colon
tissues were collected for further processing.

Evaluating colitis severity
The disease activity index was determined by scoring the
body weight loss (grades 0–4: 0, none; 1, < 5% loss of the
initial body weight; 2, 5–10% loss of the initial body
weight; 3, 10–20% loss of the initial body weight; 4, >
20% loss of the initial body weight), stool consistency
(grades 0–2: 0, none; 1, mild to moderate diarrhea; 2,
severe diarrhea), rectal bleeding (grades 0–2: 0, none; 1,
mild to moderate bleeding; 2, severe bleeding), and gen-
eral activity (grades 0–2: 0, normal; 1, mildly to moder-
ately depressed; 2, severely depressed).

Histological analysis
Colon tissues were fixed in 10% formaldehyde for 48 h,
embedded in paraffin, and cut into 4-μm sections. The
sections were stained with hematoxylin and eosin. A
total of 20 fields per group was selected randomly and
histological examinations were performed in a blinded
manner. The severity of symptoms was calculated by
scoring the extent of bowel wall thickening (grades 0–3:
0, none; 1, mucosa; 2, mucosa and submucosa; 3, trans-
mural), damage to the crypt (grades 0–3: 0, none; 1, loss
of goblet cells; 2, only surface epithelium intact; 3, loss
of entire crypt and epithelium), and infiltration of
inflammatory cells (grades 0–2: 0, none; 1, mild to mod-
erate; 2, severe).

Enzyme-linked immunosorbent assay (ELISA)
Total proteins were extracted from the colon tissue
using PRO-PREP Protein Extraction Solution (Intron
Biotechnology, Seongnam, Korea) according to the man-
ufacturer’s instructions and stored at −80 °C until use.
The concentrations of TNF-α, IL-6, and IL-10 were
measured using a commercial ELISA kit (all from eBios-
ciences, San Diego, CA, USA) according to the manufac-
turer’s instructions.

Obtaining canine peripheral blood mononuclear cell
(cPBMC)-derived macrophages
Canine macrophages were obtained from the peripheral
blood as previously described [24]. Briefly, the blood of
healthy canine donors was obtained from the SNU
Veterinary Medical Teaching Hospital and PBMCs were
isolated using Ficoll-Paque PLUS (GE Healthcare Life
Sciences, Little Chalfont, UK). cPBMCs were resus-
pended in Roswell Park Memorial Institute (RPMI)-1640
medium (PAN Biotech, Aidenbach, Germany) containing
20% fetal bovine serum (FBS; PAN Biotech) and 20%
macrophage colony-stimulating factor medium obtained

from the supernatant of L929 immortalized cells. The
cPBMCs were plated at 2 × 106 cells/well in 24-well
plates and incubated at 37 °C in a humidified atmos-
phere of 5% CO2. After 24 h, the wells were washed to
remove nonadherent cells. The remaining adherent cells
were incubated with fresh medium for 5 days for differ-
entiation into macrophages.

Coculture of cPBMC-derived macrophages with cAT-MSCs
After cPBMC-derived macrophages were stimulated with
200 ng/ml lipopolysaccharide (LPS; Sigma-Aldrich, St.
Louis, MO, USA) for 24 h, the LPS-stimulated macro-
phages were plated at a density of 2 × 105 cells per well in
24-well plates. Subsequently, 2 × 104 cAT-MSCs, control
siRNA-cAT-MSCs, or TSG-6 siRNA-cAT-MSCs were
seeded onto 0.4-μm pore-sized Transwell inserts (SPL Life
Science, Pocheon, Korea) and incubated for 48 h. The
macrophages were harvested for further experiments.

RNA extraction, cDNA synthesis, and qRT-PCR
Total RNA was extracted from homogenized colon
tissue or cPBMC-derived macrophages using the Easy-
BLUE Total RNA Extraction kit (Intron Biotechnology)
according to the manufacturer’s instructions. cDNA was
synthesized using LaboPass M-MuLV Reverse Tran-
scriptase (Cosmo Genetech, Seoul, Korea) and the sam-
ples were analyzed using 10 μL AMPIGENE qPCR
Green Mix Hi-ROX with SYBR Green dye (Enzo Life
Sciences, Farmingdale, NY, USA) and 400 nM forward
and reverse primers (Cosmo Genetech). Expression
levels of the target genes were normalized to that of
glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
Primer sequences used in the present study are listed in
Additional file 5: Table S1.

Flow cytometric analysis
Flow cytometry was conducted using a FACSAria II sys-
tem (BD Biosciences, Franklin Lakes, NJ, USA) and ana-
lyzed using FlowJo software (Tree Star, Ashland, OR,
USA). To characterize MSCs derived from canine adi-
pose tissues, the cells were harvested and resuspended
in PBS. Subsequently, the cells were stained with fluores-
cein isothiocyanate (FITC)-, phycoerythrin (PE)-, or allo-
phycocyanin (APC)-conjugated antibodies against the
following proteins: CD29-FITC, CD34-PE, and CD73-PE
(BD Biosciences); and CD44-FITC, CD45-FITC, and
CD90-APC (eBiosciences). To evaluate M2 macrophage
polarization, PBMC-derived macrophages cocultured
with cAT-MSCs were detached and resuspended in PBS.
Next, the macrophages were stained with PE-conjugated
CD11b (Abcam, Cambridge, UK) and FITC-conjugated
CD206 (Santa Cruz Biotechnology).
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Immunofluorescence analysis
Paraffin-embedded colon tissue sections were cut at a
thickness of 4 μm. Sections were deparaffinized in xylene
and rehydrated sequentially in 100%, 95%, and 80% etha-
nol solutions, and antigen retrieval was carried out using
10 mM citrate buffer (Sigma-Aldrich). After the sections
were washed, they were blocked with blocking buffer
containing 5% bovine serum albumin (BSA) and 0.3%
Triton X-100 (both from Sigma-Aldrich) for 1 h. The
sections were incubated overnight at 4 °C with anti-
bodies against F4/80 (1:250) or FITC-conjugated CD206
(1:250; both from Santa Cruz Biotechnology). After three
washes, the slides incubated with F4/80 antibody were
incubated with PE-conjugated secondary antibody (1:
500; Santa Cruz Biotechnology) for 1 h at 20 °C in the
dark. The colon sections stained with antibody against
either F4/80 or CD206 were washed three times and
mounted in Vectashield mounting medium containing
4′,6-diamidino-2-phenylindole (DAPI; Vector Laborator-
ies, Burlingame, CA, USA). The slides were visualized
with a confocal laser scanning microscope (LSM710;
Carl Zeiss, Jena, Germany), and immunoreactive cells
were counted in 20 random fields per group.

Annexin-V and propidium iodide (PI) staining
Colon tissue slides were stained with FITC-conjugated
annexin-V and PI using the Annexin V-FITC apoptosis de-
tection kit plus (Enzo Life Sciences) according to the man-
ufacturer’s instructions. The slides were observed using an
EVOS FL microscope (Life Technologies, Carlsbad, CA,
USA). Apoptotic cells identified as FITC-positive cells were
counted in 20 random fields per group.

Generation of the GAPDH standard curve
Standard curves for evaluating the migratory ability of
intraperitoneally injected canine MSCs were generated
by administering serial dilutions of cAT-MSCs to mouse
organs as described previously [25]. Briefly, 2 × 102, 2 ×
103, 2 × 104, or 2 × 105 cAT-MSCs were added to whole
mouse organs prior to homogenization. Total RNA was
extracted from the samples using the Easy-BLUE Total
RNA Extraction kit (Intron Biotechnology), and cDNA
was synthesized (LaboPass M-MuLV Reverse Transcript-
ase; Cosmo Genetech) using 1 μg of RNA. Next, qRT-
PCR using canine-specific mitochondrial cytochrome b
primers (forward primer, 5′-CCT TAC TAG GAG TAT
GCT TG-3′; reverse primer, 5′-TGG GTG ACT GAT
GAA AAA G-3′) was performed to generate the stand-
ard curves. The curves were corrected by performing
parallel qRT-PCR with primers for universal eukaryotic
18S ribosomal RNA (forward primer, 5′-GCT ACT ACC
GAT TGG ATG GTT TAG-3′; reverse primer, 5′-CTA
CGG AAA CCT TGT TAC GAC TTT-3′).

Statistical analysis
Data are shown as the mean ± standard deviation. Mean
values among different groups were compared by one-
way analysis of variance using the GraphPad Prism v.6.
01 software (GraphPad, Inc., La Jolla, CA, USA). A P
value < 0.05 was considered statistically significant.

Results
Intraperitoneally administered cAT-MSC-secreted TSG-6
plays a crucial role in ameliorating IBD
We have previously shown the therapeutic effects of
TSG-6 released from human AT-MSCs against colitis
[19]. In this study, we first investigated whether cAT-
MSC-secreted TSG-6 exerted anti-inflammatory effects
in DSS-induced colitis mice. Intraperitoneally infused
cAT-MSCs significantly reduced body weight loss com-
pared with mice injected with PBS from day 7 (Fig. 1a).
On day 10, the disease activity index of colitis mice
treated with cAT-MSCs was significantly improved com-
pared with mice treated with PBS (Fig. 1b). On day 10,
mice were sacrificed to evaluate the length and histology
of the colon. The shortening of colon length was signifi-
cantly improved in the cAT-MSC-treated group com-
pared with the PBS-treated group (Fig. 1c). Upon
histological examination, severe submucosal or trans-
mural thickening, destruction of the entire epithelium,
and severe inflammatory cell infiltration were observed
in DSS-induced colitis mouse colons. In colon sections
from mice treated with cAT-MSCs, the extent of bowel
wall thickening, crypt damage, and infiltration of inflam-
matory cells were improved compared with PBS-treated
mice (Fig. 1d). However, colitis mice administered with
cAT-MSCs transfected with TSG-6 siRNA did not show
improvements in body weight loss, disease activity index,
colon length, or histologic scores compared with colitis
mice injected with PBS (Fig. 1a–d).

cAT-MSC-secreted TSG-6 reduced inflammatory response
and apoptosis in the colon
We next evaluated the effect of cAT-MSCs on the
modulation of inflammatory cytokines associated with
IBD or DSS-induced colitis. Production of TNF-α and
IL-6 was considerably increased in the colon of DSS-
treated mice, whereas that of IL-10 was slightly
decreased (Fig. 2a). Treatment with cAT-MSCs not only
significantly decreased TNF-α and IL-6, but also signifi-
cantly increased IL-10 (Fig. 2a). However, siRNA-
induced downregulation of TSG-6 significantly reduced
the anti-inflammatory abilities of cAT-MSCs to modu-
late TNF-α, IL-6, and IL-10 in the colon (Fig. 2a).
In addition, we examined apoptosis that could be in-

duced by TNF-α in colon sections. Annexin-V-positive
cells were increased markedly in the colons of DSS-
induced mice (Fig. 2b). Administration of cAT-MSCs led
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to a significant decrease in annexin-V-positive cells in
the colon sections compared with the PBS-treated
groups, which was abolished by knockdown of TSG-6
with siRNA transfection (Fig. 2b).

Intraperitoneally infused cAT-MSCs did not migrate to the
inflamed colon
Next, we tracked and quantified intraperitoneally
injected cAT-MSCs (2 × 106 cells) by constructing
standard curves by qRT-PCR (Fig. 3a). After 2 h of cAT-
MSC injection, approximately 0.07%, 0.11%, 0.26%, 0.
25%, 0.08%, and 0.06% of the cells were detected in the

heart, lung, liver, spleen, kidney, and colon of DSS-
induced colitis mice, respectively (Fig. 3b). At days 1 and
3 after cAT-MSC administration, these percentages were
lower than they were at 2 h after cell infusion (Fig. 3c,
d). Furthermore, infused cAT-MSCs were not detected
in inflamed colons at days 1 and 3 (Fig. 3c, d).

TSG-6 produced by cAT-MSCs induced phenotypic
switching from M1 to M2 macrophages in vitro
Given that cytokines such as TNF-α, IL-6, and IL-10
modulated in the above study are largely derived from
macrophages, we further investigated whether cAT-

Fig. 1 Intraperitoneally infused cAT-MSC-secreted TSG-6 plays an essential role in alleviating IBD. Dextran sulfate sodium (DSS)-induced colitis
mice were administered with canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) transfected with tumor necrosis factor-α-induced
gene/protein-6 (TSG-6) small interfering (si)RNA (siTSG6-cAT-MSC), cAT-MSCs transfected with scrambled siRNA (siCTL-cAT-MSC), naive cAT-MSCs,
or phosphate-buffered saline (PBS; vehicle control) on day 1. a Body weight was measured every day and expressed in terms of the relative
change from the weight measured on day 0. Mice were sacrificed on day 10 and b Disease Activity Index (DAI) and c colon length were assessed.
d Representative hematoxylin and eosin staining of the colon tissue sections and their histological scores are shown. Scale bars = 100 μm. Four
to six mice per group were used. Results are shown as the mean ± standard deviation. **P < 0.01, ***P < 0.001. ns, not significant
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MSCs could switch the macrophage phenotype from M1
to M2. Macrophages derived from cPBMCs were stimu-
lated with LPS (200 ng/ml) for 24 h to induce the M1
phenotype. Next, macrophages were cocultured with
cAT-MSCs in a transwell system for 48 h. The propor-
tion of CD11b+ cells expressing CD206, a well-known
M2 marker, was significantly increased in the cAT-MSC
group compared with the control group (Fig. 4a). In
addition, cAT-MSCs transiently transfected with TSG-6
siRNA were cocultured with LPS-stimulated cPBMC-
derived macrophages to determine whether TSG-6 me-
diates macrophage polarization. Interestingly, the pheno-
typic switching effect was significantly decreased in cAT-
MSCs transfected with TSG-6 siRNA compared with
cAT-MSCs transfected with control siRNA or naive
cAT-MSCs (Fig. 4a). Furthermore, a reduction in mRNA
expression of inducible nitric oxide synthase (iNOS) and
IL-6 was observed in LPS-stimulated cPBMC-derived
macrophages cocultured with cAT-MSCs compared with
those incubated alone, which was abrogated by coculture
with cAT-MSCs transfected with TSG-6 siRNA (Fig. 4b).
Additionally, the CD206 and IL-10 mRNA expression

levels of LPS-stimulated cPBMC-derived macrophages
were increased in the cAT-MSC group compared with
the control group, which were restored in the TSG-6
siRNA-transfected cAT-MSC group (Fig. 4b).

cAT-MSC-secreted TSG-6 increased M2 macrophages in
the inflamed colon
We next assessed the expression level of M2 macro-
phages in inflamed colons. Quantitative analysis of
macrophages detected in colon tissue sections by im-
munofluorescence examination showed that the percent-
age of F4/80+ total macrophages was decreased
significantly, whereas that of CD206+ M2 macrophages
was increased significantly in the cAT-MSC group com-
pared with the PBS group (Fig. 5a). Furthermore, the
mRNA expression level of iNOS was significantly de-
creased and that of the M2 markers CD206, Arg1, Fizz1,
and Ym1 were markedly increased in colon tissues of
DSS-induced colitis mice infused with cAT-MSCs com-
pared with PBS-treated mice (Fig. 5b). However, the M2
polarization effect of cAT-MSCs in colon tissue was
abrogated when TSG-6 was inhibited (Fig. 5).

Fig. 2 TSG-6 secreted by canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) inhibits inflammatory response and apoptosis in the
colon. a Levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 in colons were assessed by ELISA. b Representative immunofluorescence
staining of colon tissue sections using annexin-V antibody or propidium iodide (PI), and the percentage of the annexin-V-positive cells are shown. Four
to six mice per group were used. Results are shown as the mean ± standard deviation. *P < 0.05, **P < 0.01, ***P < 0.001. ns, not significant; PBS,
phosphate-buffered saline (vehicle control); siCTL-cAT-MSC, cAT-MSCs transfected with scrambled small interfering RNA; siTSG6-cAT-MSC, cAT-MSCs
transfected with TSG-6 tumor necrosis factor-α-induced gene/protein-6 small interfering RNA

Song et al. Stem Cell Research & Therapy  (2018) 9:91 Page 6 of 12



Discussion
Numerous studies have shown that MSC administra-
tion may be an important treatment option for IBD
[26–31]. Although they are not fully understood, the
mechanisms underlying the anti-inflammatory effects
of MSC have been described previously [32–34]. It is
well known that the anti-inflammatory ability and
mechanisms of MSCs vary depending on their source
[35]. Moreover, inflammatory cytokines released by
activated immune cells are important triggers for
MSCs to exert immunomodulatory properties, indicat-
ing that the disease-specific inflammatory microenvir-
onment is crucial for the therapeutic effects of
administered MSCs [36]. In this study, we first dem-
onstrated the anti-inflammatory effects of cAT-MSCs
and determined the underlying mechanisms in a DSS-
induced colitis mouse model.
Recent studies reported that MSCs reduce inflam-

mation through soluble factors such as indoleamine
2,3-dioxygenase, transforming growth factor-β, prosta-
glandin E2 (PGE2), hepatocyte growth factor, and
TSG-6 [12, 32, 33, 37, 38]. Among these, TSG-6 has
been shown to be pivotal for the immunomodulatory

effects of MSCs in several inflammatory disease
models such as corneal inflammation, wound injury,
acute lung injury, peritonitis, and pancreatitis [10, 16,
17, 20, 39]. We also previously demonstrated that
MSCs derived from human adipose tissue exert thera-
peutic effects against DSS-induced colitis by secreting
TSG-6 [19]. Here, we showed that TSG-6 secreted
from intraperitoneally infused cAT-MSCs may ameli-
orate the symptoms of DSS-induced colitis and that
weight loss and disease activity indices were reduced.
In addition, by evaluating the length of the colon and
assessing the histologic scores of the colon tissue sec-
tions, we demonstrated the therapeutic effects of
cAT-MSC-secreted TSG-6 against DSS-induced colitis
mice. Moreover, TSG-6 released from cAT-MSCs
played an important role in modulating inflammatory
cytokines such as TNF-α, IL-6, and IL-10 in the
colon; reduced TNF-α secretion led to a significant
decrease in annexin V-positive apoptotic cells in
colon tissue sections.
In the present study, we administered cAT-MSCs into

an immunocompetent mouse model of IBD. We focused
on alterations in mouse immune cells after treatment

Fig. 3 Intraperitoneally administered canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs) do not migrate into the colon. a Standard
curves for evaluating the migratory ability of intraperitoneally (i.p.) injected cells were generated by administering serial dilutions of cAT-MSCs to the
mouse heart, lung, liver, spleen, kidney, and colon. b–d The percentage of infused cAT-MSCs in the organs was evaluated b at 2 h, c at 1 day, and d at
3 days after cell administration. Results are presented as the mean ± standard deviation of the data obtained in three independent experiments. nd,
not detected; siCTL-cAT-MSC, cAT-MSCs transfected with scrambled small interfering RNA; siTSG6-cAT-MSC, cAT-MSCs transfected with TSG-6 tumor
necrosis factor-α-induced gene/protein-6 small interfering RNA
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with canine MSCs. Moreover, MSCs are immunoprivi-
leged, partly because of the low expression of major
histocompatibility complex class II molecules [40]. Simi-
lar approaches involving the injection of xenogeneic
MSCs into immunocompetent mouse models have been
used by several groups, and cross-species-induced im-
munological responses have not been reported [17, 21,
39, 41]. Additionally, in this study, none of the mice
injected with cAT-MSCs showed any side effects or died
until sacrifice. In addition, Wang et al. reported that in-
traperitoneal infusion of MSCs showed better amelior-
ation of DSS-induced colitis compared with local anal
injection, suggesting that systemic immunomodulation
rather than reducing local inflammation is required for
effective therapy [42]. Therefore, we determined that the
optimal conditions were 2 × 106 cAT-MSCs infused
intraperitoneally.
We also evaluated the distribution of intraperitone-

ally administered cAT-MSCs using qRT-PCR, which is
known to have relatively higher sensitivity and

specificity compared to fluorescence-mediated cell
tracking. Two hours after cAT-MSC infusion less than
1% of the infused cells were detected in the heart,
lung, liver, spleen, kidney, and colon tissues. At 1 and
3 days after cAT-MSC administration, the percentages
of cells detected in the tissues were less than 0.5%.
Furthermore, infused cAT-MSCs were not detected in
colon tissues, despite inflammatory responses ob-
served at days 1 and 3. Similar results were obtained
when cAT-MSCs transiently transfected with control
or TSG-6 siRNA were administered. These results are
consistent with those of our previous study, indicating
that intraperitoneally injected cAT-MSCs formed ag-
gregates in the peritoneal cavity and alleviated DSS-
induced colitis at sites distant from the colon through
soluble factors, such as TSG-6 [19].
Considering that inflammatory cytokines modulated in

the inflamed colon treated with cAT-MSCs were princi-
pally derived from macrophages, we carried out in vitro
experiments to evaluate whether TSG-6 secreted from

Fig. 4 Canine adipose tissue-derived mesenchymal stem cell (cAT-MSC)-secreted TSG-6 induces macrophage phenotypic switching from M1 to
M2 in vitro. Lipopolysaccharide (LPS)-stimulated canine peripheral blood mononuclear cell (PBMC)-derived macrophages were cocultured in a
transwell system with cAT-MSCs transfected with tumor necrosis factor-α-induced gene/protein-6 (TSG-6) small interfering (si)RNA (siTSG6-cAT-
MSC), cAT-MSCs transfected with scrambled small interfering RNA (siCTL-cAT-MSC), or naive cAT-MSCs for 48 h. a M2 macrophage population
was determined by measuring CD11b and CD206 double-positive cells by flow cytometry. b Inducible nitric oxide synthase (iNOS), interleukin
(IL)-6, CD206, and IL-10 mRNA expression levels in the macrophages were evaluated. Results are presented as the mean ± standard deviation of
three independent experiments. **P < 0.01, ***P < 0.001. ns, not significant
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Fig. 5 (See legend on next page.)
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cAT-MSCs could switch the macrophage phenotype
from M1 to M2. LPS-stimulated cPBMC-derived mac-
rophages exhibit a conventional M1 type pattern and
were cocultured with cAT-MSCs transfected with
siRNA or with naive cAT-MSCs in a transwell system.
CD206-expressing M2 macrophages were increased
markedly in the cAT-MSC group but were inhibited
in the siTSG6-cAT-MSC group. Moreover, TSG-6 se-
creted from cAT-MSCs contributed to the decrease in
the expression levels of M1 markers such as iNOS
and IL-6.
Next, we evaluated M2 macrophages in colon tissue

sections of DSS-induced colitis mice treated with
cAT-MSCs to analyze the macrophage polarization
ability of TSG-6 released by cAT-MSCs in vivo. Re-
cent studies suggested that MSCs have the capacity to
induce phenotypic alterations in macrophages in acute
kidney injury, spinal cord injury, and skin wound ani-
mal models [43–45]. Consistent with these reports,
the expression levels of M2 markers in the colon tis-
sue were increased in the siCTL-cAT-MSC-treated
group and naive cAT-MSC-treated group compared
with the PBS-treated group. However, the siTSG6-
cAT-MSC-treated group showed no significant
changes in the expression levels of these markers
compared with the PBS group. Taken together, we
demonstrated that TSG-6 secreted by cAT-MSCs
plays an essential role in switching the phenotype of
macrophages from M1 to M2 in the inflamed colon.
We could not rule out the possibility that other fac-

tors secreted from cAT-MSCs contributed to M2
macrophage polarization in colitis mice. Interestingly,
other groups recently showed that PGE2 released by
human MSCs induced macrophage phenotypic alter-
ation [46, 47]. Further experiments on other factors
secreted from cAT-MSCs, such as PGE2, are required
to verify their effects on macrophages in IBD models.
However, our findings suggest that TSG-6 released by
cAT-MSCs plays an important role in switching the
macrophage phenotype from M1 to M2 in vitro and
in DSS-induced colitis mice.

Conclusion
In conclusion, we demonstrated that TSG-6 secreted by
cAT-MSCs ameliorated DSS-induced colitis in mice by

inducing macrophages to switch to the M2 phenotype.
In addition, our findings reveal a possible mechanism
underlying the TSG6-induced therapeutic effects in vari-
ous inflammatory disease models previously published.
These results may help in the development of cell-based
therapies for treating IBD.
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