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Abstract

Damage of mitochondria in the initial period of tissue
injury aggravates the severity of injury. Restoration of
mitochondria dysfunction and mitochondrial-based
therapeutics represent a potentially effective therapeutic
strategy. Recently, mitochondrial transfer from stem cells
has been demonstrated to play a significant role in
rescuing injured tissues. The possible mechanisms of
mitochondria released from stem cells, the pathways of
mitochondria transfer between the donor stem cells and
recipient cells, and the internalization of mitochondria
into recipient cells are discussed. Moreover, a novel
strategy for tissue injury based on the concept of stem
cell-derived mitochondrial transplantation is pointed out,
and the advantages and challenges are summarized.
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Background
Mitochondria as the center of cellular metabolism and pro-
duction of energy arose from α-proteobacterium engulfed
by a eukaryotic progenitor, consisting of inner and outer
membranes that encapsulate the intermembrane space and
matrix compartments [1]. In mammalian cells, mitochon-
dria own their special circular and double-stranded
genome, which is evolved from selective mitochondrial
ancestor genes [2]. It is theorized that mitochondria in
descendants are exclusively transmitted from their maternal
individuals [3]. However, mitochondrial transfer between
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mammalian cells has been discovered that challenges the
current inheritance of mitochondria and mitochondrial
DNA (mtDNA), providing novel thinking for some diseases
with mitochondrial damage or defect. The damage of mito-
chondria frequently occurs in the initial period of tissue
injury. Release of accumulated ROS, imbalance of calcium
ions, and insufficient supply of energy are responsible for
mitochondrial damage, which aggravate cellular apoptosis
and death around the injured region [4–8]. However,
physiological properties of healthy mitochondria including
replication, division, fusion, degradation, movement in the
cytoplasm, and intercellular transfer provide the possibility
of eliminating and replacing the damaged mitochondria [9,
10]. Previous published data show that injection of isolated
viable respiration-competent myocardial mitochondria into
the ischemic zone just before reperfusion would reverse
postischemic functional deterioration and cellular apoptosis
and limit infarct size [11]. Thus, replacement of damaged
mitochondria may protect cells against further injury.
Stem cells including mesenchymal stem cells (MSCs),

umbilical cord blood stem cells, embryonic stem cells,
and induced pluripotent stem cells (IPSCs) with self-
replication capabilities can differentiate into somatic
cells varying in shape and function [12, 13]. Transplant-
ation of stem cells recently became a hotspot of research
to treat tissue injury. Meanwhile, MSCs originating from
the mesoderm are favored in stem cell therapy for four
reasons: the ability to maintain viability and regenerative
capacity after preservation at −80 °C; simplicity of isola-
tion and cryopreservation; the ability for rapid replica-
tion and high potential of multilineage differentiation;
and minimal or even no immunoreactivity [14, 15].
Scientists are interested in the question of whether
MSCs can transfer their mitochondria to somatic cells.
The first report to reveal stem cells as donor cells of
mitochondria is between MSCs and cancer cells with
impaired mitochondrial respiratory function [16]. Cancer
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cells could accept healthy mitochondria from healthy
cells to increase their invasiveness, tumorigenic poten-
tial, and resistance to chemotherapy [17–19]. Thus, inhi-
biting the process of mitochondrial transfer may play a
vital role in cancer therapy.
Recently, numerous studies have shown that mito-

chondrial transfer from stem cells to injured cells has
been considered a potential treatment for tissue injury.
However, the specific mechanisms and critical factors re-
main to be identified. Consequently, in this mini review,
based on the summary of the phenomena of mitochon-
drial transfer between stem cells and various mammalian
cells, we present a novel strategy for tissue injury by
stem cell-derived mitochondrial transplantation, and
the advantages and challenges are summarized.

Mitochondrial transfer in vitro
Material exchange represents a significant form of inter-
cellular communication that permits not only transfer of
small molecules or ions, but also transfer of identified
intracellular structures including lysosomes, endosomal
vesicles, plasma membrane components, and mitochon-
dria in a unidirectional or bidirectional way [20, 21]. It
has been revealed that mitochondrial transfer can
restore the dysfunctional mitochondria in recipient cells,
reprogram the differentiated cells, and even rescue the
injured cells [22–24]. Spees et al. [25] first demonstrated
that after coculture of A549 ρ° cells (lung adenocarcin-
oma A549 cell line with defective mtDNA) with MSCs,
A549 ρ° cells could acquire functional mitochondria
from MSCs. Also, the isolated mitochondria from the
immortalized, untransformed mammary epithelial MCF-
12A cells could easily enter malignant breast cancer cell
lines such as MCF-7, MDA-MB-231, and NCI/ADR-Res
cells rather than entering MSF-12A itself. After mito-
chondrial transfer, the proliferation of these cell lines
would be suppressed in a dose-dependent pattern, and the
sensitivity of MCF-7 cells to doxorubicin, abraxane, and
carboplatin would be increased [26]. Intriguingly, vascular
smooth muscle cells cocultured with MSCs induce upregu-
lation of proliferation of MSCs through mitochondrial
transfer [27].
Although it has been indicated that isolated mitochon-

dria transfer to injured cells and replace the damaged or
defective mitochondria to rescue function, the release of
mitochondria may result in a series of immune responses.
The mitochondrial components but not intact mitochon-
dria are recognized as damage-associated molecular pat-
terns (DAMPs), which induce strong proinflammatory
reactions in the bloodstream and extracellular medium
[28, 29]. For example, mtDNA released into extracellu-
lar space induces Toll-like receptor (TLR) 9-mediated
inflammation and NRLP3-inflammasome activation
[30, 31]. Collins et al. [32] injected mtDNA into mice

joints, which results in inflammation and arthritis. Al-
though the specific mechanisms remain unclear,
adjusting the immune surveillance mechanisms of
mtDNA and acquiring intact functional mitochondria
may promote exogenous mitochondrial donation for
therapeutic purposes.

Mitochondrial transfer in vivo
Although the phenomenon of mitochondrial transfer in
cell culture conditions has been widely observed, it is
necessary to confirm whether mitochondrial transfer can
occur in in-vivo conditions. Recently, evidence indicated
that injured neurons are able to capture functional mito-
chondria from astrocytes [33]. CD38/CADPR/Ca2+

signaling may help astrocytes transfer mitochondria into
neurons and promote survival and plasticity. In addition,
Hayakawa et al. [34] collected extracellular mitochondria
particles from primary mouse cortical astrocytes and
then directly injected them into peri-infarct cortex of
mouse models of focal cerebral ischemia. After 24 h,
results suggested that transplanted functional mitochon-
dria were indeed present in neurons and cell survival
signals were amplified. Furthermore, Yi et al. [35] also
observed mitochondrial transfer during embryonic de-
velopment. They collected mitochondria concentrates
from murine hepatocytes, and then injected them into
zygotes from older mice. There were better developmen-
tal outcomes in the injected group than in the control
group, which showed that mitochondrial transfer can
improve embryonic development. Moreover, replace-
ment of mitochondria through nuclear transfer among
oocytes has turned into a research focus recently on the
strategy for preventing the inheritance of mtDNA
diseases [36].
Stem cells are recognized as unexceptionable donor

cells for mitochondrial transfer and numerous studies
have substantiated the significance of mitochondrial
transfer in stem cell therapy, especially MSCs [37]. The
first evidence for mitochondrial transfer as an in-vivo
therapeutic tool came from Islam et al.’s study [38]. In
the sepsis acute lung injury (ALI) model (airway-instilled
E. coli LPS in anesthetized mice), bone marrow mesen-
chymal stem cells (BMSCs) transferred mitochondria to
the alveolar epithelium that increased the generation of
ATP and alveolar surfactant that regulates alveolar
stability. In such nonsterile inflammatory diseases, alveo-
lar macrophages activated by LPS that are widely used
to mimic Gram-negative bacterial infection can accept
mitochondria from stem cells to reduce the production
of inflammatory factor while increasing the phagocytic
ability and the production of ATP [38, 39]. Lung alveolar
macrophages had been shown to gain mitochondria
from MSCs in both in-vitro and in-vivo models of acute
respiratory distress syndrome (ARDS) that result in an
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enhancement of macrophage phagocytosis activity and
an improvement of bioenergetics, providing evidence for
the therapeutic potential of mitochondria in acute,
inflammatory lung disease [40]. In addition, in viral
infection, Guo et al. [41] found that the formation of
TNTs could be induced via porcine reproductive and
respiratory syndrome virus between infected and unin-
fected cells, and mitochondria derived from stem cells
transferred to infected cells depending on TNTs, which
rescued infected cells from apoptosis/necrosis, whereas
the mitochondria can be a vehicle to transport viral
materials for spreading the infection.
In sterile inflammatory diseases induced via contusion,

ischemia–reperfusion, or chemical injury, stem cells are
capable of alleviating the inflammatory response and res-
cuing injured cells [42–44]. For instance, Naji et al. [45]
indicated that the NLRP3–ASC–Caspase 1 axis induced
via indium-tin-oxide nanoparticles in macrophages can
provoke pyroptosis, while stem cells can inhibit the

inflammatory process. In addition, MSCs rescue cardio-
myoblasts from ischemia via direct cell-to-cell connec-
tions [46]. Li et al. [47] discovered that the devotion of
mitochondria in MSCs provides great promise for the
recovery of cigarette smoke (CS)-induced lung injury in
chronic obstructive pulmonary disease. Meanwhile, it is
reported that there is a higher mitochondrial transfer
capacity in iPSC-MSCs than that from BMSCs to repair
CS-induced mitochondrial damage. The reduction of the
linear intercept value and the improvement in fibrosis
were also greater in the group treated with iPSC-MSCs
than in those treated with BMSCs [48]. Furthermore,
mitochondrial transfer can also occur from MSCs to T
cells in systemic lupus erythematosus patients.
Collectively, we summarize the latest studies of mito-

chondrial transfer via different kinds of stem cells (Table 1).
Mitochondria from injured somatic cells are engulfed and
degraded by stem cells, which results in induction of the
cytoprotective enzyme heme oxygenase-1 (HO-1), and

Table 1 Mitochondrial transfer from different kinds of stem cells

Donor cells Recipient cells Defects Methodologies Effects References

MSCs A549 ρ° cells Lack of functional
mitochondria

In vitro: coculture Rescue aerobic respiration [25]

IPSCs
MSCs

Airway epithelial
cells

CS induced In vitro: coculture
In vivo: intravenous
injection

Preservation of ATP levels [48]

MSCs T cells Systemic lupus erythematosus In vitro: coculture Regulation of autophagy [50]

MSCs CECs Rotenone-induced oxidative
stress

In vitro: coculture Mitochondrial function
rescued

[68]

IPSCs
MSCs

Myocardial cells Anthracycline-induced
damage

In vitro: coculture Protection of damage [85]

BMSCs Alveolar epithelial
cells

ALI In vivo: airway instilled Mitochondrial function
rescued

[38]

BMSCs Alveolar
macrophages

ARDS In vitro: coculture Improvement of phagocytic
capacity

[40]

BMSCs H9c2 cells Ischemia–reperfusion In vitro: coculture Reduction of apoptosis [87]

BMSCs Nucleus pulposus
cells

Degenerative disc diseases In vitro: coculture Reduction of apoptosis [88]

MSCs Neurons Ischemia–reperfusion In vitro: coculture
In vivo: intravenous
injection

Reduction of brain lesion
volume

[86]

MSCs HUVECs Ischemia–reperfusion In vitro: coculture Reduction of apoptosis and
rescue of aerobic
respiration

BMSCs Myocardial cells None In vitro: coculture Reprogramming to the
progenitor state

[22]

Endothelial
progenitor
cells

ECs Adriamycin induced In vivo: tail intravenous
injection

Reduction of inflammation
and apoptosis

[89]

MSCs ECs Asthma In vitro: coculture
In vivo: intravenous
injection

Mitochondrial respiratory
function rescued

ALI acute lung injury, ARDS acute respiratory distress syndrome, ATP adenosine triphosphate, BMSC bone marrow mesenchymal stem cell, CS cigarette smoke,
EC epithelial cell, HUVEC human umbilical vein endothelial cell, IPSC induced pluripotent stem cell, MSC stem cell including mesenchymal stem cell, CECS cornneal
epithelial cells
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improvement of cellular proliferation and antiapoptotic
function. Stem cells also donate their mitochondria to
injured cells to resist oxidative stress and improve the state
of cellular metabolism [49]. Thus, intercellular mitochon-
drial transfer holds a new approach to cure mitochondrial
dysfunctional diseases using stem cells as a carrier [50].

Mechanisms in mitochondrial release from stem cells
The first step of mitochondrial transfer is the release of
mitochondria from donor cells. It has been suggested
that mitochondrial Rho-GTPase 1 (Miro1) may be
convenient for the release of mitochondrial transfer.
Ahmad et al. [51] first suggested that Miro1 as a
calcium-sensitive adaptor protein regulates intercellular
mitochondrial movement from MSCs to epithelial cells
(ECs). The authors developed an in-vitro system of
coculture of MSCs and ECs as well as an in-vivo system
of mice treated with MSCs via the trachea. The mito-
chondrial transfer was related to a remarkable recovery
of impairment of mitochondrial function. Interestingly,
mitochondrial transfer could be blocked when MSCs
were preinduced with rotenone, a mitochondrial com-
plex I inhibitor. They then examined the levels of mito-
chondrial intracellular transport-related proteins and
suggested that only Miro1 was associated with the mito-
chondrial transfer. In addition, MSCs with stronger cap-
acity of mitochondrial transfer than lung ECs and
fibroblasts expressed high levels of Miro1 as compared
to them. They further showed that, compared to control
MSCs, the replacement of mitochondria from MSCs in
which Miro1 was knocked down to injured ECs was re-
duced. This decrease was not due to the amount of
TNTs, but the mitochondrial motility through the nano-
tubules. Other research showed that Miro1 protein plays
a significant role in Ca2+ uptake into the mitochondria,
which subsequently affects mitochondrial movement
[52]. In conclusion, Miro1 is an integral protein involved
in mitochondrial release from MSCs to ECs and Miro1-
overexpressing MSCs are efficient mitochondrial donors
with enhanced rescue potential.
At present there are three regulations for mitochon-

drial transport inside cells, which is believed to be
involved in mitochondria release. The first is synaptic
activity-dependent regulation. Mitochondria are trans-
ported to activated synapses in response to two intracel-
lular signals that control their velocity and recruitment
into the stationary pool. Identification of the KIF5–Mil-
ton–MIRO complex provides molecular targets to ad-
dress this issue and studies independently identified
MIRO as a Ca2+ sensor, providing a potential mechanism
underlying Ca2+-dependent regulation of mitochondrial
mobility [53–55]. The second regulation is neuronal
signaling-mediated regulation. In dorsal root ganglion neu-
rons, nerve growth factor (NGF) can act as a docking

signal, causing axonal mitochondria to accumulate close to
an external source of NGF [56]. Actin-based mechanisms
appear to also have a role in this phenomenon. When
neurons are treated with inhibitors of phosphoinositide
3-kinase (PI3K) or latrunculin B, an agent that destabilizes
filamentous actin, mitochondria are not recruited to the
NGF stimulation site, highlighting a crucial role for the
PI3K signaling cascade in NGF-induced regulation of mito-
chondrial mobility. The third regulation of mitochondrial
transport is related to microtubule-associated proteins
(MAPs) [57]. Microtubules are dynamic structures and are
stabilized by MAPs. Whereas MAP2 is specifically dis-
tributed in dendrites, MAP1B and tau are mainly
axon-targeted MAPs. In addition to stabilizing axonal
microtubules, tau has been shown to contribute to the
regulation of the axonal transport of membrane or-
ganelles, including mitochondria [58]. Overexpressing
tau in N2a and NB2a/d1 neuroblastoma cell lines, pri-
mary cortical neurons, and retinal ganglion neurons
selectively inhibits kinesin-driven anterograde mito-
chondrial transport [58–60]. Recent studies have also
revealed that the tau-mediated inhibition of axonal
mitochondrial transport can be rescued by tau phos-
phorylation by MARK [61].
Moreover, the specific regulatory mechanisms of stem

cell-derived mitochondrial transfer is still not clear. It
has been suggested that the CD38/CADPR/Ca2+

signaling pathway mediates the mitochondrial transfer
from astrocytes into neurons [33]. Thus, it is worth
exploring whether this signaling pathway similarly works
in stem cells. Are there any other factors and other
signal pathways regulating the release of mitochondria?
We speculated that the microenvironment of injured
regions may send messengers to the stem cells to initiate
the transfer of mitochondria. For example, whether
molecules such as proinflammatory cytokines (IL-1,
TNF-α) or anti-inflammatory cytokines (IL-4, IL-10),
which are released in the early stage of injured tissue,
can be recognized by stem cells and result in promoting
or inhibiting mitochondrial release. It is interesting to
know that dysfunctional mitochondria derived from
injured cells can be engulfed and degraded by MSCs,
which can result in induction of the cytoprotective
enzyme heme oxygenase-1 (HO-1) and stimulation of
mitochondrial biogenesis. As a result, stem cells are
motivated and recruited, and then release their mito-
chondria to rescue the injured cells.

Tunneling nanotube-dependent mitochondria
internalization mechanism
Tunneling nanotubes (TNTs) are small membranous
tubes with 50–1000 nm in diameter, which originated
from stem cells during mitochondrial transfer. TNTs are
thin cytoplasmic extensions bordered by a plasma
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membrane and connecting cells. TNTs were initially de-
scribed by Rustom et al. [62] as a communicating inter-
cellular transport network formed in coculture of
human 293 cells and rat PC12 cells. Later, TNT forma-
tion was also reported in immune cells, including B, T,
and NK cells, neutrophils, and monocytes, as well as in
neurons, glia, cultured prostate cancer cells, and cardiac
myocytes. TNTs seem to be a key point for effective
mitochondrial transfer, inhibiting abrogating the trans-
mission of cytoplasmic material such as mitochondria
from BMSCs to epithelial cells [24], while inhibiting the
process of endocytosis or phagocytosis shows little effect
[63]. Onfelt et al. [64] observed that thin filaments in-
volving F-actin and also a thicker subset (0.7 μm) con-
taining both F-actin and microtubules participated in
the formation of TNTs. Meanwhile, M-sec, a mamma-
lian protein, can induce formation of TNTs that only
contain actin filaments, but without microtubules [65].
In addition, exchange of cell particles between injured
cells and stem cells was required for the formation of
TNTs [66]. It also was observed that filopodial extension
and retraction by stem cells draws an extension of TNTs
from cardiomyocytes [67]. Also, Cdc42 (a small GTPase)
plays a critical role in the TNT extension process [65].
Furthermore, mitochondrial transfer can be induced via
mitochondrial damage that releases ROS to activate NF-
κB and upregulate TNFαip2, enhancing the formation of
TNTs [68].
The formation of TNTs was demonstrated to be con-

trolled by some factors in in-vitro cultures, providing
guidance for experimental settings and clues about how
it might be regulated in vivo. It was observed that high
concentrations of glucose play two-sided roles in the for-
mation of TNTs. On the one hand, high concentrations
of glucose diminished mitochondrial motility and
inhibited mitochondrial trafficking in neurons via regu-
lating Milton and its O-GlcNAcylation [69]. Moreover,
TNT-mediated mitochondrial transfer from MSCs to
endothelial cells was enhanced by glucose deprivation
[66]. On the other hand, in other cell systems, high
concentrations of glucose stimulated the formation of
TNTs [70, 71]. In addition, it was reported that other
factors including low serum, acidic conditions, H2O2

stimulation, viral infection, or use of chemotherapeutic
agents promoted the formation of TNTs [70–75]. All of
these studies revealed that the microenvironment around
injured cells might be suited to the formation of TNTs,
which is beneficial to the transfer of mitochondria.

Microvesicle-dependent mitochondria internalization
mechanism
Stem cells can also employ microvesicles (MVs) that
range from 0.1 to 1 μm in diameter to transport their
mitochondria to other cells. It has been reported that

fitting mitochondria from MSCs were taken by arrestin
domain-containing protein 1-mediated microvesicles
that eventually were engulfed by macrophages [76]. At
first, MSC-derived mitochondria in the cytoplasm were
packaged into Autophagy Marker Light Chain 3-containing
vesicles that then migrated to the cell periphery and were
integrated into outward budding blebs in the plasma
membrane. This MV-dependent mitochondria transfer was
also reported between astrocytes and neurons [34].

Gap junction-dependent mitochondria internalization
mechanism
Live optical studies revealed that BMSCs formed Con-
nexin43 (Cx43)-containing gap junctional channels with
the alveolar epithelium, releasing mitochondria-containing
microvesicles that were engulfed by the epithelium. In the
sepsis ALI model, the distribution of Cx43 was uneven
spatially in the alveolar epithelium, and BMSCs preferred
to attach to the areas of high Cx43 expression. In addition,
it was demonstrated that Cx43 was the critical connexin in
the present gap junctional channel formation. Furthermore,
BMSCs loaded with Ca2+ chelator successfully attached to
the alveolar but failed to form nanotubes and microvesicles,
which suggested that the Ca2+ was gap junctional channel
dependent [38]. Subsequently, Cx43-based intercellular gap
junctional communication also occurred in coculture of
MSCs and endothelial cells [77]. These findings supported
Cx43-dependent mechanisms and transfer of viable mito-
chondria in the protective response.

Macropinocytosis-dependent mitochondria internalization
mechanism
Macropinocytosis was suggested recently to play a role
in mitochondrial internalization into cardiomyocytes
[78, 79]. Ethyl isopropyl amiloride (EIPA) can abolish
the therapeutic effect of mitochondrial transfer in h9c2
cardiomyoblasts as specific inhibitors of micropinocyto-
sis [78]. To further assess the contribution of macropi-
nocytosis in mitochondrial transfer, the inhibitory effects
of other macropinocytosis and endocytosis inhibitors
were measured by FACS after coincubation of EMCs
with isolated DsRed2-labeled mitochondria. Mitochon-
drial transfer was reduced by cytochalasin D (inhibi-
tor of actin polymerization) and nocodazole (inhibitor
of microtubule assembly) but not by chlorpromazine
(inhibitor of clathrin-mediated endocytosis), revealing
that cells acquired exogenous mitochondria via micro-
pinocytosis (not via clathrin-mediated endocytosis)
[79]. In addition, integrity of the mitochondria outer
membrane proteins and interaction with cellular hep-
aran sulfate proteoglycan are essential for cells acquir-
ing exogenous mitochondria.
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Actin-dependent mitochondria internalization mechanism
Studies have shown that internalization of mitochondria
occurs through actin-dependent endocytosis and rescues
cell function by increasing the ATP content and oxygen
consumption rates. Some studies showed that mitochon-
drial internalization was not conducted by TNTs, caveola/
clathrin-dependent endocytosis, and macropinocytosis.
Only preincubation with cytochalasin D which has been
well recognized to inhibit actin-dependent endocytosis
and phagocytosis significantly decreased the internaliza-
tion of mitochondria into cardiomyocytes and decreased
the ATP content [80].
The mechanisms of mitochondrial transfer are sum-

marized in Fig. 1: Recipient cells passively phagocytose
microvesicles containing mitochondria released by stem
cells; tunneling nanotubes (TNTs), microtubules, or gap
junctions occur between stem cells and donor cells for
active replacement of intact functional mitochondria.

Strategy and the challenges of stem cell-derived
mitochondrial transplantation
Stem cells have been extensively demonstrated to rescue
cell injury, with the specific mechanisms are summarized

in Fig. 2. The mechanisms of stem cell therapy include
the following aspects: differentiation into injured cells;
sequester toxic compounds; paracrine activity for trophic
support or anti-inflammatory effects; mitochondrial
transfer by TNTs; and transfer of molecules via microve-
sicles [13, 81, 82]. Meanwhile, mitochondrial transfer
between stem cells and injured cells becomes a novel
mechanism, both for endogenous and exogenous stem
cells. This raised the possibility to transplant stem cell-
derived mitochondria to injured tissue as a novel strat-
egy for stem cell-based therapy.
Stem cell-derived mitochondrial transplantation may

have two main advantages. First, compared with MSCs,
mitochondria possess the characteristic of lower im-
munogenicity because they lack the surface antigens on
the surface membrane of MSCs. Thus, we raised the
forward hypothesis that the injured recipient may
accept stem cell-derived mitochondria from different
individuals or even different species because of low
immunogenicity. Second, stem cells have the ability
for long-time proliferation and amplification, and can
amplify to achieve the quantity of mitochondria which
is required in clinical therapy.

Fig. 1 Mechanisms of mitochondrial transfer. a Formation of TNTs. Cells move apart and form TNTs with each other. Mitochondria can be transported in
TNTs using Miro1 as a dynamic protein. Formation of TNTs can be stimulated via low serum, high glucose concentrations, OGD, or H2O2 that activate the
ROS/TNF-α/NF-κB/TNFαIp2 pathway. Microvesicles (MVs) ranging from 0.1 to 1 μm containing mitochondria can be released from stem cells and engulfed
by recipient cells. Mitochondria without MVs released from stem cells can be engulfed by recipient cells through micropinocytosis. Artificial isolated
mitochondria can be engulfed by recipient cells through actin-dependent mitochondria internalization. b Gap junction-mediated mitochondrial transfer.
Cells containing Cx43 proteins initially closely contact with target cells, followed by formation of gap junction. ATP adenosine triphosphate, Miro1
mitochondrial Rho-GTPase 1, NF nuclear factor, ROS reactive oxygen species, TNF tumor necrosis factor
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However, there are many challenges for the use of stem
cell-derived mitochondria for clinical treatment. For ex-
ample, there are multiple technical questions to be re-
solved. First, how to isolate intact and viable mitochondria
from stem cells? Although the intact functional mitochon-
dria can replace the damaged or defective mitochondria to
rescue cell function, mitochondrial DNA (mtDNA), but
not intact mitochondria, results in a series of immune re-
sponses. Thus, to adjust the isolation technique to acquire
high-quality active intact mitochondria may promote ex-
ogenous mitochondrial donation for therapeutic purposes.
Second, how to keep the activity of mitochondria in vitro?
Are cryopreserved mitochondria as effective as fresh iso-
lated mitochondria? Third, how to meet the requirement
of a sufficient quantity of mitochondria? Fourth, which ap-
proach of mitochondria transplantation into individuals
should be selected from intravenous or local injection?
Fifth, the development of specific fluorescence and mito-
chondrial tracking tools is required for further detecting
the occurrence of mitochondrial transfer in vivo. Recently,
there was inspirational discovery of a new tool called
MitoCeption to track the transplanted mitochondria,
providing a facility for research or application [83]. In
addition, using transgenic mitochondrial labeling such
as tGFP may be a viable option for tracking trans-
planted mitochondria both in vitro and in vivo, since
the inner mitochondrial membrane can be labeled with
high transfection efficiency and expression stability
[84]. Finally, the consequence and security of mito-
chondrial transfer from different kinds of stem cells
need to be further explored and evaluated.

Conclusion
Mitochondrial dysfunction plays a vital role in tissue
injury, revealing that restoring the function of mitochon-
dria or replacement of damaged mitochondrial may

improve cellular survival after injury. The reasonable
application of mitochondrial transfer in mesenchymal stem
cell-based therapy for sterile diseases such as myocardial
ischemia–reperfusion injury, stroke, neuronal traumatic in-
jury, or chemical nanoparticle-induced lung injury and for
acute or chronic inflammatory diseases, such as ALI, will
attract more attention in future [38, 48, 85, 86]. In these
conditions, damaged cells are capable of capturing healthy
mitochondria from stem cells to produce ATP, alleviate the
inflammatory response, reduce apoptosis, and eventually
rescue the injured cells [67, 86, 87]. We believe that this
novel strategy for tissue injury based on the concept of
stem cell-derived mitochondrial transplantation will be im-
plemented soon in the near future if technical problems
are resolved.
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