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Abstract

Background: Mesenchymal stem cells (MSCs) have entered the clinic as an Advanced Therapy Medicinal Product
and are currently evaluated in a wide range of studies for tissue regeneration or in autoimmune disorders. Various
efforts have been made to standardize and optimize expansion and manufacturing processes, but until now reliable
potency assays for the final MSC product are lacking. Because recent findings suggest superior therapeutic efficacy
of freshly administered MSCs in comparison with frozen cells, we sought to correlate the T-cell suppressive capacity
of MSCs with their metabolic activity.

Methods: Human MSCs were obtained from patients’ bone fragments and were employed in coculture with
peripheral blood mononuclear cells (PBMCs) in an allogeneic T-cell proliferation assay to measure
immunosuppressive function. Metabolic activity of MSCs was measured in real time in terms of aerobic glycolysis
quantified by the extracellular acidification rate and mitochondrial respiration quantified by the oxygen
consumption rate.

Results: We show that MSC-induced suppression of T-cell proliferation was highly dependent on individual healthy
donors' lymphocytes. Moreover, coculture with PBMCs increased the glycolytic and respiratory activity of MSCs
considerably in a PBMC donor-dependent manner. The twofold to threefold enhancement of cell metabolism was
accompanied by higher T-cell suppressive capacities of MSCs. The cryoprotectant dimethyl sulfoxide decreased
metabolic and immunosuppressive performances of MSCs while valproic acid (VPA) increased their glycolytic,
respiratory and T-cell suppressive capacity.

Conclusions: Functional fitness of MSCs can be determined by measuring metabolic activity and can be enhanced
by exposure to VPA. Pretesting the increment of metabolic activity upon interaction of donor MSCs with patient T-
cells provides a rational approach for an individualized potency assay prior to MSC therapy.
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Background

Because of their high ex-vivo expansion potential and their
immunomodulatory capacity, the therapeutic benefits of
mesenchymal stem cells (MSCs) are currently assessed in
numerous clinical trials [1, 2]. Promising therapeutic effects
have been reported in autoimmune disorders [3], in
particular for treatment of multiple sclerosis and graft-
versus-host disease (GvHD) [4-7].

While most studies on MSCs as an immunosuppressive
cellular therapy product raised new hope for treatment of
otherwise refractory patients [5, 8], outcomes of other stud-
ies were below expectations [9, 10]. These differences could
be explained by the highly varying manufacturing protocols
employed for MSC expansion in different studies. Efforts
have been made to harmonize and standardize these
processes under good manufacturing practice (GMP)-com-
pliant conditions [11, 12]. Moreover, expansion protocols
were optimized in order to improve the immunosuppres-
sive performances of MSCs, paving the way for a reliable
cellular product that can be administered safely and evalu-
ated in clinical trials [13, 14]. However, an in-vitro potency
assay that reliably determines the immunomodulatory
capabilities of MSCs is still lacking [15].

Recent studies indicate that freshly administered MSCs
may have a superior therapeutic impact compared with
frozen cells [16, 17]. In order to elucidate this observation,
we aimed to identify the metabolic properties of MSCs in
general and under cryopreservative conditions. By con-
ducting simultaneous T-cell proliferation assays and meta-
bolic measurements, we were able to relate the T-cell
suppressive capacity of MSCs to their glycolytic and
respiratory activity. Interestingly, we found a significant
dependency on the peripheral blood mononuclear cell
(PBMC) source in these allogeneic MSC-PBMC inter-
action assays. Furthermore, metabolic activity and also
T-cell suppressive capacity of MSCs were consistently
reduced by the cryoprotectant dimethyl sulfoxide
(DMSO). In contrast, both metabolism and T-cell sup-
pressive capacity were enhanced by exposure of MSCs
to valproic acid (VPA).

Our data thus indicate the requirement of a matching
MSC-PBMC pair for optimal immunosuppression and
provide evidence that metabolic activity is of crucial im-
portance for the immunosuppressive capabilities of MSCs.

Methods

Isolation and cultivation of human MSCs

Human MSCs were obtained from bone fragments of pa-
tients undergoing hip replacement surgery as approved by
the ethics committee at the Philipps-University Marburg
(study no. 64/01 and 25/10). MSCs were isolated and culti-
vated as described previously [11, 14]. Dulbecco’s Modified
Eagle Medium (DMEM) containing 1 g/l D-glucose (Gibco
by Life Technologies, Carlsbad, CA, USA) supplemented
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with 1% penicillin/streptomycin (P/S (100x) P11-010; PAA
Laboratories GmbH, Pasching, Austria) was supplemented
with either 10% fetal calf serum (FCS; Sera Plus; PAN Bio-
tech GmbH, Aidenbach, Germany) or 10% human platelet
lysate (HPL). Cells were incubated at 37 °C with 5% CO,.
MSCs were passaged when they reached ~80% confluence.
The immunophenotype and differentiation potential of
MSCs were tested as recommended [18] and described
previously [11]. MSCs at low passage numbers were frozen
in 10% DMSO at —80 °C and stored in liquid nitrogen.
Cells were thawed and allowed to equilibrate at least 3 days
before being used for further experiments.

T-cell proliferation assay

The immunomodulatory capacities of human MSCs were
investigated using T-cell proliferation assays as described
previously [11, 14]. Briefly, MSCs were seeded at densities
of 2.5 x 10*~1 x 10° cells per well in a 24-well plate. After
24 h of equilibration, PBMCs from healthy donors were
isolated from buffy coats via density gradient centrifuga-
tion. Subsequently PBMCs were labeled with 1 pM 5,6-
carboxyfluorescein succinimidyl ester (CFSE; Molecular
Probes, Eugene, OR, USA) and 1x10° PBMCs were
added per well. T-cell proliferation was induced by
addition of CD3 and CD28 antibodies (0.1 pug/ml each; BD
Biosciences, Franklin Lakes, NJ, USA). After 5 days of in-
cubation at 37 °C with 5% CO,, PBMCs were collected
and measured using a BD FACS LSR II with FACS Diva
software (BD Biosciences). Results were evaluated using
FlowJo™ software (Ashland, OR, USA).

The negative control, in which cells remained unstimu-
lated, was used to define a threshold of the CFSE signal of
nonproliferating T-cells. A lower amount of CESE per cell
(in comparison with the negative control) indicates in-
creased proliferation of the respective cells. Percentages of
T-cell proliferation after MSC coculture were defined by
the CFSE threshold of the respective negative control. All
values were calculated as a percentage of the respective
positive control. Suppression of T-cell proliferation was
then calculated as follows:

100% — (T-cell proliferation after coculture (% of positive control))
= T-cell suppression (%).

For DMSO pretreatment, MSCs were incubated with
1-5% DMSO for 24 h. VPA pretreatment was carried
out with 1 mM VPA for 6 days prior to onset of the
assay. DMSO and VPA for pretreatment were removed
by media exchange before addition of PBMCs. Addition
of 1 mM VPA to the coculture was performed directly
after seeding of PBMCs.

Metabolic analyses
Metabolic studies were performed using the XF96 Extracel-
lular Flux Analyzer (Seahorse Bioscience, North Billerica,
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MA, USA) which enables the simultaneous real-time meas-
urement of aerobic glycolysis quantified by the extracellular
acidification rate (ECAR) and mitochondrial respiration
quantified by the oxygen consumption rate (OCR). Human
MSCs were seeded at a density of 1 x 10* cells in 80 pl per
well in a 96-well plate and measured after 24 h. In the case
of measurements of MSCs after coculture with PBMCs,
1 x 10° PBMCs were added to the MSCs after 24 h and the
measurement was performed after a further 24 h. One hour
before the measurement, cells were washed and culture
media were replaced with low-glucose media. DMSO or
VPA pretreatment of MSCs was performed as already
described. Six to eight replicates were performed for each
condition within each measurement. Basal measurements
of ECAR and OCR as well as measurements after addition
of glucose (final concentration 10 mM; Sigma Aldrich,
St. Louis, MO, USA), oligomycin (final concentration
5 uM; Sigma Aldrich) and 2-deoxy-p-glucose (2DG,
final concentration 100 mM; Seahorse Bioscience) were
performed as described in the XF Glycolysis Stress Test
Kit User Manual (Seahorse Bioscience). All media and
solutions were prepared and applied as recommended
by the manufacturer. Oligomycin was dissolved to
5 mM in DMSO.

To exclude tampering of metabolic data by varying cell
numbers, ECAR and OCR values were normalized to the
protein content of the respective well. Protein concentra-
tion was determined with the Pierce BCA Protein Assay
(Thermo Scientific, Waltham, MA, USA). Absorbance at
540 nm was measured with a microplate absorbance
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reader provided with Magellan data analysis software
(Tecan sunrise; Tecan, Médnnedorf, Switzerland). A bovine
serum albumin (BSA) standard curve was included in each
measurement.

Statistical analyses

All statistical data analyses were performed using Graph-
Pad Prism 5 software (San Diego, CA, USA). Error bars
indicate mean + SEM. For analyses of correlation the
Pearson’s r value was determined. Group comparison
was calculated employing the Student’s ¢ test or one-way
ANOVA with Bonferroni correction.

Results

Variation of MSC-induced T-cell suppression of lympho-
cytes from healthy individuals

In order to determine the capability of MSCs to suppress
the proliferation of CD3/CD28 antibody-stimulated T-
cells, every MSC batch was tested in a coculture assay
with PBMCs from three different healthy donors in
parallel. Broad testing of 29 MSC and 65 PBMC batches
revealed that immunosuppression was highly variable
between different PBMC as well as MSC donor samples.
MSCs accomplished high suppression of T-cell prolifera-
tion in some PBMC samples but were far less successful
in others, as depicted in Fig. 1la and Additional file 1:
Figure S1A, B for one representative MSC batch, re-
spectively. The suppression ranged from 22 to 98%. Vari-
ations of T-cell suppressive capacity were also observed
in different MSC batches tested with the same PBMC
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Fig. 1 MSC-induced T-cell suppression depends on MSC and T-cell donors. Proliferation of CFSE-labeled CD4™ as well as CD8" T-cell subpopulations
was induced with CD3/28 antibodies and the CFSE intensity was measured via flow cytometry. The exemplary result of one representative experiment
is shown (n=1). a PBMCs from three different donors were cocultured with MSCs from one batch. T-cells responded differently to MSC-mediated
suppression. b PBMCs from one donor were cocultured with MSCs from four different batches. Extent of T-cell suppression varied distinctly between
different MSC batches. CFSE carboxyfluorescein succinimidyl ester, MSC mesenchymal stem cell
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donor. Figure 1b and Additional file 1: Figure S1C, D
illustrate results for a single donor PBMC and four MSC
batches, respectively. Here, the suppression was between
0.5 and 69%. Monitoring cell proliferation of CD4" and
CD8" cells gave similar results. The highest variation,
however, was observed when CD8" T-cell proliferation
was determined after coculture with MSCs from differ-
ent donors. Thus, potency for in-vitro immunosuppres-
sive activity of MSCs does not simply rely on specific
MSC batch performances but highly depends on the
predisposition of lymphocytes from different donors. A
correlation between donor age and T-cell suppression
was not observed (Additional file 1: Figure S2).

Interaction with PBMCs enhances MSC metabolism

Furthermore, we sought to identify factors that deter-
mine the donor dependency of PBMC and MSC inter-
actions in coculture. As shown previously, senescence
of MSCs is correlated with poor T-cell suppressive
capacity [14]. Because senescent MSCs exhibit low
metabolic activity [19], we sought to analyze the
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metabolism of MSCs and PBMCs in coculture in terms
of the ECAR (i.e., cellular lactate extrusion as a surro-
gate of glycolysis) and the OCR (as an indicator of
cellular respiration).

Coculture of MSCs with proliferating PBMCs led to
a twofold to threefold enhancement of both MSC
ECAR and MSC OCR compared with the monocul-
ture, as illustrated in Fig. 2a, b. This shift did not rely
on PBMC metabolic activity, as verified by control
measurements of PBMCs in monoculture. Measure-
ments of PBMCs taken from the cocultures showed
no detectable levels of metabolic activity (data not
shown). The increased rate of ECAR and OCR in
MSCs differed between PBMC donor samples. More-
over, we found a correlation between the extent of
MSC ECAR and OCR activity and their ability to
suppress T-cell proliferation as shown in Fig. 2¢, d. In
summary, metabolism of MSCs is significantly in-
creased upon PBMC coculture in a donor-dependent
manner and metabolic activity correlates with their T-cell
suppressive ability.
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Fig. 2 Immunosuppressive capacity of MSCs correlates with glycolytic and respiratory activity. MSCs were cocultured with PBMCs from different
donors and subjected to T-cell proliferation assays as well as metabolic measurements simultaneously. PBMC-dependent increase of a ECAR and
b OCR of MSCs after 24 h of coculture with two different PBMC donors (donor A and donor B) in comparison with MSCs in monoculture (n=1
in sixfold repetition). ECAR and OCR of PBMCs in monoculture were measured as a control. ¢ ECAR and d OCR of MSCs correlate with their T-cell
suppressive capacity (n=9). ECAR extracellular acidification rate, MSC mesenchymal stem cell, OCR oxygen consumption rate, PBMC peripheral
blood mononuclear cell, r Pearson’s r value. *p < 0.05, **p < 0.01, ***p < 0.001
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Dimethyl sulfoxide impairs the immunosuppressive and
metabolic activity of human MSCs

We reported previously that cryopreservation can impair
the immunosuppressive function of MSCs [14] and
others have suggested a superior efficacy of fresh versus
frozen MSCs for patient treatment [20]. Therefore we
sought to determine the impact of the cryoprotectant
DMSO on the metabolism and on the T-cell suppressive
abilities of human MSCs. Pretreatment with DMSO
decreased the T-cell suppressive capacity of MSCs in a
dose-dependent manner (Fig. 3a). Likewise, DMSO pre-
treatment attenuated the ECAR and OCR of MSCs in
monoculture (Additional file 1: Figure S3) and in PBMC
coculture (Fig. 3b, c). Again, parallel monitoring of
immunosuppression and ECAR or OCR of MSCs after
DMSO pretreatment demonstrated a clear correlation
(Fig. 3d, e), confirming the strong impact of DMSO on
MSC functioning. These observations suggest that freezing
MSCs with DMSO impairs MSC metabolism in a similar
way. Previously frozen MSCs were therefore subjected to
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metabolic measurements directly after thawing and after
equilibration times of 24-72 h. The ECAR and OCR of
MSCs were low directly after thawing but recovered during
equilibration (Additional file 1: Figure S4). In summary,
DMSO impairs the immunomodulatory as well as
metabolic activity of human MSCs. Moreover, the pre-
viously observed correlation between metabolism and
T-cell suppressive capacities was confirmed for MSCs
exposed to DMSO.

Valproic acid enhances the immunosuppressive and
metabolic activity of human MSCs

Treatment of human MSCs with the histone deacetylase
(HDAC) inhibitor VPA was shown to enhance cell mo-
tility, viability under oxidative stress and the secretion of
trophic factors [21]. Therefore, we sought to determine
the effects of VPA on metabolism and the T-cell sup-
pressive capacity of MSCs. Pretreatment of MSCs with
VPA resulted in a stronger inhibition of T-cell prolifera-
tion compared with the inhibition exerted by untreated
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MSCs (Fig. 4a). However, this outcome was only detect-
able if T-cells from the respective PBMC donor were
generally susceptible to MSC-mediated inhibition (see
also Fig. 1), which occurred in six out of nine PBMC
donors who were analyzed in this context. In general,
the T-cell suppressive effect was MSC dose dependent as
shown previously [11]. The supportive effect of VPA on
MSC-mediated T-cell inhibition was even stronger if
VPA was added directly to the MSC-PBMC coculture
(Fig. 4a). Besides, a direct suppressive effect of VPA on
T-cell proliferation was observed. T-cell suppression by
VPA in the absence of MSCs ranged from 7 to 77%, with
a mean suppression of 31% (n = 12). Furthermore, mea-
surements of metabolic activity of three different MSC
batches revealed that ECAR as well as OCR of all ana-
lyzed batches were enhanced after VPA pretreatment
(Fig. 4b, c). An essential negative effect on viability of
PBMCs was not observed (Additional file 1: Figure S5).
In general, metabolic activity varied between individual
MSC batches. Thus, VPA attenuates T-cell proliferation
directly and enhances metabolic and immunosuppressive
activity of MSCs.
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Discussion

We and others have shown previously that MSCs inhibit
T-cell proliferation in a dose-dependent manner [11, 22].
We show a high variation of T-cell suppressive capacity of
various MSC batches on the same PBMC donor samples
which is consistent with recently published data [23].
Interestingly, the response of different PBMC donor sam-
ples to the immunosuppressive capability of the same
MSC batch also revealed a substantial variation. Because
of similar observations, Ketterl et al. [24] used pooled
leukocyte samples in order to reduce inconsistencies in
immune responses of individual T-cell samples. However,
failure of T-cell suppression as an inherent disability of
lymphocytes from healthy individuals has not been
described systematically. It has been suggested that T-cells
from patients with autoimmune disorders exhibit less
reactivity to MSC-induced suppression of proliferation
compared with healthy individuals and that the inhibitory
function is mediated through monocytes [25]. We ob-
served that unresponsiveness of donor T-cells to MSC-
mediated suppression occurred even amongst healthy
individuals, while the same MSC batches exhibited high
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immunosuppressive action toward T-cells from other
donors. Additionally, MSCs from different individuals act
differently at the level of direct interaction with PBMCs.
We further showed that different PBMC batches enhance
MSC ECAR and OCR to variable degrees. MSCs that are
highly capable of suppressing T-cell proliferation react
with a significant enhancement of metabolism in response
to PBMC coculture, suggesting a dependency of T-cell
suppressive capacity of MSCs on metabolic activity.
Accordingly, a linear correlation of metabolic activity and
T-cell suppressive capacity of MSCs was observed. In line
with the observation of low glycolytic activity in senescent
MSCs [26], we could previously link diminished T-cell
suppression of MSCs with senescence [14].

Advanced Therapy Medicinal Products (ATMPs) are
often frozen employing 5-10% DMSO [27]. We there-
fore corroborated our hypothesis by demonstrating a
DMSO dose-dependent impairment of metabolic activity
and immunosuppressive function of MSCs. In contrast,
we showed that pretreatment of MSCs with VPA induced
metabolic activity. Furthermore, we found that VPA dir-
ectly reduced T-cell proliferation. Anti-proliferative and
apoptosis-inducing effects of VPA on T-cells have been
described in-vitro and in-vivo [28]. Beyond this T-cell
modulating effect, MSCs pretreated with VPA displayed a
superior function to suppress T-cell proliferation com-
pared with untreated MSCs. When adding VPA dir-
ectly to the MSC-PBMC coculture, we observed a
further increase of MSC-mediated T-cell suppression.
Because HDAC inhibitors exhibit an immunosuppres-
sing effect when applied for treatment of GvHD [29],
our data support the notion that combined application
of MSCs plus VPA could be a very active treatment
regimen for GvHD. In line with this, VPA was shown
to increase frequency and function of regulatory T-
cells (T-regs) in a mouse model of immune-mediated
arthritis which correlated with reduced incidence and
severity of the disease [30]. In-vitro immunosuppres-
sion via increased amounts of T-regs is a mechanism
also described for MSCs [31].

In search of a suitable potency assay for MSCs, T-cell
proliferation assays with pooled donor T-cells have
been proposed [32]. In contrast, our data indicate that
measurement of individual patient T-cell response to
MSCs could be more relevant in assessment of effi-
ciency of MSC therapy. Based on the correlation of
MSC metabolism with their immunosuppressive poten-
tial, we suggest that MSC functionality can be pre-
dicted via metabolic measurements such as lactate acid
production or oxygen consumption after patient PBMC
and donor MSC coculture. Taken together, our findings
point to a feasible and informative potency assay that
considers interindividual variations in the interaction
of MSCs with patient immune effector cells.
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Conclusion

Our data pave the way for an individualized potency
assay for donor MSC and recipient T-cell interaction
based on metabolic measurements. Enhancement of
T-cell suppressive function through VPA supports the
notion that the immunosuppressive activity of MSCs can
be further enhanced in-vitro and potentially in-vivo.
Whether metabolic parameters could be useful to predict
the efficacy of MSC therapy in-vivo needs to be deter-
mined in prospective clinical trials.

Additional files

Additional file 1: Figure S1. Showing that T-cell suppression induced
by MSCs is heterogeneous, Figure S2. Showing that PBMC predisposition to
MSC-mediated suppression does not correlate with donor age, Figure S3.
Showing that DMSO pretreatment attenuates the ECAR and OCR of MSCs,
Figure S4. Showing that freezing with DMSO attenuates MSC metabolism
and Figure S5. Showing the influence of VPA and DMSO treatment on
PBMC survival. (DOCX 2025 kb)
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