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Abstract

Introduction: Although mesenchymal stem cells (MSCs) from different sources share many similar characteristics,
they also exhibit individual properties. In this study, we compared MSCs derived from Wharton’s jelly in the
umbilical cord with those derived from the decidual basalis in the maternal part of the placenta to better
understand the similarities and differences between these two cell types.

Method: The morphology, immunophenotype (as assessed using flow cytometry), and multi-lineage differentiation
potential were analyzed. Karyotype analysis was carried out to determine the origin of the MSCs. Growth kinetics
were evaluated using analysis of the population doubling time and cell cycle. Immunosuppressive function was
analyzed using mixed lymphocyte culture.

Results: MSCs from Wharton’s jelly and the decidua basalis exhibited similar morphology, immunophenotype, and
differentiation potential to osteogenesis and adipogenesis. The percentage of MSCs in the G0/G1 phase was higher
in the case of Wharton’s jelly than in the case of the decidua basalis (P < 0.05). Decidual MSCs displayed more
remarkable immunosuppressive effects on phytohemagglutinin-stimulated T-cell proliferation (P < 0.05).

Conclusion: MSCs from both sources had similar basic biological properties, but decidual MSCs had slower
proliferation and stronger immunosuppressive function.

Keywords: Mesenchymal stem cells (MSCs), Decidua basalis, Wharton’s jelly, Immunosuppression, Cell cycle, T-cell
proliferation

Introduction
Mesenchymal stem cells (MSCs) not only possess the
basic characteristics of stem cells, including self-renewal
and multi-lineage differentiation potential, but also ex-
hibit hematopoietic [1, 2] and immunomodulatory func-
tion [3–6]. Neonatal tissue is rich in MSCs derived from
Wharton’s jelly in the umbilical cord and from the de-
ciduae, which form the maternal part of the placenta.
The placentome is customarily discarded as a medical
waste, and there is no ethical controversy in obtaining
MSCs from this tissue. There may be many similarities

between MSCs from the above two sources. Neverthe-
less, they play different roles during fetal development,
and so have their own characteristics. The placenta and
fetal membranes function as immunological barriers be-
tween the mother and the developing fetus during preg-
nancy. The placenta can be conceptually divided into the
fetal side, consisting of the amnion and chorion, and the
maternal side, consisting of the decidua. As placental tis-
sues are conventionally discarded after delivery, these
tissues are readily available for research and clinical ap-
plications. The decidua is a membrane of maternal ori-
gin that plays an important role in immune tolerance,
since maternal and fetal immune cells come into direct
contact with each other at this site [5]. Wharton’s jelly is
the embryonic mucous connective tissue found between
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the amniotic epithelium and the umbilical vessels; it is a
rich source of MSCs [7]. MSCs from Wharton’s jelly
(WJ-MSCs) exhibit greater proliferation than adult
MSCs from the bone marrow [6].
Most often MSCs are transplanted for tissue repair

and regeneration. Due to their immunomodulatory
properties, MSCs have garnered increasing research at-
tention in recent years. MSCs have been used for treat-
ing graft-versus-host disease [5, 8–10]. MSCs from the
bone marrow, which were first described by Fridenstein
et al. [11] in 1976, were the earliest stem cells to be de-
tected and, currently, are the most used stem cells in
clinical trials. However, their limited availability hindered
their development in research and clinical applications.
The use of neonatal tissue can overcome this shortcom-
ing. In our study, we compared MSCs derived from
Wharton’s jelly in the umbilical cord and from the de-
cidual stroma in the maternal-origin placenta to under-
stand their similarities and differences. The morphology
and immunophenotype (assessed using flow cytometry)
were analyzed. Karyotype analysis was carried out to de-
termine the origin of the MSCs. Growth kinetics were
evaluated using the population doubling time (PDT) and
cell cycle. Immunosuppressive function was analyzed
using mixed lymphocyte culture.

Materials and methods
Isolation and culture of MSCs from Wharton’s jelly and
decidua
Ten human placentae and umbilical cords were obtained
from healthy, full-term, naturally delivered, male new-
borns. Peripheral blood samples were obtained from vol-
untary blood donors. Written informed consent was
obtained from the mothers and the donors. The study
protocols were reviewed and approved by the Taizhou
Renmin Hospital review board and ethics committee of
Taizhou Renmin Hospital. We selected donors who
tested negative for hepatitis B surface antigen, hepatitis
B core antibody, hepatitis C virus antibody, hepatitis
C virus RNA, HIV-I and -II antibodies, HIV-1 RNA,
cytomegalovirus IgM, and anti-Treponema pallidum
antibody.
WJ-MSCs were separated and cultured according to

previously published reports [11, 12]. MSCs from the de-
cidua basalis (DB-MSCs) were separated from the de-
cidua basalis of the placenta. The decidua basalis tissue
was sliced into small fragments of 1 mm3, washed twice
with physiological saline, digested with collagenase for
1 h, and cultured in serum-free MesenCult-XF medium
(Stemcell, Vancouver, Canada).

Karyotype analysis
Karyotype analysis was carried out at passage 0 (P0) to
confirm that the cells were derived from the maternal

decidua basalis. For this purpose, 2 × 106 cells were har-
vested, and 0.1–0.4 μg/mL colchicine (Gibco, Grand
Island, USA) was added to the culture medium. After
12 h, 0.075 M KCl was added to the culture, and the
cells were incubated in a water bath at 37 °C. Then,
1 mL of fixative (methanol/acetic acid mixture at 1:3)
was added, and the samples were incubated for 30 min
at 37 °C and centrifuged. A further 8 mL of fixative was
added, and the cells were dried for 10 min with 10 %
Giemsa, and then washed with distilled water. The fixed
cells were observed under an electron microscope (IX71;
Olympus, Tokyo, Japan). Chromosome analysis was car-
ried out by applying G-bands, according to the guide-
lines of the International System for Chromosome
Nomenclature 2013. On average, 20 metaphase samples
were evaluated for each passage [13].

Immunophenotype analysis by flow cytometry
At P3, MSCs from both sources (1 × 107 cells) were
digested with trypsin and washed twice with phosphate-
buffered saline. The cell concentration was adjusted to
2 × 106 cells/mL, and cells were stained with the follow-
ing fluorescent antibody conjugates: CD45-fluorescein
isothiocyanate (FITC), CD34-phycoerythrin (PE), CD73-
PE, CD14-FITC, CD79a-APC, the human major histo-
compatibility complex (MHC) class II molecule HLA-DR-
(PE), CD90-allophycocyanin (APC) (BD Biosciences, MD,
USA), and CD105-PE (eBioscience, CA, USA). We also
tested for the co-inhibitory molecule B7-H1(FITC) and
the positive co-stimulatory factors CD80-PE, CD83-APC,
and CD86-FITC. Surface staining was detected using
flow cytometry (Diva software 6.0, FACScantoII, BD
Biosciences).

Growth kinetics analysis
The proliferation of MSCs from both sources at P3, P5,
P8, and P10 was assessed. WJ-MSCs and DB-MSCs were
plated on a 60-mm wide dish at a density of 7–10 × 105

cells/well, and the cells were counted until they reached
100 % confluency. The PDT was calculated using the fol-
lowing formula:
PDT = (CT × ln2)/ln(Nf/Ni), where CT is the cell cul-

ture time, Ni is the initial number of cells, and Nf is the
final number of cells [14].

Cell cycle analysis of MSCs from both sources by flow
cytometry
Cell cycle analysis was carried out at P3. The cell con-
centration was adjusted to 2 × 106 cells/mL. A 1-mL cell
suspension in 70 % ethanol containing 1 × 106 cells was
prepared and fixed for 10–12 h at 4 °C. The fixed cells
were centrifuged for 5 min at 300 g. The supernatant
was discarded, and the cells were stained with 1 μg/mL
propidium iodide (BD Biosciences). The cells were
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incubated for 20 min at 4 °C, and their fluorescence was
measured using flow cytometry. The data were analyzed
using ModFit software.

Mixed lymphocyte reaction
We gently mixed 10 mL peripheral blood with 10 mL
saline. Next, 10 mL lymphocyte separation medium
1.077 was poured into a 5.0-mL tube. Then, 20 mL cell
suspension was carefully added on top of the separation
medium without disturbing the interphase. The tube
was centrifuged at 440 g for 40 min. Most of the super-
natant was then aspirated without disturbing the layer of
mononuclear cells in the interphase. The mononuclear
cells were then aspirated from the interphase, washed
with saline, and centrifuged at 360 g for 10 min. The ex-
cess red blood cells and plasma were removed.
Mixed lymphocyte reaction was carried out in 96-well

plates. WJ-MSCs and DB-MSCs from 10 donors at P3
were irradiated with 60Co (20 Gy). Next, 1.0 × 105 re-
sponder cells were co-cultured with 1.0 × 105 stimulator
cells in serum-free MesenCult-XF medium for 6 days at
37 °C in humidified air containing 5 % CO2. The cells
were divided into eight groups: group A, 1.0 × 106 per-
ipheral blood mononuclear cells (PBMCs); group B,
1.0 × 106 PBMCs + phytohemagglutinin (PHA; 10 ug/mL);
group C, 1.0 × 105 DB-MSCs; group D, 1.0 × 105 DB-
MSCs + PHA; group E, 1.0 × 106 PBMCs + 1.0 × 105

DB-MSCs + PHA (10 μg/mL); group F, 1.0 × 105 WJ-
MSCs; group G, 1.0 × 105 WJ-MSCs + PHA; group H,
1.0 × 106 PBMCs + 1.0 × 105 WJ-MSCs + PHA. For each
group, three replications were used. Cell proliferation
rates were assessed using (3H)-thymidine incorporation.
The interferon (IFN)-γ levels in the co-culture super-
natant were detected using an enzyme-linked immuno-
sorbent assay (ELISA) kit (eBioscience). The optical
density of each well was evaluated at 450/630 nm, and
IFN-γ content was calculated using a standard curve.

Statistical analysis
Data were expressed as mean ± SEM. The different
groups were compared using analysis of variance. PDT
was compared using the t-test. A 5 % probability (P < 0.05)
was used as the level of statistical difference.

Results
Morphology
The morphology of MSCs from both sources was
assessed using light microscopy. We observed the cells
at every passage. All cells retained a fibroblast-like
morphology (Fig. 1).

Karyotype analysis
To ensure all cells in culture were derived from the ma-
ternal placenta, the cytogenetic karyotypes of the cells at

Fig. 1 Photomicrographs of mesenchymal stem cells from Wharton’s jelly (WJ-MSCs) and the decidua basalis (DB-MSCs) from donor 2 are shown.
They are plastic-adherent and retain a fibroblast-like morphology. P Passage
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P0 were analyzed. The sex chromosomes XX, not XY,
were detected in the cells (Fig. 2).

Immunophenotype
We investigated MSC immunophenotype at P3 by stain-
ing for cell surface markers, which were detected using
flow cytometry according to the International Society for
Cellular Therapy standards [15]. MSCs from both
sources highly expressed the typical MSC markers
CD105, CD73, and CD90 and the co-inhibitory molecule
B7-H1. In addition, the cells showed low expression of
the hematopoietic markers CD45, CD14, and CD34, the
MHC class II molecule HLA-DR, and the positive co-
stimulatory factors CD80, CD83, and CD86. There was
no difference between the two types of MSC in terms of
immunophenotype (Fig. 3).

PDT of MSCs
DB-MSCs and WJ-MSCs from the same donor showed
different proliferative capacities at the same culture pas-
sage. The PDT of WJ-MSCs was 34.7 ± 3.4 h, 38.8 ± 3.3 h,
44.8 ± 4.1 h, and 56.8 ± 3.6 h at P3, P5, P8, and P10, respect-
ively. The PDT of DB-MSCs was 47.5 ± 4.0 h, 51.8 ± 3.8 h,
60.7 ± 4.7 h, and 71.1 ± 3.0 h at P3, P5, P8, and P10, respect-
ively. The PDT of DB-MSCs and WJ-MSCs from the same
donor increased with an increase in the number of pas-
sages (Fig. 4).

Cell cycle analysis
The cell cycles of DB-MSCs and WJ-MSCs from the 10
donors were assessed at P3. In the case of the DB-MSCs,
the mean proportions of cells in the G0/G1 phase, S
phase, and G2/M phase were 76.60 ± 2.34 %, 15.76 ±
2.11 %, and 7.64 ± 1.48 %, respectively. The corresponding
proportions in the case of WJ-MSCs were 65.615 ± 2.91 %,
20.50 ± 1.96 %, and 13.89 ± 2.78 %. The differences in the

distribution of cells in the G0/G1 and G2/M phases be-
tween DB-MSCs and WJ-MSCs were statistically signifi-
cant (P < 0.05; Fig. 5).

Immunomodulatory properties of MSCs from both
sources
To compare the immunomodulatory properties of MSCs
from both sources, PBMCs were stimulated with PHA
in the presence of WJ-MSCs or DB-MSCs for 6 days.
Allogeneic PBMC proliferation rates were then assessed
using (3H)-thymidine incorporation in the four groups.
DB-MSCs showed stronger immunosuppression proper-
ties than did WJ-MSCs (P < 0.05). IFN-γ content of the
supernatant was tested using ELISA. The IFN-γ level in
the supernatant was lower in the DB-MSC group than
in the WJ-MSC group (P < 0.05; Fig. 6).

Discussion
In the present study, we compared two populations of
MSCs derived from the decidua basalis and Wharton’s
jelly. Although DB-MSCs and WJ-MSCs share global
properties, such as morphology, plastic adherence, and
multi-lineage differentiation potential [16], significant
differences exist between them in terms of growth rate
and immunomodulatory function.
During pregnancy, the maternal and fetal immune cells

come into direct contact with each other in the decidua,
which functions as an immunological barrier between the
mother and the developing fetus [5]. Karyotype analysis
showed that DB-MSCs are of maternal origin, since the
sex chromosomes in these cells were XX, not XY. Pro-
grammed cell death (PD)-L1 and PD-L2 are members of
the B7 family, and are the ligands for the PD-1 receptor.
PD-L1, also called B7-H1, is expressed on antigen-
presenting cells, including IFN-γ-stimulated monocytes,
and activated human and murine dendritic cells. PD-L1 is

Fig. 2 Karyotyping. To ensure all cells in culture were derived from the maternal placenta, the cytogenetic karyotypes of cells at P0 were
analyzed. The sex chromosomes were XX, not XY. There were no chromosome eliminations, displacements, or imbalances
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also expressed on placental trophoblasts, myocardial
endothelium, cortical thymic epithelial cells, and on most
carcinomas. Studies show overlapping functions of PD-L1
and PD-L2, and indicate an important role for the PD-L–
PD-1 pathway in regulating T-cell responses [17]. The co-
inhibitory molecule B7-H1 was highly expressed in DB-
MSCs and WJ-MSCs. This molecule may be related to the
regulatory function of the cells [18]. Neither cell type
expressed the surface MHC class II molecule HLA-DR or
positive co-stimulatory molecules, such as CD83, CD80,
and CD86. This is consistent with the results of previously
published papers [19, 20].

DB-MSCs and WJ-MSCs from the 10 donors exhibited
different proliferation rates, and the PDT greatly varied
among cells obtained from different donors at the same
passage. Shaer et al. [21] compared MSCs from the pla-
cental decidua basalis, umbilical cord Wharton’s jelly,
and amniotic membrane. The doubling times for WJ-
MSCs were 21 ± 8 h at P3 and 30 ± 5 h at P10, which are
shorter than the times determined in this study. This dif-
ference may have been caused by the use of different
culture systems, i.e., serum-free versus serum-containing
cultures. The authors of the above study also reported
that the proliferative potential of WJ-MSCs tended to be

Fig. 3 Flow cytometric analysis of the expression of surface markers on (a) WJ-MSCs and (b) DB-MSCs. The immunofluorescence analysis was
conducted at the 3rd passage and showed the immunofluorescence of cells obtained from donor 3. There was no difference between the two
types of MSCs in terms of immunophenotype (n = 10). APC Allophycocyanin, FITC Fluorescein isothiocyanate, PE Phycoerythrin

Fig. 4 Analysis of the mean population doubling time (PDT) of mesenchymal stem cells from Wharton’s jelly (WJ-MSCs) and the decidua basalis
(DB-MSCs) showed that the two types of cells had different proliferative capacities at the same culture passage (*P < 0.05; n = 10). The PDT of DB-
MSCs and WJ-MSCs obtained from the same donor increased with an increase in the number of passages
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higher than that of the cells from the other two sources.
Overall, WJ-MSCs exhibited higher growth rates than
did DB-MSCs under the same conditions. The results
of cell cycle assessments agreed with those of the PDT
analysis.
The fetal–maternal interface seems to be immunologically

special to enable maternal acceptance of the fetal allograft
[22]. The human placenta, besides supporting fetal develop-
ment, may also function as an immune regulator. MSCs are
anti-proliferative to T cells and suppress the secretion of
IFN-γ in mixed lymphocyte reaction cultures [23]. Karlsson
et al. [24] compared stromal cells obtained from term fetal
membrane, umbilical cords, and placental villi, and found
that the stromal cells obtained from term fetal membrane

had stronger immunosuppressive capacity than those from
umbilical cords and placental villi. DB-MSCs produced sig-
nificantly lower levels of IFN-γ than did WJ-MSCs. The
mechanisms of T-cell immunosuppression by MSCs has al-
ways been an issue of dispute. Toll-like receptors are consid-
ered to play a key role in this process [25–27]. MSCs
immunoregulate T-cell proliferation independent of heme
oxygenase-1 [28].

Conclusion
In this study, we compared the essential biological char-
acteristics of DB-MSCs and WJ-MSCs. Although the
two cell types share global properties, such as morph-
ology, plastic adherence, and multi-lineage differentiation

Fig. 5 The cell cycles of mesenchymal stem cells from Wharton’s jelly (WJ-MSCs) and the decidua basalis (DB-MSCs) obtained from the 10 donors
were assessed at P3. The differences in G0/G1 and G2/M phase distribution between DB-MSCs and WJ-MSCs were statistically
significant (*P < 0.05)

Fig. 6 Mesenchymal stem cells from the decidua basalis (DB-MSCs) show strong immunosuppressive capacity. a The significant difference
between groups A and B indicated that phytohemagglutinin (PHA) stimulated peripheral blood mononuclear cell (PBMC) proliferation (**P < 0.01,
n = 10). There was no difference between groups C and D or between groups F and G (P > 0.05), which indicated that PHA had little effect on
the proliferation of MSCs. DB-MSCs showed stronger immunosuppression properties than did mesenchymal stem cells from Wharton's jelly
(WJ-MSCs) (*P < 0.05). b The IFN-γlevel in the supernatantwas lower in the DB-MSC group than in the WJ-MSC group (*P < 0.05)
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potential, WJ-MSCs exhibited higher growth rates, and
DB-MSCs had stronger immunomodulatory function. Bet-
ter treatment effects may be obtained if the characteristics
of MSCs from different sources and the aim of the clinical
application are considered.
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