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Where is the common ground between
bone marrow mesenchymal stem/stromal
cells from different donors and species?

Elena Jones1* and Richard Schäfer2
Abstract

Mesenchymal stem/stromal cells (MSCs) feature
promising potential for cellular therapies, yet
significant progress in development of MSC
therapeutics and assays is hampered because of
remarkable MSC heterogeneity in vivo and in vitro.
This heterogeneity poses challenges for standardization
of MSC characterization and potency assays as well as
for MSC study comparability and manufacturing. This
review discusses promising marker combinations for
prospective MSC subpopulation enrichment and
expansion, and reflects MSC phenotype changes due
to environment and age. In order to address animal
modelling in MSC biology, comparison of mouse and
human MSC markers highlights current common
ground of MSCs between species.
sion of only certain MSC subsets [10–12]; and, finally,
Introduction
In contrast to hematopoietic stem cells (HSCs), progress
in the field of mesenchymal stem/stromal cells (MSCs)
has been impeded by inconsistency in terminology and
the lack of suitable assays to test the self-renewal of cells
in vivo [1]. Furthermore, academic and industrial efforts
in the development of cell therapies with culture-
expanded MSCs tend to surpass our basic-science under-
standing of the physiological roles of these cells in vivo
[1–3]. It is fair to say that nearly 15 years since a seminal
letter by Stanton Gerson, MSCs remain to some degree
‘second class marrow citizens’ [4] in comparison with
much better defined HSCs—which at first sight might
appear surprising because advanced, and still improving,
detection and characterization technologies have been
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available for both cell entities for decades. At second sight,
however, major challenges prevail to reliably define char-
acteristics and properties shared by MSCs derived from
various donors and from different species. Besides pheno-
typic features obviously pertinent to species (e.g. mouse
vs. human; see later), the heterogeneity of MSC prepara-
tions in vitro as well as the heterogeneous distribution of
stromal cells in the bone marrow (BM) in vivo may be
regarded as major impediments that significantly slow
down progress in basic and translational MSC research as
well as in development of MSC therapies.
Many published studies have described significant het-

erogeneity of cultured MSC preparations [5, 6]. These
studies have identified the sources of such heterogen-
eity, amongst which the most pertinent are: culture’s
in-vitro ‘age’ [7–9]; cell seeding densities; media and
other growth conditions, which may favour the expan-

the donor’s age and possibly gender [6, 13, 14]. In terms
of MSC heterogeneity in vivo, it has now become clear
that the cells’ tissue and anatomical residence is most
important, particularly in terms of MSC differentiation
capacity [15–19]. But even in the same tissue, such as
BM, is there a biological and physiological basis for the
existence of different MSC subsets?
This review will first focus on the in-vivo markers of

BM-MSCs in human and mouse species, highlighting
common and potentially functionally relevant receptor
molecules. The article will then discuss developmental
and topographical heterogeneity of MSCs in the BM and
the importance of considering donor’s age, gender and
health status when studying in-vivo MSC functions in
humans. This knowledge could inform novel strategies
for prospective isolation of MSCs from their native envi-
ronments in other tissues. With a better understanding
of physiological MSC responses in vivo and their patho-
logical characteristics in diseases such as osteoarthritis
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Table 1 Markers and potential functions of native BM-MSCs

In-vivo MSC
marker

Potential function on
MSCs

Host/
model

References

CD271 Osteogenesis Human,
murine
cell line

[96]

Interactions with other
BM cells

Human [51, 97]

MSCA-1/Stro-3/
non-specific
alkaline
phosphatase

Osteogenesis/
mineralization

Human [34, 98]

Stro-1 Migration/homing Human [99]

CD146 Related to MSC
topography,
interaction with other
BM cells

Human [24, 50, 54, 100]

Leptin R
(CD295)

Controlling bone–fat
balance

Mouse [60]

Age-related Human [64]

PDGFRα
(CD140a)

Related to immaturity Mouse/
human

[48]/[65]

Support HSCs Mouse/
human

[30]

Early adipogenic
commitment

Mouse/
human

[101]

PDGFRβ
(CD140b)

Proliferation Human [61]

CD49a Receptor for collagen
and laminin

Human [39, 102, 103]

CD106 Migration Human [50, 51]

Interaction with other
BM cells

[51]

CD51 Interaction with HSCs Mouse/
human

[30]

CD200 Immunoregulation Human [104]

CD90 Interactions with other
BM cells

Human [39]

Mouse [51]

BM bone marrow, HSC hematopoietic stem cell, MSC mesenchymal stem/
stromal cell, MSCA-1 mesenchymal stem cell antigen-1, PDGFR platelet-derived
growth factor receptor
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(OA) and osteoporosis (OP), MSCs could become future
targets for therapeutic interventions.

Surface markers for prospective isolation of
BM-MSCs
The BM was the first tissue from which MSCs were
isolated and comprehensively investigated [20, 21]. This
compartment is also the prime residence location for
another adult stem/progenitor cell; that is, the HSC [22].
The BM is a highly heterogeneous tissue that, in addition
to MSCs and HSCs, is composed of their progeny,
including fully differentiated cells such as fat cells or
plasma cells, as well as of endothelial cells and other
non-haematopoietic elements such as nerve endings
[23]. Furthermore, BM does not exist in isolation and is
intimately connected with surrounding bone. Endosteal
(inner bone) surfaces, which are in direct contact with
the BM, are covered with ‘lining’ cells that contain
MSCs [24], their short-lived (osteoblasts) [25] and
long-lived progeny [26] as well as most immature, qui-
escent HSCs [27]. Whilst in the past the search for
BM-MSCs was limited to BM aspirates, more recent
findings clearly showed that not all MSCs are obtained
by aspiration [24, 28] and that enzymatic digestion of
bone is definitely needed to recover additional MSCs
from the bone-lining location [28–31].
In cell therapy and tissue engineering communities,

MSC isolation commonly implies the production of plastic
adherent cultures starting from minimally processed BM
aspirates or tissue digests [3]. This method represents a
retrospective way of isolating and expanding culture-
initiating MSCs whereby contaminating non-MSCs are
lost owing to incompatible culture conditions, whereas
MSCs are amplified (culture-based selection). In contrast,
prospective MSC isolation requires having a candidate
marker or markers to purify putative MSC subpopula-
tion(s), followed by their in-vitro expansion and further
functional tests such as multipotentiality, immunomodu-
lation or secretion of trophic factors [3, 6, 31, 32] (marker-
based selection). Up to now, in-vivo MSC markers suitable
for prospective BM-MSC isolation were discovered either
by screening of available hybridomas [33–35], from topo-
graphical ‘clues’ on histological sections, as was the case
for CD271 [36], or from large gene array datasets com-
paring cultured MSCs with negative control skin fibro-
blasts or hematopoietic lineage cells [19, 37]. Naturally,
markers of cultured MSCs, such as CD73, CD105 and
CD90, have also been tested in both human and mouse
species, and showed various degrees of success as single
markers [3, 31, 38–42] (Table 1). At this point, it is
important to note that the role of these various surface
markers in MSC physiology in vivo remains largely
unknown (Table 1). In fact, the best ‘isolation’ markers
could be those which have a minimal role in MSC
functionality so that the process of MSC isolation itself
has a minimal bearing on possible marker-mediated
signal transduction and gene expression in isolated
MSCs.

Classes of BM-MSC surface markers based on their
potential functions
In BM aspirates, in flushed contents of cortical bones or,
to a lesser extent, in cancellous bone tissue digests, MSCs
represent a minority amongst other cell entities [21, 30,
31, 43, 44]. Therefore, so-called ‘negative’ markers are
commonly used as the first ‘pre-enrichment’ step in order
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to enrich MSCs to a certain degree of purity (>1 %) re-
quired for subsequent downstream investigations [24, 30].
In particular, the CD45 antigen has been the most com-
monly used negative selection marker in both human
studies [24, 30, 45, 46] and mouse studies [30, 47, 48].
In humans, CD271 and mesenchymal stem cell antigen-

1 (MSCA-1; tissue non-specific alkaline phosphatase) have
been proposed as specific positive markers for BM-MSCs
[34, 40, 49–51]. Stro-1, the first-discovered marker of hu-
man BM-MSCs, is cross-reactive with erythroblasts [52]
and hence needs to be used in combination with other
positive markers [53–55]. Various integrin molecules
(CD49a, CD106 and CD146) have been independently
validated as expressed on human in-vivo BM-MSCs in
numerous original and more recent studies (Table 1).
Importantly, the MSC integrin expression pattern seems to
be dependent on MSC topographical location; for example,
CD146 is expressed on MSCs located perivascularly, but it
is absent on MSCs resident in the bone-lining location
[24]. Integrins are involved in cell-to-cell and cell-to-
matrix interactions [56]. Therefore, a future discovery of
more comprehensive patterns of integrin expression on
MSCs in different BM niches in the BM could shed more
light on their functions and behaviours in vivo. A similar
study pertaining to chemokine receptors on BM-MSCs
[57–59] could be very valuable in terms of our current un-
derstanding of their migration and their homing proper-
ties, particularly in relation to fracture repair and bone
remodelling processes.
In the mouse system, integrin αV (CD51) [30] has

attracted increased attention as being specific for BM-
MSCs; however, more recent findings have highlighted
the value of growth factor receptors such as platelet-
derived growth factor receptor (PDGFR) alpha (CD140a)
[30, 48] and leptin receptor (CD295) [60] for the selection
of mouse MSCs. These molecules, as well as PDGFRβ
(CD140b), have been contemporarily shown to be
expressed on human BM-MSCs [60–62]; these surface
molecules, in our opinion, therefore represent the first set
of common markers applicable to both mouse and human
species.
Human Stro-1-positive or CD271-positive BM-MSCs

additionally express a large number of other growth
factor receptors; for example, epidermal growth factor
receptor (EGFR) and insulin-like growth factor receptor
(IGFR). Notably, some of these molecules have a clear
proliferation-promoting effect on MSCs [63]. In fact,
the expression levels of these growth factor receptors
on MSCs might indicate the level of their ‘readiness’ to
respond to respective growth factor signals [62]. Yet
only limited data exist for bone morphogenetic protein
(BMP)/transforming growth factor (TGF) beta [64] and
Wnt pathway receptor expression [61, 64, 65] on hu-
man or mouse MSCs in vivo; studies on these targets
are clearly merited given the important role of these
pathways in the maintenance and repair of bone [66].
PDGFRα (CD140a), in combination with CD271, has

been most recently proposed as a valuable discrimin-
atory marker combination for highly enriched human
BM-MSCs, but the data remain controversial. A recent
study by Pinho et al. [30] showed that MSCs in fetal
human BM feature expression of CD271 plus CD140a.
On the other hand, Li et al. [65] recently demonstrated
that in adult human BM true highly clonogenic MSCs
express CD271 but not CD140a. The authors suggested
that CD140a may be developmentally regulated [65], a
feature also observed in relation to CD146 expression in
fetal, paediatric and adult human BM [67]. In addition
to being regulated developmentally, in vivo MSC recep-
tors could possibly be regulated physiologically. For ex-
ample, our recent study using a cohort of fracture
patients has shown that CD140a and CD140b expression
on their BM CD271+ MSCs was changeable and directly
correlated with the levels of PDGFs (as well as platelet
levels) in patients’ blood [62]. This observation suggests
that MSCs at a site remote to injury might react to sys-
temically driven changes in corresponding signalling
molecules. Based on these considerations it might be
reasonable to suggest that cytokine and growth factor
receptors on MSCs may not be the most valuable tools
for MSC isolation because their levels could be develop-
mentally and physiologically controlled. Conversely, they
may be very useful for the study of MSC behaviour
in vivo, especially with respect to donor age, gender and
physiological/disease status.
Furthermore, it is likely that standard (but not yet fully

controlled) conditions for growing MSCs in fetal calf
serum, autologous serum or with the addition of platelet
lysates could in fact select for only those MSCs that have
a corresponding set of growth factor receptors and
correspondingly ‘de-select’ for receptor-negative cells. For
example, culturing MSCs in media containing platelet ly-
sates, rich in human PDGF-BB, could ‘select’ (i.e. induce
enhanced proliferation) of MSCs that have high levels of
CD140b receptors and de-select for CD140b-negative
MSCs. Further causes for apparent differences in the
phenotypes between in vivo and cultured MSCs have been
elaborated in other previous publications [45, 61, 68, 69].

BM-MSC heterogeneity: topography, age, gender
and disease
As alluded to earlier, cell-to-cell and batch-to-batch
heterogeneity of cultured MSCs can in some way reflect
the heterogeneity of in vivo MSC populations. MSCs
located perivascularly may have a markedly different set
of functions compared with bone-lining MSCs. In the
bone-lining compartment itself, MSCs are mixed to-
gether with their progeny: active osteoblasts [25], which
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exist only transiently in bone remodelling areas, and
quiescent osteoblast descendants predominant in non-
remodelling areas [26]. Specific surface markers for these
two types of mature MSC-lineage cells have not so far
been described in humans, despite some data on their
differing transcriptional signatures in the mouse [70].
Stripping off all lining cells from the bone surface with the
use of enzyme, as is performed currently [28, 29, 51], is
bound to result in mixed mesenchymal-lineage popula-
tions that differ in their maturity, which subsequently con-
tributes to cultured MSC heterogeneity.
Age plays a profound role in shaping our skeleton.

BM-MSCs are involved in bone remodelling processes
directly (as progenitors of osteoblasts) and indirectly (via
osteoblast control of osteoclast activation). It can there-
fore be expected that in-vivo MSC ageing (either in
relation to their numbers, function or both) can have a
direct bearing on bone physiology in aged adults. Several
studies have investigated whether and how MSCs may
age in vivo; for example, as a result of telomere shorten-
ing processes [8, 29] or via changes to the transcription
of Wnt pathway receptor genes [64]. It is important to
note that extracellular matrix produced by aged MSCs
may further contribute to their ageing [71], suggesting
an autocrine mechanism of regulation.
Age-related diseases such as OA and OP are associ-

ated with marked changes in bone strength and archi-
tecture, and are suggested to involve a defect (or
altered function) in patients’ BM-MSCs [72–77]. Owing
to the scarcity of healthy human material (BM and
bone), it is not surprising that many studies exploring
human BM-MSC biology in vivo utilize OA femoral
heads [51, 78]. Nevertheless, the effect of disease on
these MSCs should not be overlooked. As reported re-
cently using mouse models of OA, the disease process
itself is associated with increased subchondral bone
MSC numbers and alterations in their intracellular sig-
nalling cascades leading to aberrant bone formation
and angiogenesis for OA progression [73]. This process
may be even more pertinent in the case of OP, in which
alterations in MSC numbers and their responsiveness
to leptin or to BMPs have been documented [75–77].
The study of growth factor and hormone receptor
expression on OP-MSCs could lead to the discovery of
novel compounds capable of switching the balance
from bone destruction and in favour of bone formation
in OP.
Several reports have indicated some gender-related

differences in BM-MSCs from humans [6, 79] and other
species [14, 80, 81]. Could these also be related to
gender differences between MSCs in vivo? The data col-
lected from the Leeds laboratory over the years indicate
no significant difference in MSC numbers per millilitre
of BM aspirate between age-matched males and females,
regardless of whether BM samples were first processed
for mononuclear cell isolation or used directly. Interest-
ingly, Seeback et al. [79] documented significantly differ-
ent BM-MSC responses to skeletal injury between males
and females. Caution should be taken when interpreting
BM aspirate data, however, because the quality of aspi-
rates in terms of their total MSC numbers is consider-
ably dependent on the surgical aspiration technique and
dilution with blood [44, 82, 83], which is significantly
variable not only between different institutions but also
between different surgeons.
We have reported recently that BM-MSCs from male

and female donors express androgen receptor [6], but
their responsiveness to sex hormones in general remains
underexplored. This knowledge could be potentially ex-
ploitable therapeutically; for example, by uncovering sex
hormone sensitivity and downstream signalling cascades
in BM-MSCs in women with postmenopausal OP.

MSC heterogeneity: different developmental
origins
Human skull and neck bones are well known to be
neural-crest derived whereas the remainder of the skel-
eton is mesoderm derived [84, 85]. Transcriptional differ-
ences in MSCs grown from skull and mesoderm-derived
bones have been documented previously [15]. Neverthe-
less, there is no reason to suggest that MSCs in different
bones are firmly fixed in their original locations and un-
able to migrate to other tissues. In fact, mouse BM-MSCs
were found recently to represent a mixture of neural-crest
and mesoderm-derived cells [86]. In the mouse, MSCs can
easily circulate and home to injured tissues [87, 88],
whereas in humans this ability seems to be lost, or at least
impaired, at birth. MSCs can be readily found in fetal
circulation in humans [89], but these cells have been
detected only at exceptionally low numbers in adult hu-
man peripheral blood, even after a significant physio-
logical insult [62, 88, 90, 91]. The loss of MSC ability to
circulate in the blood of humans post-birth could be re-
lated to differential expression of some developmentally
regulated molecules on their surface (e.g. CD146, CD140a
or others), as mentioned in "Classes of BM-MSC surface
markers based on their potential functions" above.
Despite the observation that endogenous (not trans-

planted) human MSCs are unable to be distributed across
long distances via the systemic circulation, their short-
distance migration between the adjacent tissues remains
plausible. MSCs express a broad portfolio of chemokine
receptors enabling them to migrate along the chemokine
gradients or, in contrast, to be retained in their original
places [58]. Based on these considerations, it is possible to
suggest that MSCs in any given tissue, including the BM,
may represent a mixture of locally derived cells as well as
‘migrants’ from the neighbouring tissues.
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Conclusion
The BM is the tissue in which MSCs were discovered
originally and remains the best-studied tissue source of
MSCs. Even a quick look at the current state of the art
in in-vivo MSCs in human and mouse BM suggests that
a single marker specific for all MSC ‘shades and colours’
is unlikely to be found soon. In-vivo BM-MSC hetero-
geneity could be explored in the future using different
approaches. For example, using a combination of immu-
nohistochemical and cell sorting techniques, separate
BM-MSC subsets can be isolated based on their topo-
graphical residence. Specific molecular marks indicative
of MSC embryonic tissue origins, such as HOX and
other ‘positional identity’ genes [17, 92], could be used
next to shed a light on migratory routes of different clas-
ses of MSCs during development and in early childhood.
Equally, their differential survival or impaired function
during ageing could help to better understand the role
of BM-MSCs in the development of age-related bone
diseases such as OP.
When BM-MSCs from different species are compared,

several considerations should be taken into account, the
prime one being the type of host bone used to extract
the MSCs. Most BM-MSC investigations in mice have
been performed using flushed contents of cortical bones,
whereas human BM-MSC research has primarily ex-
plored MSCs resident in marrow spaces inside certain
cancellous bones (most often, the iliac crest). Only lim-
ited data yet exist on the gene expression profiles of un-
cultured BM-MSCs from donor-matched cancellous and
cortical bones in humans [93]. Even if the same type of
bone (e.g. femur) is used in human and mouse research,
it is important to consider the effects of different mech-
anical loads experienced by bipeds as opposed to quad-
rupeds; the mechanical effects driving bone remodelling
and hence the physiological demand on femoral MSCs
in bipeds are likely to be very unique. Still, it is very en-
couraging to observe some emerging commonality in
CD140 and CD295 receptor expression on BM-MSCs
from both mouse and human species (Table 1). These
common receptor molecules may be indicative of key
BM-MSC functions distinct from their mechanically
driven bone-remodelling activity; for example, of their
control of the bone–fat balance in the marrow or of
their support to HSCs.
Finally, to what extent can BM-MSC knowledge be ex-

trapolated to MSCs in other issues? In our view, the best
‘toolkit’ to isolate the bulk of tissue-resident MSCs may
not overlap with BM-MSCs [18], and this needs to be
looked into on a tissue-to-tissue basis. Potential back
and forth ‘passaging’ of MSCs between the neighbouring
tissues should be also considered, which could explain,
at least in part, the observed heterogeneity of MSCs in
the respective tissue.
Most MSCs are lodged within the stroma of solid tis-
sues and organs, making it very difficult to study their
self-renewal and their participation in physiological tis-
sue renewal in a classical manner similar to HSCs or
even BM-MSCs [94]. In this respect, gene-tracing exper-
iments in mouse models are of a paramount importance
in order to understand normal MSC behaviour in tissues
and organs and their responses to injury or disease [95].
With further appreciation of probable differences in
MSC biology between ‘mice and men’, this future know-
ledge is likely to generate new ideas and bring forward
new treatments for many human diseases.
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