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Abstract

Introduction: Doxorubicin (DOX) is a well-known anticancer drug. However its clinical use has been limited due to
cardiotoxic effects. One of the major concerns with DOX therapy is its toxicity in patients who are frail, particularly
diabetics. Several studies suggest that mesenchymal stem cells (MSCs) have the potential to restore cardiac function
after DOX-induced injury. However, limited data are available on the effects of MSC therapy on DOX-induced
cardiac dysfunction in diabetics. Our objective was to test the efficacy of bone marrow-derived (BM-MSCs) and
adipose-derived MSCs (AT-MSCs) from age-matched humans in a non-immune compromised rat model.

Methods: Diabetes mellitus was induced in rats by streptozotocin injection (STZ, 65 mg/kg b.w, i.p). Diabetic rats
were treated with DOX (doxorubicin hydrochloride, 2.5 mg/kg b.w, ip) 3 times/wk for 2 weeks (DOX group); or with
DOX+ GFP labelled BM-MSCs (2x106cells, iv.) or with DOX + GFP labelled AT-MSCs (2x106cells, i.v.). Echocardiography
and Langendorff perfusion analyses were carried out to determine the heart function. Immunostaining and western
blot analysis of the heart tissue was carried out for CD31 and to assess inflammation and fibrosis. Statistical analysis was
carried out using SPSS and data are expressed as mean + SD.

Results: Glucose levels in the STZ treated groups were significantly greater than control group. After 4 weeks of
intravenous injection, the presence of injected MSCs in the heart was confirmed through fluorescent microscopy and
real time PCR for ALU transcripts. Both BM-MSCs and AT-MSCs injection prevented DOX-induced deterioration of %FS,
LVDP, dp/dt max and rate pressure product. Staining for CD31 showed a significant increase in the number of
capillaries in BM-MSCs and AT-MSCs treated animals in comparison to DOX treated group. Assessment of the
inflammation and fibrosis revealed a marked reduction in the DOX-induced increase in immune cell infiltration,
collagen deposition and aSMA in the BM-MSCs and AT-MSCs groups.

Conclusions: In conclusion BM-MSCs and AT-MSCs were equally effective in mitigating DOX-induced cardiac damage
by promoting angiogenesis, decreasing the infiltration of immune cells and collagen deposition.
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Introduction

With a prevalence in over 382 million people, diabetes
mellitus, which is presently among the top 10 killers
worldwide, is projected to affect 592 million by 2035 [1].
Epidemiological evidences have shown established con-
nections between diabetes mellitus and cancer. It is re-
ported that in diabetic patients not only the risk of
cancer is increased, but the rate of patient survival has
also been found to be low [2]. Some of the probable
mechanisms that have been proposed to play a role in
this increased prevalence are hyperinsulinemia, hyper-
glycemia and chronic inflammation [3]. Doxorubicin
(DOX), an anticancer drug, is regularly a part of com-
bination therapy and acts by intercalating DNA and
inhibiting the process of replication [4]. Its clinical appli-
cation is limited though due to its cardiotoxic effects in
normal individuals. Also it has been reported that dia-
betes mellitus increases accumulation of DOX in the
heart and the resultant cardiac injury is far greater than
in non-diabetic individuals [5]. As diabetes mellitus itself
can lead to heart failure [6], using DOX in comorbid pa-
tients to treat cancer puts them at potentially increased
risk of cardiac injury.

Stem cells provide a vast avenue to explore cell therapy
for cardiac regeneration. Though there are a lot of candi-
dates, mesenchymal stem cells (MSCs) have emerged as the
prime ones. Several studies have demonstrated that MSCs
are safe and effective for cardiac repair [7]. They retain their
immune privilege when injected into myocardium and are
allogenically compatible [8]. The rescue of cardiac function
has been accredited to a multitude of factors, mainly their
ability to secrete a wide array of paracrine factors [7], re-
cruitment of endogenous cardiac stem cells [9], by promot-
ing angiogenesis and by mitigating inflammation and
fibrosis [7, 10]. Cardiac function has been established to be
highly benefitted by vascularization, therefore increased
angiogenesis in the ischemic heart is considered to be an
integral part of cardiac repair [11]. Several studies have re-
ported that MSCs secrete several pro-angiogenic and im-
munosuppressive factors such as placental-derived growth
factor (PIGF), vascular endothelial growth factor (VEGEF),
fibroblast growth factor-2 (FGF-2), angiopoeitin-1,
platelet-derived growth factor (PDGEF), monocyte
chemotactic protein-1 (MCP-1), plasminogen activator
and matrix metalloproteinase-9 (MMP-9), prostaglan-
din E2 (PGE2) and interleukin 10 (IL-10) [12, 13].

To date, there has also been some research into miti-
gating DOX-induced cardiomyopathy through the appli-
cation of MSCs [14, 15]. However, a more pertinent
study employing relevant diabetic models is not avail-
able. This study aims to examine the capacity of MSCs
to restore heart function in diabetic rats with cardiac in-
jury following DOX administration. MSCs derived from
bone marrow (BM) and from adipose tissue (AT) are
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currently touted to be chief prospective sources for thera-
peutic applications [16]. BM-MSCs are hard to obtain,
given their source [17], while AT-MSCs are relatively eas-
ier and more straight forward to establish [18]. Further-
more, both BM-MSCs and AT-MSCs express the same
surface markers [19]. There is broad similarity in differen-
tiation ability between BM-MSCs and AT-MSCs [20]. AT-
MSC:s have displayed higher proliferation rates. The secre-
tion of various angiogenic factors were also reported to be
slightly in the two sources of MSCs. In this regard high
levels of VEGEF, IGF and SCF are reported to be produced
in BM-MSCs, while on the other hand, AT-MSCs produce
a significant amount of basic fibroblast growth factor
(bFGF) [21]. Given these considerations and their present
clinical applicability, both were used in this study to allow
for comparison and a comprehensive approach.

Materials and methods
This study was approved by the ethical committee of the
Faculty of Medicine, Cairo University, Egypt.

Isolation and expansion of BM-MSCs

Human bone marrow samples were obtained from healthy
age-matched (25 -40 years) adult volunteer donors after
written consent and approval were obtained. All procedures
were performed in Kasr Al Ainy University hospital in
accordance with the code of conduct approved by the Eth-
ics Commiittee of the Faculty of Medicine, Cairo University.
A 5-mL bone marrow sample was aspirated from the pos-
terior superior iliac spine. After 1:1 dilution with Hank’s
balanced salt solution (Lonza, Basel, Switzerland), the bone
marrow samples were layered over Ficol hypaque (Invitro-
gen, Waltham, Massachusetts, USA) for density gradient
centrifugation. Mononuclear cells thus separated were
counted and plated at a density of 500,000 cells/flask in
complete medium. Cells were suspended in complete alpha
minimum essential media («-MEM; Gibco®, Burlington,
USA) supplemented with 10 % fetal bovine serum (FBS;
Hyclone, Logan, Utah, USA), 1 xnonessential amino
acids (NEAA; Sigma-Aldrich, St. Louis, USA), 4 mM L-
glutamine (Sigma-Aldrich, St. Louis, USA), and 100 U/mL
penicillin, 0.01 mg/mL streptomycin sulfate (Sigma-Aldrich,
St. Louis, USA) in T25 tissue culture flasks. Flasks were in-
cubated in a humidified 5 % CO2 incubator at 37 °C. After
24 h the culture media were changed to remove non-
adherent cells. For all of the experiments, only cells from
the early passages (P) of culture were used (P2 to P4).

Isolation and expansion of AT-MSCs

Human subcutaneous adipose tissues were obtained
from adult age-matched healthy subjects (28 - 40 years)
undergoing liposuction after written consent and ap-
proval were obtained. All procedures were performed in
Kasr Al Ainy University hospital in accordance with the
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code of conduct approved by the Ethics Committee of
Faculty of Medicine, Cairo University. Cell isolation was
performed as previously published [22]. Briefly, adipose
tissue biopsy samples were collected under sterile condi-
tions in serum-free DMEM/F12 medium (supplemented
with 200 pg/mL streptomycin and 200U/mL penicillin;
Gibco®, Burlington, USA). Tissue samples were washed
in PBS, minced, and digested with 1 mg/mL collagenase
type I in 0.1 % BSA for 1 h at 37 °C. Minced samples
were centrifuged at 650 g for 10 minutes. The pellet was
treated with red blood cell lysis buffer (155 mM NH4Cl,
10 mM KHCO3, and 0.1 mM EDTA) for 10 minutes at
room temperature (RT). After centrifugation (650 g for
10 minutes), the cellular pellet was filtered through a
100-pm mesh filter to remove debris. The filtrate was
centrifuged, and the obtained stromal vascular fraction
(SVF) was plated onto T25 cell culture flasks in complete
culture medium (DMEM containing 20 % FBS, 100 pg/mL
streptomycin, 100 U/mL penicillin, 2 mM I-glutamine, and
1 pg/mL amphotericin-B; Gibco®, Burlington, USA). Cells
were then cultured as for BM-MSCs. For all of the experi-
ments, only cells at early passages of culture were used
(P2 to P4). In accordance with the Second Annual Meet-
ing of the International Fat Applied Technology Society
(Pittsburgh, PA, USA, 2004), the obtained plastic adherent
cell stromal populations expanded from collagenase di-
gests of adipose tissue have been termed adipose stem
cells (ASCs).

Characterization of mesenchymal stem cells

The selection of immunophenotyping was based on the
International Society for Cellular Therapy (ISCT) proposal
[23]. Briefly, the non-adherent hematopoietic cells were
washed off, and the adherent MSCs were characterized
by fluorescence-activated cell sorting (FACS; Beckman
Coulter, NE15106, USA) with antibodies against CD45,
CD34, CD90.1, CD44, and CD105.

In vivo studies

Animals

Fifty male Wistar rats weighing 200 — 220 g were used in
this study. Animals were housed at the Animal Care fa-
cility of the Faculty of Medicine, Cairo University, in
chip-bedded cages at RT under a 12:12-h light—dark
cycle and were given free access to standard rat chow
and water for the entire duration of the study. The ex-
perimental protocol and procedures were approved by
the Institutional Animal Care and Ethical Committee,
Kasr Al-Ainy Faculty of Medicine, Cairo University.

Experimental design

Weight-matched rats (n=10/group) were allocated into
the following groups: group 1, control (C), received 0.2 mL
of saline (vehicle; intraperitoneal (i.p.)), in six equal doses
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over 2 weeks; group 2, diabetic group (STZ), injected
with streptozotocin (STZ, MP Biochemicals, CA, USA;
65 mg/kg body wt, i.p.) to induce diabetes mellitus. STZ
was dissolved in sodium citrate buffer (pH 4.5) and stored
at 4 °C [24]; group 3, diabetic + DOX group (STZ + DOX),
received a single dose of STZ (65 mg/kg body wt, i.p.),
followed after 4 weeks by adriamycin (doxorubicin hydro-
chloride, Pharmacia Italia, Nerviano, Italy; 2.5 mg/kg body
wt, i.p.) in saline. DOX was injected in six equal doses over
the period of 2 weeks to induce heart failure; group 4,
bone marrow group (BM-MSCs), received BM MSCs (2 x
10%/mL stem cells intravenously (i.v.) into the tail vein)
4 weeks after the first DOX injection (8 weeks after the
STZ injection); group 5, adipose tissue group (AT-MSCs),
received AT-MSCs (2 x 10°/mL stem cells i.v. into the tail
vein) 4 weeks after the first DOX injection (8 weeks after
the STZ injection). For the detailed treatment plan, please
see Figure S3 in Additional file 1.

Noninvasive blood pressure measurements and echo-
cardiography were performed for all rats at baseline, 4
weeks after STZ injection, 4 weeks after the first DOX
injection (8 weeks after STZ injection), and 4 weeks after
stem cell injection (12 weeks after STZ injection). At the
end of the study (12 weeks after STZ injection), blood
samples were collected for serum insulin and fibrinogen
measurements. Hearts were excised from rats in all
treatment groups (after 12 weeks of STZ injection) for
ex vivo heart perfusion as described below. Heart tissue
samples were then collected for subsequent histopatho-
logical analysis and detection of injected stem cells.

Verification of diabetes mellitus

Blood samples were collected from rat tail veins for all
studied groups at baseline and at 4, 8 and 12 weeks from
STZ injection. Blood glucose was assayed by a kit sup-
plied by Diamond Diagnostics (MA, USA).

Care of diabetic animals

After STZ administration, rats were closely observed
during the first 48 h for hypoglycemia and release of
stored insulin (data not shown). Diabetic rats were also
provided with plenty of fluid to compensate for the high
urine volume. Two to three STZ diabetic rats were
housed per cage (21 cm high by 25.5 cm wide by 47 cm
long) and housing conditions were closely monitored.

Arterial blood pressure measurements

The mean arterial blood pressure (ABP) was recorded in
conscious rats using the tail-cuff method (Harvard 50—
9331 Rectilinear recording System; Harvard Apparatus,
Kent, UK). Rats were acclimated for restraint and tail-cuff
inflation for 5 to 7 days before the procedure. A tail-cuff
occluded with an optical pulse sensor was placed proxim-
ally on the tail. To obtain an accurate blood pressure
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reading, rats were allowed 5 minutes calm in the re-
strainers. On inflation, the cuff occluded blood flow
through the tail, and on deflation the return of blood is
detected by the optical pick up system and converted to
an analog signal through a built-in pressure transducer.
The pressure in the cuff is increased above the systolic
pressure till no pulse is recorded, and then the pressure is
allowed to slowly drop below the systolic, while the pulse
amplitude rapidly increases. Systolic and diastolic pressure
readings are then captured and displayed on a PC com-
puter (Intracell, UK.) At least three consecutive readings
were obtained and averaged for each rat.

Echocardiography

Echocardiography was performed to evaluate cardiac func-
tion to all five groups. The rats were lightly anesthetized
with an injection of ketamine hydrochloride (25 mg/kg,
i.p.) and xylazine (5 mg/kg, i.p.). An echocardiography sys-
tem equipped with a 12-MHz phased-array transducer
(SONOS 5500; Philips Medical System, Best, Netherlands)
was placed over the left parasternal area and rocked
through the heart from the apex to the base. A two-
dimensional short-axis view of the left ventricle and M-
mode tracings were recorded to measure left ventricular
end-diastolic dimension (LVEDD) and left ventricular end
systolic dimension (LVSD). Percent fractional shortening
(FS) was calculated from the composite LV internal dia-
stolic (LVEDD) and LV internal systolic (LVSD) dimen-
sions as follows:

_ End-diastolic dimension-End-systolic dimension

ES x 100

End-diastolic dimension

Isolated heart perfusion

At the end of in vivo experiments (echocardiography),
the animals were anesthetized using ketamine hydro-
chloride (25 mg/kg, i.p.) and heparinized by i.p. injection
(1,000 IU). A left thoracotomy was performed and hearts
were rapidly exposed, excised and immediately placed in
ice cold Kreb-Henseleit (KH) heparinized solution. The
ascending aorta was then cannulated and placed along
the perfusion line of non-recirculating constant-flow
Langendorff apparatus (Radnotti, Harvard apparatus,
USA). The apparatus was maintained at 37 °C. The dur-
ation between excision and perfusion of the hearts did
not exceed one minute. Hearts were then perfused using
KH buffer with the following concentration (in mM): 25
NaHCOs3, 4.7 KCl, 118.5 NaCl, 1.2 MgSQOy, 1.2 KH,POy,,
2.5 CaCl, and 10 glucose, pH 7.4 (Sigma Aldrich, MO,
USA). Perfusion was maintained at a constant flow of
16 mL/min at 37 °C and aerated with a gas mixture
(95 % Oy, 5 % CO,). The heart was allowed to beat spon-
taneously throughout the experiment. To determine left
ventricular pressure, a saline-filled latex balloon was
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inserted into the left ventricle through an incision in the
left atrial appendage. The balloon was tied securely into
place and filled with saline to give an end-diastolic pres-
sure of approximately 10-15 mmHg. The hearts were
placed in a water-jacketed heart chamber (Radnotti,
Harvard apparatus, USA) maintained at 37 °C and allowed
to stabilize for 30 minutes. The intraventricular balloon
catheter was connected to a pressure transducer. Left ven-
tricular pressure and heart rate were monitored continu-
ously and recorded on a computer. Digital analysis of the
wave was performed and displayed by an electronic poly-
graph (NEC-San-ei, 2238, Tokyo, Japan). Baseline mea-
surements were recorded at the end of this period. Left
ventricular function was assessed by left ventricular devel-
oped pressure (LVDP) (peak systolic minus end-diastolic
pressure), left ventricular end-diastolic pressure (LVEDP),
left ventricular end-systolic pressure (LVESP), maximum
rate of pressure rise dp/dt max (as two sensitive indices
for contractility), and rate pressure product RPP, the prod-
uct of heart rate and left ventricular developed pressure
(HR x LVDP), which correlates well with the cardiac work.
Contractile parameters were recorded at 30 minutes,
60 minutes and 120 minutes.

Measurement of serum insulin levels

A rat-specific insulin ELISA kit (Spi-Bio, Bertin Pharma,
France) was used to measure serum insulin levels.
Spectrophotometric reading was performed between
405 and 414 nm.

Measurement of serum fibrinogen level

A rat-specific Bio Med-Fibrinogen kit, Egy-Chem (BioMED
Diagnostics, OR, USA) was used to measure serum fibrino-
gen levels.

Detection of transplanted MSCs in the heart

To detect transplanted MSCs in the heart tissue, BM-
MSCs and AT-MSCs were labeled with green fluorescent
protein (GFP) using EzWay™ Transfection Reagent
(Komabiotech, Seoul, South Korea). The manufacturer’s
protocol was followed for transfection. GFP-transfected
cells were incubated for 24 h prior to testing and then vi-
sualized under a fluorescent microscope prior to injection
(Figure S2 in Additional file 2). To detect cells in the heart,
one month after transplantation myocardial tissue sections
were immunostained with anti-GFP antibody and visual-
ized under the microscope. The quantification of trans-
planted MSCs in the heart was performed by RealTime
PCR for human ALU transcripts in the transplanted hu-
man MSCs in rat hearts as described previously [25].
Briefly, the hearts were quickly removed and frozen in li-
quid nitrogen, genomic DNA was isolated from the frozen
heart samples, and ALU PCR was performed using
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TagMan probes to detect transplanted human MSCs in
the rat myocardium.

Detection of the CD317 cells

Immunohistochemical studies were carried out according
to Wang et al. [26]. Cardiac tissue samples from all the
groups were fixed in 10 % formalin for 48 h and the paraf-
fin blocks were prepared. Each sample was cut into 5-pm-
thick sections and taken onto poly-lysine-coated slides,
air-dried overnight at RT, incubated at 60 °C for 20 mi-
nutes, dewaxed in xylene, and rehydrated using different
descending concentrations of ethanol. Later, the samples
were boiled for 10 — 20 minutes in antigen retrieval solu-
tion (0.1 M citric acid, 0.1 M sodium citrate buffer solu-
tion, pH 6), cooled at RT for 20 minutes and washed twice
in PBS. CD31 staining was carried out by using primary
antibody (Abcam) and HRP-labeled secondary antibody.
Slides were then incubated with 3,3’-Diaminobenzedine
(DAB) chromogen (Lab Vision™) mixture for 5- 15 mi-
nutes at room temperature and then counterstained with
Mayer-Haematoxylin for 1 — 3 minutes. Morphometric as-
sessment of the area of CD31" cells was performed using
Leica Qwin 500 LTD computer-assisted image analysis soft-
ware (Cambridge, UK). The measurements were done in
10 high power fields (HPF) in all the experimental groups.

Detection of immune cell infiltration and fibrosis

H&E staining was performed to detect immune cell infil-
tration. Briefly slides were deparaffinized in xylene, rehy-
drated in different descending concentrations of ethanol
and stained in hematoxylin. Next, the slides were coun-
ter stained in eosin, dehydrated in increasing concentra-
tions of ethanol and xylene and mounted. The images
were captured under the microscope. The percent area
of mononuclear infiltrating cells was calculated using
the Leica Qwin 500 LTD computer-assisted image ana-
lysis software (Cambridge, UK). To detect fibrosis myo-
cardial sections were stained with Masson’s trichrome
and the percent area of collagen fibers was calculated
using the Leica Qwin 500 LTD computer-assisted image
analysis software (Cambridge, UK).

Western blotting

Briefly, myocardial tissue protein extracts prepared from
control and treated samples in different groups were sus-
pended in PBS containing protease inhibitor cocktail, and
50 pg of protein was loaded onto 10 % TGX FastCast
Acrylamide gel (Bio-Rad Laboratories Ltd). Electrophor-
esis, immunoblotting, and protein detection were done for
a-smooth muscle actin (a-SMA) using anti a-SMA (Sigma
Adrich) antibody. Bands were visualized with Fluor S-
Multilmager MAX system (Bio-Rad Laboratories, Canada)
and quantified by image analysis software (Quantity One,
Bio-Rad Laboratories, Canada).
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Statistical analysis

Statistical analysis was done using the software package
SPSS. Data are expressed as mean + SD. Comparisons
between groups were done using analysis of variance
(ANOVA) and for multiple comparisons the Bonferroni
test was used post-test for normally distributed quantita-
tive variables. Quantitative variables that were not nor-
mally distributed were compared using non parametric
(NPar) tests (Kruskal-Wallis test, Mann-Whitney test).
Correlation was assessed to test for linear relationships
between quantitative variables. P values <0.05 were con-
sidered statistically significant.

Results

Characterization of MSCs

To characterize BM-MSCs and AT-MSCs, we performed
FACS analysis. Our results demonstrate that >90 % of cells
were CD90*, CD105" and CD44", while all were CD45
and CD34" (Fig. 1 and Figure S1 in Additional file 3).

Blood glucose

We measured blood glucose levels in all the groups at
baseline and after 4, 8 and 12 weeks after STZ injec-
tion to confirm the establishment of diabetes mellitus.
There was no difference observed in glucose levels
among all the groups at baseline. After 4, 8 and 12
weeks after STZ administration there was a significant
increase in blood glucose levels in the STZ and STZ +
DOX groups. However, 4 weeks after implantation of
BM-MSCs and AT-MSCs (12 weeks after STZ injection),
the glucose levels decreased 4-fold in comparison to the
STZ + DOX group (Fig. 2a).

Body weight

We monitored body weight in all the groups at baseline,
and 4, 8 and 12 weeks after STZ injection. In the control
group, all the animals had a normal growth trend, as
there was a significant increase in body weight after 4, 8
and 12 weeks. However in the STZ and STZ+ DOX
groups body weight decreased after 4, 8 and 12 weeks in
comparison to the control group. After 4 weeks of BM-
MSC and AT-MSC implantation there was a significant
increase in body weight in comparison to the STZ and
STZ + DOX groups (Fig. 2b).

Serum insulin levels

Serum insulin levels were measured in all the groups
after 12 weeks of STZ injection. Serum insulin decreased
5-fold in the STZ and STZ + DOX groups in comparison
to the control group (Fig. 2c). However, BM-MSC and
AT-MSC implantation significantly increased insulin
levels in comparison to both the STZ and STZ + DOX
group (Fig. 2¢).
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Serum fibrinogen levels

Serum fibrinogen levels were measured in all the groups
12 weeks after STZ injection. The levels significantly in-
creased in the STZ and STZ + DOX group in compari-
son to the control group (Fig. 2d). Both BM-MSC and
AT-MSC implantation decreased fibrinogen levels ap-
proximately 2-fold (Fig. 2d).

Arterial blood pressure

ABP was recorded in conscious rats at baseline and 4, 8
and 12 weeks after STZ injection. There was no differ-
ence observed among the different groups in systolic or
diastolic ABP levels at baseline or after 4 weeks of STZ
administration (Fig. 3a, b). However, after 4 weeks of
DOX treatment (8 weeks after STZ injection) both
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Fig. 2 Blood glucose, body weight, serum insulin and fibrinogen levels were measured in different groups. Data are mean + SD. a Blood glucose

levels increased after streptozotocin (S72) treatment, and both bone marrow-derived mesenchymal stem cell (BM-MSC) and adipose tissue derived
mesenchymal stem cell (AT-MSC) treatment normalized glucose levels. b Body weight increased normally in the control group (C) after 4,8 and 12
weeks; in the STZ and the STZ + doxorubicin (STZ + DOX) groups body weight decreased at these time points, which was rescued after treatment
with BM-MSCs and AT-MSCs. ¢ Insulin and d fibrinogen levels deviated in the STZ and STZ + DOX groups; treatment with BM-MSCs and AT-MSCs

normalized these parameters. *P <0.05 compared to respective baselines, ®P <0.05 compared to respective controls at same time points, *P <0.05
compared to respective pretreatment (8 weeks), 4P <0.05 compared to the untreated STZ + DOX group

systolic and diastolic ABP levels significantly decreased.
In both BM-MSCs and AT-MSCs after 4 weeks of im-
plantation (12 weeks after STZ injection) ABP increased
1.5-fold compared to the DOX group (Fig. 3a, b).

In vivo cardiac function assessment

To determine the effect of MSC implantation on cardiac
function, we performed echocardiography at baseline,
and 4, 8 and 12 weeks after STZ injection. There was no
difference observed in left ventricular (LV) volumes and
percent FS among different groups at baseline and after
4 weeks of STZ treatment (Fig. 4). However, after 4
weeks of DOX treatment (8 weeks after STZ injection)
there was a significant increase observed in LV diameter
and a substantial decrease in percent FS. In both BM-
MSCs and AT-MSCs, 4 weeks of implantation (12 weeks

after STZ injection) led to an improvement in heart
function as we observed a significant increase in percent
ES and a decrease in LV volumes (Fig. 4).

Isolated heart perfusion

Retrograde Langendorff perfusion was performed to
measure heart rate, LVESP, LVEDP, LVDP, dp/dt and
RPP. There was a 2-fold decrease in heart rate after
DOX treatment compared to the control and STZ
groups. Both BM-MSC and AT-MSC therapy stabilized
the heart rate (Fig. 5a). We observed a significant de-
crease in LVDP and LVSP, and an increase in LVEDP
after DOX administration. Both BM-MSC and AT-MSC
treatment improved these parameters (Fig. 5b, ¢, d).
Assessment of cardiac contractility was done by the meas-
urement of dp/dt and RPP levels. DOX administration
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Fig. 4 Heart function was assessed in different groups by echocardiography. Data are mean + SD. a-g M mode pictures in different treatment groups.

a Control, b streptozotocin (S72), ¢ STZ + doxorubicin (STZ + DOX, d bone marrow-derived mesenchymal stem cells (BM-MSCs) before injection, @ BM-MSCs
post-treatment, f adipose tissue-derived mesenchymal stem cells (AT-MSCs) before injection, g AT-MSCs post-treatment, h percent fractional shortening

(9 FS), i LVESD, and j left ventricular end diastolic dimension (LVEDD). After 4 weeks of DOX treatment (8 weeks after STZ) heart function deteriorated; both
BM-MSC and AT-MSC implantation improved heart function. *P <0.05 compared to respective baselines, ®P <0.05 compared to respective controls at time
points, ’P <0.05 compared to respective pretreatment (8 weeks), P <0.05 compared to the untreated STZ + DOX group
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decreased these parameters, however, both BM-MSCs and
AT-MSCs were equally effective in preventing these
changes (Fig. 5e, f).

Detection of stem cells in the heart

The ability of injected stem cells to repair the heart de-
pends upon successful delivery of injected cells in the
cardiac tissue. We labeled the stem cells with GFP be-
fore transplantation (Figure S2 in Additional file 2), our
immunohistochemistry results demonstrated that 4
weeks after intravenous injection, implanted BM-MSCs
and AT-MSCs were present in the heart (Fig. 6a). Real-
time PCR was performed for quantification of MSCs in
the heart. We detected 0.1078 % of human DNA in the
total DNA extracted from the heart tissues in the BM-
MSC group and 0.557 % of human DNA in total DNA

extracted from heart tissues in the AT-MSC group
(Fig. 6b).

Assessment of fibrosis and inflammation

To detect fibrosis in the heart, myocardial sections
were stained with Masson’s trichrome; control rats had
fine collagen fibers between the muscle fibers, diabetic
rats (STZ group) had dense collagen fibers between the
muscle fibers, and the STZ + DOX group had extensive
collagen fibers between disorganized muscle fibers.
These results were further complimented by a-SMA
expression, which is a very well-established marker of
cardiac fibrosis. We observed a significant increase in
a-SMA protein levels in the STZ + DOX group in com-
parison to the control and STZ groups. Both BM-MSC
and AD-MSC transplantation decreased the level of
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BM-MSCs

Fig. 6 a Bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) were labeled
with green fluorescent protein (GFP) before injection. Implanted cells were detected in the myocardium 4 weeks after intravenous injection
through the tail vein (magnification x 10). b Real-time PCR was performed to quantify transplanted MSCs in the heart. Genomic DNA was
isolated from the heart samples, and ALU PCR was performed using TagMan probes to detect transplanted human MSCs in the rat myocardium.
Histograms show percentage of human DNA found in total DNA extracted from rat heart tissues from the BM-MSC and AT-MSC groups. ¢ and
d Myocardial sections were stained with Masson's trichrome, (magnification x 200) to detect fibrosis in the heart in the different groups (control,
streptozotocin (ST2), STZ + doxorubicin (STZ + DOX), BM-MSCs and AT-MSCs; d histograms show percent area of collagen deposition. Black arrows
indicate collagen fibers. Quantification of the cells in various groups was performed using the Leica Qwin 500 LTD computer-assisted image
analysis system (Cambridge, UK). Measurements were done in 10 high power fields (HPF) in all the experimental groups. e and f a-smooth
muscle actin (a-SMA) expression was assessed by western blot in different groups. f Histograms show a-SMA levels, values were normalized with
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). ©P <0.05 compared to STZ, 4P <0.05 compared to STZ and STZ + DOX
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fibrosis, as we observed decreased collagen deposition
and a-SMA protein levels (Fig. 6¢-f).

On H&E staining of the heart sections there was
high infiltration of immune cells in the STZ and
STZ + DOX groups, along with distortion of myocytes
(Fig. 7a, b). Both BM-MSC and AT-MSC treatment
significantly decreased the infiltration of immune cells
(Fig. 7a, b).

Assessment of angiogenesis

CD31 has been widely relied upon as a marker for
angiogenesis. We have tested myocardial tissue in differ-
ent groups for CD3lexpression (Fig. 7c). CD31" cells
were found in the STZ group (Fig. 7c) and were mark-
edly reduced in the STZ + DOX group (Fig. 7c). Both
BM-MSC and AT-MSC treatment increased the number
of CD31" cells 5-fold (Fig. 7¢, d).
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Fig. 7 a H & E staining was performed to detect infiltration of immune cells in the heart. Photomicrographs of heart sections (x200) from different
groups: control, streptozotocin (S72), STZ + doxorubicin (STZ + DOX), bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose
tissue-derived mesenchymal stem cells (AT-MSCs) . Black arrows indicate infiltrating immune cells. b Histograms show percent area of immune cell
infiltration. € CD31 expression in the myocardium was examined by immunohistochemistry (magnification x 200) in different groups. Black arrows
indicate CD317 cells; wavy arrows show damaged muscle tissue. d Histograms show percentage of CD31" cells. Quantification of the cells in various
groups was performed using the Leica Qwin 500 LTD computer-assisted image analysis system (Cambridge, UK). The measurements were done in
10 high power fields in all the experimental groups. ®P <0.05 compared to STZ, 4P <005 compared to STZ and STZ + DOX
A
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Discussion

In the present study, we report for the first time that
mesenchymal stem cell therapy prevents DOX-induced
deterioration of cardiac function in diabetic rats. In vari-
ous pre-clinical and clinical studies, AT-MSCs and BM-
MSCs have comparable outcomes [27, 28]. Therefore we
investigated both AT-MSCs and BM-MSCs to assess
their respective efficacy. Both were equally effective in
mitigating DOX-induced alterations in cardiac function
in diabetic rats.

Previously, several studies have demonstrated that
MSC transplantation in diabetic rats downregulates
hyperglycemia and normalizes body weight [29, 30].
Similarly, we found that AT-MSC and BM-MSC trans-
plantation decreased glucose levels and increased body

weight in STZ-induced diabetes in rats. However, it was un-
clear until now whether MSC therapy can decrease blood
glucose levels in DOX-treated diabetic rats. Our experi-
ments reported a significant decrease in blood glucose
levels in DOX-treated animals. It has been suggested that
insulin and fibrinogen play a key role in glycemic control in
the body [31]. To determine if this may be the cause of
MSC therapy-mediated decrease in blood glucose levels, we
measured serum insulin and fibrinogen levels. It was found
that serum insulin levels decreased and fibrinogen levels in-
creased in STZ-treated and DOX-treated animals. AT-MSC
and BM-MSC injections both restored the levels of insulin
and fibrinogen to those found in the control group.

As diabetic patients are more susceptible to cancer
than normal people, DOX therapy becomes a necessary
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evil, threatening to cause a severe degree of damage to the
already ailing heart of diabetic patients. This was amply
substantiated in the current study. We found significant
deterioration of cardiac function in the DOX-treated STZ
group compared to the control and STZ-treated animals.
We investigated a number of parameters to assess cardiac
damage after treatment with doxorubicin. Heart rate has
been ascertained as an independent risk factor in cardio-
vascular disease [32]. We found a significant decrease in
the heart rate in the DOX-treated group. Both BM-MSC
and AT-MSC transplantation prevented this decrease. Our
experiments further demonstrated that stem cell trans-
plantation prevents DOX-induced decrease in percent FS
and improved LV dimensions.

The RPP represents the myocardial workload, provid-
ing a direct indication of the energy demand and energy
consumption of the heart, which can digress in cardio-
vascular risk [33]. We observed A significant decrease in
RPP levels after 4 weeks of DOX treatment. However,
stem cell implantation increased RPP levels. For further
assessment of the effects of BM-MSCs and AT-MSCs in
modulating cardiac function, hearts from all the experimen-
tal groups were isolated and perfused using Langendorff ap-
paratus and dp/dt was evaluated to assess the cardiac
contractility of the isolated perfused hearts. dp/dt has been
established as a predictor of event-free survival in patients
with heart failure [34]. We found both AT-MSC and BM-
MSC therapy prevented DOX-induced decrease in dp/dt
levels. In various animal models the transplantation of mes-
enchymal stem cells to the damaged myocardium has been
found to improve heart function and prevent congestive
heart failure [35-38].

DOX is known to cause disruptions of cardiac function
through different mechanisms. Several studies have
reported the impairment of angiogenesis, increase in in-
flammatory cell infiltration and fibrosis following DOX
therapy [39, 40]. The suggested mechanisms of MSC-
mediated cardiac repair include modulation of inflamma-
tion [41] and promotion of angiogenesis [42]. Therefore,
in this study, to find the mechanisms of stem cell therapy-
mediated protection against DOX-induced damage, we
assessed the level of angiogenesis, immune cell infiltration
and fibrosis following MSC therapy. MSCs have been
regularly reported to release angiogenic factors such as
SDF-1, VEGE, PIGE, FGEF-2, angiopoeitin-1, PDGE, MCP-
1, plasminogen activator and MMP-9 [12, 13, 43, 44]. Our
study further substantiates the notion of MSC-induced
angiogenesis in damaged myocardium, helping in im-
provement of cardiac function, thus strongly corroborat-
ing previous studies wherein MSCs were found to
stimulate angiogenesis in animal models of myocardial in-
farction, which eventually resulted in repair of ischemic
heart tissue [45, 46]. MSCs also secrete various immuno-
suppressive soluble factors such as prostaglandin E2
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(PGE2), IL-10 and indolamine dioxygenase (IDO) [47].
These factors modulate inflammatory responses in the in-
farcted heart and promote the repair process. In fibrosis,
there is excessive fibroblast accumulation, extracellular
matrix (ECM) deposition and scar formation, leading to
increased stiffness of the heart tissue, culminating in pro-
gressive cardiac failure [48]. Reducing cardiac fibrosis is
critical in improving the condition of the affected heart
[49]. Our findings are in agreement with the previously
published reports and show that there was a marked re-
duction in fibrosis in the BM-MSCs and AT-MSC groups
compared to the STZ + DOX group. Some of the initial
studies have also demonstrated that mouse bone marrow
MSCs trans-differentiated into cardiomyocytes in the
heart [50]. However, subsequent studies have revealed that
cardiac differentiation of MSCs is limited to the expression
of cardiac-specific markers, without the generation of
functional cardiomyocytes [51, 52].

Based on the outcome of these pre-clinical studies, a
wide variety of MSC-based clinical trials have reported im-
provement in function in patients with cardiovascular and
metabolic disease [53—56]. However, before making defini-
tive conclusions and applying MSCs for widespread clin-
ical use, there is a need for more studies to understand the
in-depth mechanisms and the duration of improvement in
patients treated with stem cell therapy.

Conclusions

In conclusion, the present study not only confirms the an-
tidiabetic potential of MSCs, but we also show for the first
time that both AT-MSCs and BM-MSCs are equally ef-
fective in restoring heart function in DOX-treated diabetic
rats. Furthermore, these findings should act as a stimulus
for further research on the benefits of mesenchymal stem
cell therapy for diabetic patients suffering from cancer.
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Additional file 1: Figure S3. Schematic diagram of the timeline of all
the groups. (PDF 11 kb)

Additional file 2: Figure S2. Figure S2 Representative image of a stem
cell expressing the transfected green fluorescent protein prior to
injection (magnification x 20). (PDF 13 kb)

Additional file 3: Figure S1. Immunophenotyping of adipose tissue-
derived mesenchymal stem cells by flow cytometry. a Flow Gate; b CD45;
c CD34; d CD44; e CD90 and f CD105. All the cells were negative for
CD45 and CD34; >90 % of the cells were positive for CD44, CD90 and
CD105. (PDF 164 kb)
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