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Abstract
Objective To determine whether quantitative parameters of detector-derived dual-layer spectral computed
tomography (DLCT) can reliably identify epidermal growth factor receptor (EGFR) mutation status in patients with non-
small cell lung cancer (NSCLC).

Methods Patients with NSCLC who underwent arterial phase (AP) and venous phase (VP) DLCT between December
2021 and November 2022 were subdivided into the mutated and wild-type EGFR groups following EGFR mutation
testing. Their baseline clinical data, conventional CT images, and spectral images were obtained. Iodine concentration
(IC), iodine no water (INW), effective atomic number (Zeff), virtual monoenergetic images, the slope of the spectral
attenuation curve (λHU), enhancement degree (ED), arterial enhancement fraction (AEF), and normalized AEF (NAEF)
were measured for each lesion.

Results Ninety-two patients (median age, 61 years, interquartile range [51, 67]; 33 men) were evaluated. The
univariate analysis indicated that IC, normalized IC (NIC), INW and ED for the AP and VP, as well as Zeff and λHU for the
VP were significantly associated with EGFR mutation status (all p < 0.05). INW(VP) showed the best diagnostic
performance (AUC, 0.892 [95% confidence interval {CI}: 0.823, 0.960]). However, neither AEF (p= 0.156) nor NAEF
(p= 0.567) showed significant differences between the two groups. The multivariate analysis showed that INW(AP)
and NIC(VP) were significant predictors of EGFR mutation status, with the latter showing better performance
(p= 0.029; AUC, 0.897 [95% CI: 0.816, 0.951] vs. 0.774 [95% CI: 0.675, 0.855]).

Conclusion Quantitative parameters of DLCT can help predict EGFR mutation status in patients with NSCLC.

Critical relevance statement Quantitative parameters of DLCT, especially NIC(VP), can help predict EGFR mutation
status in patients with NSCLC, facilitating appropriate and individualized treatment for them.
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Key Points
● Determining EGFR mutation status in patients with NSCLC before starting therapy is essential.
● Quantitative parameters of DLCT can predict EGFR mutation status in NSCLC patients.
● NIC in venous phase is an important parameter to guide individualized treatment selection for NSCLC patients.

Keywords Carcinoma (non-small-cell lung), Lung neoplasms, Epidermal growth factor receptor, Spectral computed
tomography
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QQuantitative parameters of DLCT, especially venous phase normalized iodine concentration, can 
help predict EGFR mutation status in patients with NSCLC, facilitating appropriate and 
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Introduction
With an estimated 2.21 million new cases and 1.80 million
deaths worldwide per year, lung cancer is one of the most
frequently diagnosed cancers [1]. In the 2016 cancer sta-
tistics by the National Cancer Center, lung cancer ranked
first both in the incidence (59.89%) and death rate
(47.51%) of malignant tumors in China [2]. Non-small cell
lung cancer (NSCLC) accounts for more than 80% of
cases and is considered a heterogeneous disease [3]. With
the discovery of the epidermal growth factor receptor
(EGFR) gene and continuous research on tyrosine kinase
inhibitor (TKI), treatment of advanced or metastatic
patients with NSCLC has been greatly improved, and the
overall survival has been extended [4, 5]. EGFR-TKI is the
standard first-line treatment for NSCLC patients with
EGFR mutations [6]. EGFR mutations associated with
NSCLC mainly comprise exons 18 to 21, with a deletion

in exon 19 and an L858R mutation in exon 21 (EGFR-
sensitizing mutations) accounting for approximately 90%
of them [7, 8]. Positive rates of EGFR mutations were as
high as 41–48% in China [9, 10]. Thus, determining the
EGFR mutation status of patients with NSCLC before
starting EGFR-TKI therapy is crucial.
Gene mutational sequencing of tumor tissue from

biopsy specimens is the gold standard for detecting EGFR
mutations. However, obtaining tissue samples from the
tumor is sometimes difficult owing to the tumor location
and size, the potential risk of metastasis, and the relatively
high costs [11, 12]. Therefore, exploring a non-invasive
and readily available method to predict EGFR mutation
status in patients with NSCLC is necessary.
Computed tomography (CT) features and certain CT-

based radiomic features of lung cancer have recently been
revealed to be related to EGFR mutation status [13–16].
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Although CT image evaluation is not a substitute for tissue
biopsy, it can provide information throughout the treat-
ment to compensate for the lack of biopsy information.
Furthermore, prediction of EGFR mutation status by CT
imaging could help physicians select the most representa-
tive tumor for biopsy when multiple tumors are present.
However, these CT features cannot be quantitatively eval-
uated owing to the subjective judgment of observers.
Detector-derived dual-layer spectral CT (DLCT) provides
various quantitative analysis tools and a comprehensive
diagnostic model based on multi-parameter imaging, using
a single X-ray source and two-layer detectors, with an
upper layer absorbing low-energy photons and a lower
layer absorbing high-energy photons [17]. The virtual non-
contrast (VNC) image, virtual monochromatic image
(VMI), iodine concentration (IC) image, iodine no water
(INW) image, the slope of the spectral attenuation curves
(λHU), effective atomic number (Zeff) image, and normal-
ized arterial enhancement fraction (NAEF) map can be
generated along with the conventional CT images. Com-
pared with dual-energy CT (DECT) in previous studies,
DLCT can produce better data registration and image cor-
respondence in different phases through its synchroniza-
tion, homology, and co-direction features, and significantly
reduce measurement errors, image noise, and tedious and
repetitive image reconstruction or post-processing proce-
dures [18]. Moreover, DECT has potential value in pre-
dicting EGFR mutation status in lung cancer, with AUCs
ranging from 0.702 to 0.760 [19, 20]. However, this diag-
nostic performance is not optimal and is inconsistent owing
to differences in equipment, scanning parameters, sample
size, and pathological types. Consequently, the diagnostic
value of DECT quantitative parameters should be further
explored. In addition, the value of each DLCT quantitative
parameter in predicting EGFR mutation status in NSCLC
has not been reported.
Therefore, we aimed to prospectively explore the

potential value of DLCT quantitative parameters in the
identification of EGFR mutation status in NSCLC by
strictly controlling the CT scanning phase and standar-
dizing these parameters.

Methods
Study population
This prospective study was approved by the relevant
institutional review board, and the requirement for
informed consent was waived.
Patients with lung nodule(s) or mass(es) who underwent

chest DLCT examination in our hospital were pro-
spectively enrolled from December 2021 to November
2022. The inclusion criteria were: (1) patients who
underwent chest dual-phase dynamic enhanced scan
(arterial phase [AP] and venous phase [VP]) with DLCT;

(2) NSCLC confirmed by pathological examination after
biopsy or surgical resection; (3) ≤ 3-month interval
between the DLCT scan and surgery/biopsy examination;
and (4) EGFR mutation testing. The exclusion criteria
were: (1) patients with a history of chemical/radiotherapy
treatment before the CT scan; (2) patients with incom-
plete imaging data, poor image quality, or respiratory
artifacts; (3) tumor surroundings exhibiting atelectasis or
patchy shadows that prevented accurate observation of
details or lesion size measurement; (4) incomplete clinical
data on the Management Information System of our
hospital. According to EGFR mutation status, all patients
were subdivided into the mutated and the wild-type EGFR
groups (Fig. 1).
Finally, 92 patients with NSCLC (33 men and 59

women; median age, 61 years [interquartile range {IQR},
51–67 years]) were included, with the mutated EGFR
group featuring 69 patients (21 men and 48 women;
median age, 61 years [IQR, 51–65 years]) and the wild-
type EGFR group 23 patients (12 men and 11 women;
mean age, 61.4 ± 11.0 years).

DLCT acquisition and post-processing
All patients underwent DLCT (IQon Spectral CT; Philips
Healthcare), followed by chest dual-phase dynamic
enhanced scans because most of the patients were
admitted to our hospital with pulmonary nodules or
masses found by examination in other hospitals. Fur-
thermore, some patients had a purely clinical diagnosis of
lung cancer, and some had been diagnosed by biopsy. To
further determine lung cancer stage, the scopes of pre-
operative CT scans for some patients were extensive and
usually included abdomen, pelvic, neck, or head scans
after the chest scan. Therefore, the scope of the scan was
not consistent for each patient, but consistency in the
timing of chest scans was ensured.
Before the scan, an anterior-posterior scout was per-

formed to determine the scan range. Intravenous contrast
medium (Imeron 400 MCT, 400mg/mL; Bracco Imaging)
was injected at a standard dosage (80–90mL) at a flow
rate of 3 mL/s using a high-pressure injector (Ulrich REF
XD 2051, Ulrich GmbH & Co. KG), followed by a 30-mL
saline chaser at the same flow rate. AP and VP images
were acquired 35 and 65 s after the injection, respectively.
Considering that lung cancer typically shows peak
enhancement 20–40 s after initiating the injection, a 65 s
fixed delay ensured analysis of the tumor during the late
AP or the early phase of the steady decrease enhancement
occurring after that. This delayed acquisition did not
prevent the scanning of the upper abdomen at the portal
phase. The following scanning parameters were used:
120 kVp; automatic tube current selection with resulting
exposures of 37–84mAs; rotation speed, 0.33 s/rot; helical

Li et al. Insights into Imaging          (2024) 15:109 Page 3 of 11



pitch, 0.671; detector collimation, 64 × 0.625 mm; and
512 × 512 matrix. Images were reconstructed as spectral
base images (SBI) datasets, with a reconstructed slice
thickness of 1 mm, and an increment of 1 mm. Conven-
tional CT images were reconstructed using hybrid itera-
tive reconstruction (iDose 4, level 4, Philips Healthcare)
and a standard kernel (B), reviewed in a mediastinal
window with a width of 350 and a level of 40. The same
protocols were applied to all participants.

DLCT image analysis
Quantitative analysis of DLCT images using commercially
available software (IntelliSpace Portal v. 10.1, Philips
Healthcare) was performed in consensus by a resident
fellow in radiology with three years of radiology experi-
ence and a senior radiologist with 30 years of radiology
experience.
All lesions were observed and recorded on conventional

CT images by the mediastinal window (width and level,
350 HU and 40 HU), lung window (width and level, 1600
HU and −600 HU), and multiplanar reconstruction
(MPR) technology. When multiple lesions were present,
only the largest was considered. According to the density
features on the conventional CT images with a lung
window, the target lesions were divided into three cate-
gories: solid, part-solid, and ground glass opacity (GGO)
types. We recorded the location, size (diameter, max-
imum long-axis diameter, and maximum short-axis
diameter perpendicular to maximum long-axis), and

morphological features (lobulation, spiculation, bubble
sign, and pleural retraction).
The circular or ovular region of interest (ROI) in the

largest size level of the target lesion was manually placed in
the conventional CT axial image in the AP, avoiding the
vessels, calcification, necrosis and vacuoles/cavities inside
the tumor. The ROI area covered at least half to two-thirds
of the entire lesion. Subsequently, the ROI was manually
replicated on the same site in the VP and automatically
copied onto each spectral image of dual-phase, including
IC, VMI at 40 keV and 100 keV (hereafter VMI(40keV) and
VMI(100keV)), VNC, Zeff, and INW. Similarly, circular ROIs
were placed in the descending aorta at the carina level to
obtain the IC of the aorta. Dual-phase DLCT data sets are
registered on each other to precisely align them in three
dimensions. NAEF was then calculated for each pixel, and
data were mapped to a spectral color scale and overlaid
with a VNC image (Fig. 2, Table 1).
The related spectral parameter formula was as follows:

normalized IC (NIC)= IC of the lung lesion/IC of the aorta;
arterial enhancement fraction (AEF)= (IC in the AP/IC in
the VP) × 100%; NAEF= (NIC in the AP/NIC in the VP) ×
100%; enhancement degree (ED)= (conventional CT
value−VNC). The software automatically calculated the
value of Zeff and INW. For energy levels greater than
120 keV, the spectral curve exhibited smaller changes and
differences compared to those below 120 keV. Therefore,
VMI(40keV) and VMI(100keV) were selected for analysis, cor-
responding to λHU= (VMI(40keV)−VMI(100keV))/(100−40).

Patients who underwent dual-phase contrast-enhanced DLCT of the chest between December 2021 and 

November 2022 with lung nodules/masses 

(n = 1077)

Histopathologically confirmed NSCLC by biopsy or surgery within 3 months 

(n = 366)

EGFR mutation test was detected in a tumor tissue sample 

(n = 111)

19 patients were excluded for the following reasons:  

- underwent chemotherapy/ radiotherapy or other 

palliative treatment before examination (n = 4) 

- no complete dual-phase dynamic enhanced DLCT 

image data or insufficient image quality (n = 5) 

- difficult outline of the edge of lesions (n =10) 

Mutated EGFR group 

(n = 69) 

Wild-type EGFR group 

(n = 23) 

Fig. 1 Flowchart demonstrates the study inclusion process prospectively undergone by patients with NSCLC and EGFR mutation test
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Fig. 2 (See legend on next page.)
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Statistical analysis
Statistical analyses were performed using the SPSS software
(version 26.0; IBM Corporation) and MedCalc software
(Version 20.121). Continuous data with normal distribu-
tion are expressed as mean ± standard deviation; otherwise,
the medians with interquartile range (IQR, p25–p75) are
presented. Categorical variables are expressed as numbers
(percentage, %). Potentially significant factors for predict-
ing EGFR mutation status in NSCLC were analyzed using
univariate and multivariate analyses. In univariate analyses,
Student’s t-test/Mann–Whitney U-test and the chi-square
test/Fisher’s exact test were used to compare continuous
and categorical variables between the groups, respectively.
Factors with an associated p < 0.1 in the univariate analysis
were selected as candidate variables to establish the mul-
tinomial logistic regression model, and the forward LR
elimination was performed to determine the best inde-
pendent predictor. Receiver operating characteristics curve

analysis was performed, and AUCs were calculated to
assess the predictive value of DLCT parameters. The
threshold value with the maximum Youden index was
chosen as optimal, and the sensitivity, specificity, and
accuracy were calculated. The level of significance was set
at p < 0.05.

Results
Participant characteristics
A total of 92 patients were eligible, including 87 (94.6%)
cases of lung adenocarcinoma and 5 (5.4%) cases of lung
squamous cell carcinoma. Five cases (5.4%) had a history
of other malignancies (two of thyroid cancer, one of breast
cancer, one of colon cancer, and one of prostate cancer).
EGFR mutation types included mutation in exon 18 (2/69,
2.9%), exon 19 (25/69, 36.2%), exon 20 (3/69, 4.3%), exon
21 (38/69, 55.1%), and exons 18 and 21 (1/69, 1.4%). The
association of clinical characteristics with EGFR mutation

(see figure on previous page)
Fig. 2 A, C, E Images of a 65-year-old man with lung adenocarcinoma in the right lower of the mutated epidermal growth factor receptor (EGFR) group.
B, D, F Images of a 63-year-old woman with lung adenocarcinoma in the left upper lobe of the wild-type EGFR group. Conventional CT value and
detector-derived dual-layer spectral CT parameters including virtual non-contrast (VNC), iodine concentration (IC), effective atomic number (Zeff), virtual
monochromatic image (VMI) at 40 keV level (hereafter, VMI 40 keV), VMI at 100 keV level (hereafter, VMI 100 keV), normalized arterial enhancement fraction
(NAEF), and the slope of the spectral Hounsfield Unit curve (λHU) at 40 keV–200 keV levels during the arterial phase (AP) and venous phase (VP) were
measured with the same region of interest (ROI) at the same location

Table 1 The quantitative parameters of detector-derived dual-layer spectral CT

Quantitative parameters

(abbreviation, unit)

Specification Characteristic

Virtual Monoenergetic Image (VMI, HU) Virtually synthesize monoenergetic images,

including 40 keV–200 keV.

The high energy level (80 keV–200 keV) can reduce the

hardening beam effect and image artifacts; the low energy

level (40 keV–60 keV) can increase the iodine contrast agent

and enhance the visualization effect of the tissue.

Virtual non-contrast (VNC, HU) Virtually remove the iodine element to obtain a

virtual plain scan image.

Simplify the scanning process and reduce radiation dose.

Iodine no water (INW, mg/mL) Suppression of watery tissue through substance

identification to enhance visualization of

iodine-enhanced tissue.

The iodine concentration of individual voxels can be

displayed.

Iodine concentration (IC, mg/mL)

Normalized iodine concentration (NIC,

mg/mL)

Displays the iodine concentration of the tissue

and standardized the IC by linking it to the

artery.

Quantify iodine enhancement and display only the tissues

containing iodine contrast agent.

Z Effective (Zeff) The effective atomic number reconstructed

through mass attenuation coefficients on

material.

Perform material detection, identification and material

separation.

The slope of the spectral attenuation

curve (λHU)

The slope of the curve of CT values changing

with monochromatic energy.

Distinguish tissues based on the respective curve slopes

Arterial enhancement fraction (AEF, %)

Normalized arterial enhancement

fraction (NAEF, %)

The ratio of the IC or NIC during the arterial

phase to the venous phase.

Reflecting the ratio of blood supply during the arterial

and venous phases.
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status is shown in Table 2. No significant differences
were observed between the two groups for any clinical
characteristic (p > 0.05). Candidate variables were age, sex,
and smoking status.

Conventional CT image analysis
There were no significant differences between the muta-
ted and wild-type EGFR groups in location, size, density,
CT morphological characteristics of the target lesion, or
number of lesions (p > 0.05; Table 3). The candidate
variable was lesion lobulation.

Quantitative parameters analysis
Table 4 demonstrates the comparison of DLCT quanti-
tative parameters between the two groups in the AP and
VP via univariate and multivariate analysis, respectively.
Among quantitative parameters in AP, IC(AP), NIC(AP),
INW(AP), and ED(AP) of the mutated EGFR group
were significantly higher than those of the wild-type
EGFR group (all p < 0.05). However, there were no sig-
nificant differences in the Zeff(AP), VMI(40keV)(AP), and
VMI(100keV)(AP) between the two groups (p > 0.05). For
DLCT quantitative parameters in VP, IC(VP), NIC(VP),
INW(VP), Zeff(VP), λHU(VP), and ED(VP) of the mutated
EGFR group were significantly higher than those of the
wild-type group (all p < 0.05), with no significant differ-
ences in the VMI(40keV)(VP) or VMI(100keV)(VP) (p > 0.05).
Furthermore, the two groups had no significant differ-
ences in AEF (p= 0.156) or NAEF (p= 0.567).
Threshold values, accuracy, sensitivity, specificity, and

AUC of DLCT quantitative parameters with significant
differences between the two groups are shown in Table 5
and Fig. 3. The AUC for determining EGFRmutation status
in NSCLC ranged from 0.699 to 0.892. Among those
parameters, INW(VP) had the highest diagnostic specificity
(95.65%) for identifying EGFR mutation status of patients
with NSCLC, followed by NIC(VP) and ED(VP), both with
a specificity of 86.96%, and the threshold values were
1.72mg/mL, 0.30, and 41.95 HU, respectively.
Moreover, multivariate logistic regression analyses were

performed on the candidate variables mentioned above
(age, sex, smoking status, and lobulation) with quantitative
parameters that significantly differed between the two
groups in the dual-phase scanning of DLCT. The results

Table 3 Association between conventional CT imaging features with EGFR mutation status in NSCLC

Variables All Mutated EGFR group Wild-type EGFR group p

Location 0.284
Right upper lobe 26 (28.3%) 21 (80.8%) 5 (19.2%)
Right middle lobe 9 (9.8%) 8 (88.9%) 1 (11.1%)
Right lower lobe 8 (8.7%) 4 (50.0%) 4 (50.0%)
Left upper lobe 29 (31.6%) 23 (79.3%) 6 (20.7%)
Left lower lobe 20 (21.7%) 13 (65.0%) 7 (35.0%)

Size
Diameter (cm) 1.9 (1.2, 2.8) 2.1 ± 0.9 1.7 (1.0, 3.1) 0.636
The maximum long-axis diameter (cm) 2.3 (1.6, 3.2) 2.4 ± 1.1 2.1 (1.1, 3.4) 0.412
The maximum short-axis diameter (cm) 1.6 (1.0, 2.4) 1.7 ± 0.8 1.5 (0.9, 2.9) 0.907

Density 0.460
Solid 42 (45.7%) 31 (73.8%) 11 (26.2%)
Part-solid 36 (39.1%) 29 (80.6%) 7 (19.4%)
Pure GGO 14 (15.2%) 9 (64.3%) 5 (35.7%)

CT morphological characteristics
Lobulation 80 (87.0%) 63 (78.8%) 17 (21.2%) 0.067
Spiculation 42 (45.7%) 33 (78.6%) 9 (21.4%) 0.468
Bubble lucency & Cavity 51 (55.4%) 39 (76.5%) 12 (23.5%) 0.716
Pleural indentation 70 (76.1%) 53 (75.7%) 17 (24.3%) 0.778

No. of NSCLC lesions 0.753
Single 77 (83.7%) 57 (74.0%) 20 (26.0%)
Multiple 15 (16.3%) 12 (80.0%) 3 (20.0%)

Unless otherwise indicated, data in parentheses are percentages; mean data are ± standard deviation; median data are interquartile range (p25–p75)
EGFR epidermal growth factor receptor, NSCLC non-small cell lung cancer, GGO ground-glass opacity

Table 2 Study sample characteristics

Variables All Mutated EGFR
group

Wild-type
EGFR group

p

No. of patients 92 69 (75.0%) 23 (25.0%)
Age (years) 61 (51, 67) 61 (51, 65) 61 ± 11 0.090
Sex ratio 0.060

Female 59 (64.1%) 48 (81.4%) 11 (18.6%)
Male 33 (35.9%) 21 (63.6%) 12 (36.4%)

History of malignancy 0.675
Not have 87 (94.6%) 65 (74.7%) 22 (24.3%)
Have 5 (5.4%) 4 (80.0%) 1 (20.0%)

Smoking 0.071
Never smoked 69 (75.0%) 55 (79.7%) 14 (20.3%)
Smoker 23 (25.0%) 14 (60.9%) 9 (39.1%)

Family history of malignant tumor 0.778
Not have 70 (76.1%) 52 (74.3%) 18 (25.7%)
Have 22 (23.9%) 17 (77.3%) 5 (22.7%)

TNM stage 0.733
I 62 (67.4%) 46 (74.2%) 16 (25.8%)
II 8 (8.7%) 6 (75.0%) 2 (25.0%)
III 6 (6.5%) 5 (83.3%) 1 (16.7%)
IV 9 (9.8%) 8 (88.9%) 1 (11.1%)
Indefinite 7 (7.6%) 4 (57.1%) 3 (42.9%)

Unless otherwise indicated, data in parentheses are percentages; mean data are
± standard deviation; median data are interquartile range (p25–p75)
EGFR epidermal growth factor receptor
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showed that INW(AP) andNIC(VP) were significant factors
for predicting EGFR mutation status, with a sensitivity, a
specificity, and accuracy of 82.61%, 65.22%, and 77.17%; and
79.71%, 86.96%, and 81.52%, respectively. The diagnostic

efficiency of NIC(VP) (AUC: 0.897, 95% confidence interval
[CI]: 0.816–0.951) was significantly higher than that of
INW(AP) (AUC: 0.774; 95% CI: 0.675–0.855) for predicting
EGFR mutation status in NSCLC (p= 0.029; Fig. 4).

Table 5 The diagnostic efficiency of DLCT quantitative parameters between the mutated EGFR group and wild-type EGFR group

Parameter Threshold Sensitivity (%) Specificity (%) Accuracy (%) AUC (95% CI)

IC (AP) 1.52 66.67 78.26 69.57 0.755 (0.643, 0.866)

NIC (AP) 0.13 72.46 78.26 76.09 0.734 (0.619, 0.848)

INW (AP) 1.37 81.16 65.22 77.17 0.763 (0.652, 0.874)

λHU (AP) 1.83 55.07 82.61 61.96 0.699 (0.585, 0.813)

ED (AP) 34.35 75.36 79.57 73.91 0.738 (0.623, 0.852)

IC (VP) 1.52 75.36 78.26 76.09 0.854 (0.765, 0.943)

NIC (VP) 0.30 78.26 86.96 80.44 0.892 (0.823, 0.960)

INW (VP) 1.72 60.87 95.65 69.57 0.855 (0.768, 0.942)

Zeff (VP) 8.23 85.51 47.83 76.09 0.701 (0.575, 0.827)

λHU (VP) 1.47 78.26 65.22 75.00 0.756 (0.651, 0.862)

ED (VP) 41.95 72.46 86.96 76.09 0.842 (0.750, 0.934)

95% CI means the 95% confidence interval
AUC area under the receiver operating characteristic curve, DLCT dual-layer spectral computed tomography, NSCLC non-small cell lung cancer, EGFR epidermal growth
factor receptor, AP arterial phase, VP venous phase, IC iodine concentration, NIC normalized iodine concentration, INW iodine no water, λHU the slope of the spectral
attenuation curve, ED enhancement degree, Zeff effective atomic number

Table 4 Quantitative DLCT parameters between the mutated EGFR group and wild-type EGFR group in the arterial and venous
phases

Parameter All (n= 92) Mutated EGFR group (n= 69) Wild-type EGFR group (n= 23) p Multivariate analysis

AP

IC (mg/mL) 1.58 (1.27, 2.04) 1.77 (1.41, 2.18) 1.31 ± 0.48 < 0.001

NIC 0.14 (0.12, 0.19) 0.17 (0.13, 0.22) 0.12 (0.10, 0.13) < 0.001

INW (mg/mL) 1.59 (1.29, 2.15) 1.89 ± 0.66 1.31 ± 0.49 < 0.001 < 0.001

Zeff 8.50 ± 0.47 8.55 ± 0.44 8.36 ± 0.55 0.095

λHU (HU/keV) 1.72 ± 0.98 1.88 ± 1.02 1.24 ± 0.70 0.006

VMI40keV (HU) 25.35 (−201.70, 155.65) 65.90 (−170.65, 160.25) 7.70 (−436.10, 103.10) 0.118

VMI100keV (HU) −93.10 (−299.28, 50.08) −73.10 (−283.9, 50.70) −101.80 (−461.20, 45.80) 0.328

ED (HU) 40.40 (31.61, 53.78) 46.96 ± 17.18 33.42 ± 13.09 < 0.001

VP

IC (mg/mL) 1.75 ± 0.55 1.92 ± 0.49 1.25 ± 0.41 < 0.001

NIC 0.36 ± 0.11 0.39 ± 0.10 0.25 ± 0.07 < 0.001 < 0.001

INW (mg/mL) 1.77 ± 0.57 1.94 ± 0.50 1.25 ± 0.42 < 0.001 0.137

Zeff 8.48 ± 0.37 8.55 ± 0.35 8.26 ± 0.36 0.001

λHU (HU/keV) 1.86 (1.02, 2.55) 2.02 (1.57, 2.62) 1.20 ± 0.72 < 0.001

VMI40keV (HU) 48.05 (−166.13, 174.20) 78.10 (−147.75, 187.15) −53.60 (−376.10, 113.00) 0.102

VMI100keV (HU) −79.85 (−283.73, 54.28) −68.00 (−280.55, 55.65) −114.20 (−395.30, 44.60) 0.220

ED (HU) 45.72 ± 14.37 49.99 ± 12.62 32.90 ± 11.54 < 0.001

AEF (%) 94.6 (85.6, 112.0) 96.3 ± 21.7 101.4 (89.9, 112.4) 0.156

NAEF (%) 44.9 (37.1, 53.2) 45.7 ± 13.4 45.2 (36.8, 64.5) 0.567

Mean data are ± standard deviation; median data are interquartile range (p25, p75)
DLCT dual-layer spectral computed tomography, NSCLC non-small cell lung cancer, EGFR epidermal growth factor receptor, AP arterial phase, VP venous phase, IC
iodine concentration, NIC normalized iodine concentration, INW iodine no water, Zeff effective atomic number, λHU the slope of the spectral attenuation curve, VMI
virtual monochromatic image, ED enhancement degree, AEF arterial enhancement fraction, NAEF normalized arterial enhancement fraction
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Discussion
The encouraging performance of DLCT quantitative
parameters in this study demonstrated that they could
provide valid information regarding the EGFR mutation
status of NSCLC, with NIC(VP) and INW(AP) identified as
key factors. NIC(VP) had the highest predictive efficacy,
even higher than that found in previous studies [19, 20].

Previous studies have attempted to detect EGFR
mutations in patients with NSCLC using radiomics, spe-
cific tumor markers, and morphological features via tra-
ditional CT scans [21–23]. The present study found no
significant differences in the size, location, density, or
morphological features of NSCLC lesions between the
two groups, deviating from findings in earlier research
[24]. Such inconsistencies could stem from the con-
strained sample size and potential patient selection bias in
this investigation. Clinical features also can provide
valuable information about the tumor. The 75.0% EGFR
mutation rate among patients with NSCLC and all the
mutations being in exons 18 to 21 in this study exceeds
the findings of prior reports, likely due to the small sample
and the preponderance of early-stage cases compared to
the established 40–50% prevalence in Asian lung adeno-
carcinoma populations [10]. In addition to ethnicity,
EGFR mutations in lung cancer are also associated with
female sex and non-smoking status [25, 26], consistent
with our results. Contrary to prior findings, this study
identified no significant difference in sex or smoking
history between the two groups [20, 27].
Several malignancies have been noted to show high

or abnormal EGFR expression, thereby precipitating
sustained activation and amplification of downstream
signaling pathways, stimulating physiological and patho-
logical angiogenesis to enhance blood supply to the tumor
[28, 29]. Therefore, dynamic contrast-enhanced CT
imaging provides additional information about EGFR-
mutated NSCLC lesions relative to non-enhanced CT
scans. Tacelli et al [30] showed that perfusion CT scan-
ning holds potential as a predictive tool for assessing
tumor responsiveness to antiangiogenic therapeutics, yet
its utility is limited by variability in patient-specific vas-
cular perfusion characteristics and concerns regarding
substantial radiation exposure. The present study showed
that ED in the mutated EGFR group was significantly
higher than that in the wild-type EGFR group. The VNC
images here were obtained by inhibiting iodine in con-
ventional contrast-enhanced CT images. Theoretically, if
the quality of the VNC image is good enough, it can
replace the true non-contrast image [31], which is of great
significance for optimizing the scanning process and
reducing the radiation dose.
The present study demonstrated that NIC(VP) exhibited

optimal performance in predicting EGFR mutation status.
Because iodine is the main component of CT contrast
agent, IC can faithfully represent the lesion’s enhancement
characteristics, providing a precise evaluation of the
angiogenic activity and perfusion status in lung cancer, in
contrast to ED. The blood supply of lesions may be
increased in NSCLC with EGFR mutations, which could be
reflected by IC. This study identified more quantitative

Fig. 3 Receiver operating characteristic curves for DLCT quantitative
parameters to distinguish EGFR mutation status in NSCLC

Fig. 4 Receiver operating characteristic curves of INW(AP) and NIC(VP) to
distinguish EGFR mutation status in NSCLC
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parameters that were significantly different between the
mutated and wild-type EGFR groups in the VP scans than
in the AP scans. The enhanced reliability of the VP scans
may be attributable to a more consistent hemodynamic
profile in patients, minimizing imaging inconsistencies and
yielding more precise quantitative parameters, thereby
offering a stable basis for diagnosis. NIC, which calibrates
the tumor’s iodine uptake to that of the thoracic aorta,
mitigates interpatient hemodynamic variability, enhancing
precise EGFR mutation status prediction.
Univariate analysis showed that INW(AP), INW(VP),

Zeff(VP), λHU(AP), and λHU(VP) were significantly higher
in the EGFR mutated group than in the wild-type EGFR
group, although NIC, IC, and ED were not, this is con-
sistent with results of previous studies [19, 20]. INW is
indicative of the vascular supply of lung tumors, whereas
Zeff reflects the effective atomic number of inorganic
constituents within the tumor. ΛHU, the slope of the
spectral curve obtained by 40 keV–200 keV levels VMI of
DLCT, represents the unique linear attenuation coefficient
of X-rays by different substances. All three quantitative
parameters mentioned above can be used to identify dif-
ferent materials [32, 33], indicating a similar potential
to evaluate EGFR mutation status in patients with NSCLC.
However, there were no significant differences in
VMI(40keV) or VMI(100keV) between the two groups. While
low-energy levels of VMI improve lesion delineation, they
fail to provide additional diagnostic information beyond
that of conventional CT images. Nonetheless, these results
need to be further verified through studies with a larger
sample size.
Studies have shown quantitative color mapping of the

AEF, the ratio of CT value between the AP and the portal
venous phase, could increase the diagnostic performance
of hepatocellular carcinoma [34]. However, few studies
have investigated the clinical value of AEF or NAEF,
defined as the ratio of IC or NIC in the arteriovenous
phase. For example, AEF could be used to identify and
evaluate the function of mediastinal lymph nodes in lung
cancer [35, 36]. Wen et al [37] discerned that the NAEF
yielded limited utility in discriminating between
benign and malignant solid pulmonary nodules. This
study marked the inaugural presentation of the NAEF
map derived from NIC value; however, it revealed that
neither AEF nor NAEF exhibited a significant correlation
with EGFR mutation status in NSCLC. Subsequent
research with a larger sample size is imperative for
validation.
Our study has several limitations. First, it is based on a

small sample size from a single-center institution,
potentially introducing selection bias. Second, the repre-
sentation of patients with advanced-stage NSCLC is lim-
ited, and investigations into other oncogenic driver

mutations, including ALK or KRAS, were not undertaken
in this study. Multicenter recruitment is essential to
enhance the robustness and generalizability of the find-
ings. Third, the heterogeneity of NSCLC may mean that
those quantitative parameters of the two-dimensional
spectral DLCT images do not comprehensively represent
the biological complexity of the entire tumor, and the
potential relevance of quantitative parameters from
the tumor’s periphery to the EGFR mutation status was
not assessed. Finally, future research should delve into the
relationship between the quantitative parameters of
DLCT and the efficacy of targeted treatments in lung
cancer patients harboring EGFR mutations.
In conclusion, this study demonstrated that quantitative

parameters of DLCT were correlated with EGFR mutation
status in patients with NSCLC. NIC(VP) might be a
potential predictor of EGFR mutation status, which could
help to select appropriate and individualized treatment for
these patients.
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