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Abstract 

Objectives  To evaluate whether the quantitative abnormality scores provided by artificial intelligence (AI)-based 
computer-aided detection/diagnosis (CAD) for mammography interpretation can be used to predict invasive upgrade 
in ductal carcinoma in situ (DCIS) diagnosed on percutaneous biopsy.

Methods  Four hundred forty DCIS in 420 women (mean age, 52.8 years) diagnosed via percutaneous biopsy 
from January 2015 to December 2019 were included. Mammographic characteristics were assessed based on imag-
ing features (mammographically occult, mass/asymmetry/distortion, calcifications only, and combined mass/asym-
metry/distortion with calcifications) and BI-RADS assessments. Routine pre-biopsy 4-view digital mammograms were 
analyzed using AI-CAD to obtain abnormality scores (AI-CAD score, ranging 0–100%). Multivariable logistic regression 
was performed to identify independent predictive mammographic variables after adjusting for clinicopathological 
variables. A subgroup analysis was performed with mammographically detected DCIS.

Results  Of the 440 DCIS, 117 (26.6%) were upgraded to invasive cancer. Three hundred forty-one (77.5%) DCIS were 
detected on mammography. The multivariable analysis showed that combined features (odds ratio (OR): 2.225, p = 
0.033), BI-RADS 4c or 5 assessments (OR: 2.473, p = 0.023 and OR: 5.190, p < 0.001, respectively), higher AI-CAD score 
(OR: 1.009, p = 0.007), AI-CAD score ≥ 50% (OR: 1.960, p = 0.017), and AI-CAD score ≥ 75% (OR: 2.306, p = 0.009) were 
independent predictors of invasive upgrade. In mammographically detected DCIS, combined features (OR: 2.194, p = 
0.035), and higher AI-CAD score (OR: 1.008, p = 0.047) were significant predictors of invasive upgrade.

Conclusion  The AI-CAD score was an independent predictor of invasive upgrade for DCIS. Higher AI-CAD scores, 
especially in the highest quartile of ≥ 75%, can be used as an objective imaging biomarker to predict invasive 
upgrade in DCIS diagnosed with percutaneous biopsy.

Critical relevance statement  Noninvasive imaging features including the quantitative results of AI-CAD for mam-
mography interpretation were independent predictors of invasive upgrade in lesions initially diagnosed as ductal 
carcinoma in situ via percutaneous biopsy and therefore may help decide the direction of surgery before treatment.

Key points 

• Predicting ductal carcinoma in situ upgrade is important, yet there is a lack of conclusive non-invasive biomarkers.

• AI-CAD scores—raw numbers, ≥ 50%, and ≥ 75%—predicted ductal carcinoma in situ upgrade independently.

• Quantitative AI-CAD results may help predict ductal carcinoma in situ upgrade and guide patient management.
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Graphical Abstract

Introduction
Ductal carcinoma in situ (DCIS) is a noninvasive neo-
plasm of the breast that also displays an unpredictable 
risk for developing into invasive cancer [1]. As breast 
cancer screening has become widely available through 
routine imaging including mammography, the inci-
dence of DCIS has gradually increased to account for 
approximately one-quarter of new breast cancer diag-
noses [2]. While pure DCIS shows a very good prog-
nosis, approximately 14–43% of cases are eventually 
upgraded to invasive cancer after surgery [3–5], due 
to the inherent heterogeneous histopathologic features 
of breast cancer [6]. Therefore, patients with DCIS are 
treated the same as those with invasive cancer and 
undergo surgery, radiation therapy, and hormonal ther-
apy [7].

Ongoing trials are investigating active monitoring 
as an alternative to current standard cancer treatment 
for low-grade DCIS, which is typically associated with 
favorable prognosis and often manifests as calcifications 

on mammography [8–10]. However, studies suggest 
that candidates presumed to have low-risk DCIS who 
undergo active monitoring will still face a 5–12% risk of 
invasive upgrade [11–14]. Currently, there are no fac-
tors that reliably predict invasive upgrade after surgery 
or invasive progression during surveillance.

In an attempt to identify DCIS candidates for less 
aggressive treatment including active monitoring, 
previous studies have incorporated clinical or imag-
ing variables to predict invasive upgrade of DCIS after 
surgery [15–18]. In these studies, the subjective image 
interpretation of radiologists was used for analy-
sis, limiting the value of the interpretation in terms 
of data reproducibility or consistency. There has also 
been an attempt to predict invasive upgrades of DCIS 
using a machine-learning model based on mammo-
graphic radiomic features. However, the complexity 
of extracting and utilizing radiomic features in actual 
clinical settings is another challenge in addition to clin-
ically incorporating the model [19]. Recently, artificial 
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intelligence (AI)-based computer-aided detection/diag-
nosis (CAD) algorithms were approved for commercial 
use in mammography interpretation [20], and the soft-
ware programs provide quantitative numeric data for 
abnormalities detected on mammography images. The 
quantitative analytic data obtained from AI-CAD may 
be consistent and objective imaging features compared 
to radiologists’ interpretations. However, to the best 
of our knowledge, there are no studies evaluating the 
utilization of abnormality scores provided by AI-CAD 
systems for mammographic interpretation to predict 
DCIS upgrade.

Thus, the purpose of this study was to evaluate whether 
the quantitative abnormality scores provided by AI-CAD 
for mammography interpretation can be used to predict 
invasive upgrade in DCIS diagnosed with percutaneous 
biopsy.

Methods
The institutional review board (IRB) of Severance Hos-
pital, Yonsei University (IRB approval No: 4-2022-
0519) approved this retrospective study and waived the 

requirement for informed consent based on its study 
design.

Study population
We searched our institutional database for women who 
were diagnosed with DCIS via percutaneous biopsy, 
including core needle biopsy and imaging-guided vac-
uum-assisted biopsy (VAB). From January 2015 to 
December 2019, 743 DCIS were diagnosed in 717 women 
via image-guided percutaneous biopsy. The exclusion 
criteria were as follows: (1) women who were surgically 
treated for breast cancer in the ipsilateral breast (n = 58), 
(2) women who had invasive cancers diagnosed in the 
ipsilateral breast (n = 78), (3) women who underwent 
neoadjuvant chemotherapy due to invasive cancers in the 
contralateral breast (n = 33), (4) women who were lost to 
follow-up after DCIS diagnosis (n = 61), and (5) women 
who only had analog mammograms from outside hospi-
tals that were inadequate for AI-CAD analysis (n = 73) 
(Fig. 1).

The clinical characteristics of patients including age, 
family history of breast cancer, personal history of breast 
cancer, presence of bilateral breast cancer, presence of 

Fig. 1  Flowchart of patient selection
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Fig. 2  A 49-year-old female patient with pure ductal carcinoma in situ. The patient was referred to our hospital due to a screening-detected 
calcification in the left lower medial breast. The calcification was assessed as BI-RADS category 4B by the breast radiologist (A) and the AI-CAD score 
was 42% (B). A stereotactic biopsy was performed, confirming ductal carcinoma in situ. Following partial mastectomy, the final pathology revealed 
pure ductal carcinoma in situ with intermediate nuclear grade and the presence of comedo necrosis

Fig. 3  A 37-year-old female patient with ductal carcinoma in situ with invasive upgrade. The patient was referred to our hospital due 
to a screening-detected calcification in the right upper outer and upper central breast. The calcification was assessed as BI-RADS category 4B 
by the breast radiologist (A) and the AI-CAD score was 92% (B). A stereotactic biopsy was performed, confirming ductal carcinoma in situ. However, 
after nipple-sparing mastectomy, the final pathology revealed invasive ductal carcinoma. No metastatic lymph nodes were found on sentinel lymph 
node biopsy
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related symptoms such as palpability or nipple discharge, 
method of percutaneous biopsy, and tumor size were 
extracted from our electronic medical record (EMR) 
system.

Mammography examinations and interpretation
One of two dedicated digital mammography units was 
used for the mammography examinations (Senographe 
DS, GE Medical Systems; Lorad Selenia, Hologic). Stand-
ard mediolateral oblique (MLO) and craniocaudal (CC) 
mammograms and magnification views with 90° lateral 
and craniocaudal projections, if required, were obtained 
for all patients.

One board-certified, breast-dedicated radiologist with 
14 years of experience in breast imaging (J.H.Y.) ret-
rospectively reviewed the baseline mammograms that 
were collected routinely before biopsy. Mammographic 
features of abnormalities that correlated to the biopsy-
proven DCIS were categorized into the following four 
categories: (1) mammographically occult (DCIS detected 
on supplemental ultrasound (US)), (2) mass/asymmetry/
distortion, (3) calcifications only, and (4) combined mass/
asymmetry/distortion with calcifications (referred to as 
“combined features”). Final assessments according to the 
American College of Radiology Breast Imaging Reporting 
And Data System (ACR BI-RADS) [21] were also deter-
mined by the radiologist during the retrospective review. 
The radiologist was blinded to the final surgical diagnosis.

Mammography analysis using AI‑CAD
A commercially available AI-CAD algorithm (Lunit 
INSIGHT for Mammography, version 1.1.4.3, Lunit Inc., 
Seoul, Korea) that was previously validated through a 
multinational study [22] was used for analyzing mammo-
grams. The algorithm, based on the ResNet-34, a popular 
deep convolutional neural network (CNN) architecture, 
was trained using 31,604 cancer-positive mammograms 
and 19,625 benign mammograms with pixel-label labels 
indicating lesion locations annotated by 12 breast-
dedicated radiologists. The algorithm provides region 
of interest (ROI) marks for abnormalities on mammo-
grams while providing corresponding abnormality scores 
(referred to as AI-CAD scores, ranging 0–100%) per view.

In this study, we employed a three-pronged approach for 
AI-CAD scores: (1) numerical AI-CAD score provided in 
raw numbers (ranging from 0 to 100%); (2) AI-CAD scores 
dichotomized into < 50% and ≥ 50%; and (3) graded AI-
CAD score of < 25%, 25–50%, 50–75%, and ≥ 75%.

Histopathology at percutaneous biopsy
Information regarding nuclear grade (low, intermediate, 
or high grade) and presence of comedonecrosis was col-
lected from the pathology reports from percutaneous 

biopsy. Tumors on percutaneous biopsy specimens were 
histologically classified using the World Health Organi-
zation criteria [23].

Statistical analysis
Ground truth in terms of pure DCIS or invasive cancer 
was confirmed after surgery. The Shapiro-Wilk test and 
Kolmogorov-Smirnov test were performed to test for 
normality for age, tumor size, and AI-CAD scores. As the 
normality assumption was not satisfied, the median val-
ues for these factors were calculated and compared. The 
Mann-Whitney U test was used to compare clinicopatho-
logical variables between pure DCIS and DCIS with inva-
sive upgrade. Mammographic variables such as imaging 
features on mammography, ACR-BI-RADS final assess-
ment, and median AI-CAD score were also compared 
between pure DCIS and DCIS with invasive upgrade 
using the Mann-Whitney U test and Fisher’s exact test.

Univariable logistic regression analysis using clinico-
pathological variables and mammographic variables 
was performed to assess predicting factors for invasive 
upgrade in DCIS. Subsequently, multivariable logistic 
regression analysis was performed to identify independ-
ent predictive mammographic variables after adjusting 
for clinicopathological variables. Variables with p values 
less than 0.05 in the univariable logistic regression anal-
ysis were included for multivariable logistic regression 
analysis. The predictability of the multivariable models 
was evaluated with the area under the receiver operating 
characteristics curve (AUROC). A subgroup analysis was 
conducted specifically on DCIS detected on mammogra-
phy, referred to as “mammographically detected DCIS.” 
This analysis excluded cases that were mammographi-
cally occult, to simulate situations where supplemental 
screening with imaging modalities other than mammog-
raphy is not common.

All statistical analyses were performed using SAS (ver-
sion 9.4, SAS Inc.). p-values less than 0.05 were consid-
ered statistically significant.

Results
In total, 440 DCIS diagnosed via percutaneous biopsy in 
420 women were included in this study. Three hundred 
thirty-three were diagnosed using US-guided core nee-
dle biopsy, and 107 through VAB. Twenty women were 
diagnosed with DCIS in both breasts, and these lesions 
were all included in our analysis as AI-CAD for mam-
mography provides a per-breast analysis. Within the 
VAB group, 37 patients were diagnosed via stereotac-
tic biopsy (mammogram-guided VAB), while 70 were 
diagnosed using US-guided VAB. None of the enrolled 
patients underwent biopsy under MRI guidance. Of the 
440 lesions that were diagnosed as DCIS by percutaneous 
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biopsy, 117 (26.6%) lesions were upgraded to invasive 
disease after surgery (Fig.  1). Breast US is commonly 
employed as a supplemental imaging tool for screening 
breast cancer in Korea, and a significant proportion of 
our population (22.5%, 99 of 440) had DCIS detected on 
supplemental screening US. In the subgroup analysis of 
mammographically detected DCIS (n = 341), 103 (30.2%) 
lesions were upgraded to invasive disease after surgery. 
The mean patient age was 52.8 years (range, 28–85 years).

Table  1 compares clinicopathologic factors between 
pure DCIS and DCIS with invasive upgrade. Among 
clinicopathological factors, significantly higher rates of 
unilateral DCIS at diagnosis, presence of symptoms, 
core needle biopsy as the biopsy method, larger tumor 
size, intermediate or high nuclear grades, and the pres-
ence of comedonecrosis were observed in DCIS with 
invasive upgrade (all p < 0.05, respectively). Similar find-
ings were seen in the subgroup of mammographically 
detected DCIS, except that the presence of bilateral DCIS 

and comedonecrosis did not show significant differences 
between pure DCIS and DCIS with invasive upgrade (p = 
0.138 and 0.086, respectively).

Table 2 compares mammographic factors between pure 
DCIS and DCIS with invasive upgrade. Regarding mam-
mographic factors, significantly higher rates of combined 
features, BI-RADS 4C and 5 assessments, higher median 
AI-CAD scores, and higher rates of AI-CAD scores ≥ 
50% and ≥ 75% were seen in DCIS with invasive upgrade 
(all p < 0.001, respectively) for the total DCIS and mam-
mographically detected DCIS.

Prediction of upgrade to invasive carcinoma
For the total 440 DCIS, univariable logistic regression 
analysis demonstrated that clinicopathological vari-
ables including unilateral DCIS at diagnosis, presence 
of related symptoms, core needle biopsy as the biopsy 
method, larger tumor size, intermediate or high nuclear 
grade, and presence of comedonecrosis were predictors 

Table 1  Comparison of clinicopathological factors between pure DCIS and DCIS with invasive upgrade

Percentages are in parentheses. DCIS Ductal carcinoma in situ, Q1 First quartile, Q3 Third quartile

Total DCIS (n = 440) Mammographically detected DCIS (n = 341)

Pure DCIS (n = 323) DCIS with invasive 
upgrade (n = 117)

p value Pure DCIS (n = 238) DCIS with invasive 
upgrade (n = 103)

p value

Clinical factors
  Age (years, median (Q1, Q3)) 52.0 (45.0, 61.0) 50.0 (46.0, 59.0) 0.298 53.0 (46.0, 61.0) 50.0 (46.0, 60.0) 0.339

  Family history of breast cancer 0.410 0.483

    No 296 (91.6) 110 (94.0) 219 (92.0) 97 (94.2)

    Yes 27 (8.4) 7 (6.0) 19 (8.0) 6 (5.8)

  Personal history of breast cancer > 0.999 > 0.999

    No 310 (96.0) 113 (96.6) 234 (98.3) 102 (99.0)

    Yes 13 (4.0) 4 (3.4) 4 (1.7) 1 (1.0)

  Bilateral DCIS 0.006 0.138

    No 263 (81.4) 108 (92.3) 212 (89.1) 97 (94.2)

    Yes 60 (18.6) 9 (7.7) 26 (10.9) 6 (5.8)

  Related symptoms 0.010 0.018

    Asymptomatic 261 (80.8) 81 (69.2) 186 (78.2) 68 (66.0)

    Present 62 (19.2) 36 (30.8) 52 (21.8) 35 (34.0)

  Biopsy method 0.009 0.003

    Core needle biopsy 234 (72.5) 99 (84.6) 159 (66.8) 85 (82.5)

    Vacuum-assisted biopsy 89 (27.5) 18 (15.4) 79 (33.2) 18 (17.5)

  Tumor size (mm, median (Q1, Q3)) 14.0 (8.0, 23.0) 20.00 (12.0, 30.0) 0.002 17.0 (10.0, 26.0) 21.0 (13.0, 30.0) 0.012

Pathologic factors
  Nuclear grade 0.001 0.006

    Low 134 (41.5) 28 (23.9) 84 (35.3) 21 (20.4)

    Intermediate 158 (48.9) 67 (57.3) 126 (52.9) 60 (58.3)

    High 31 (9.6) 22 (18.8) 28 (11.8) 22 (21.4)

  Comedonecrosis 0.012 0.086

    No 151 (46.8) 39 (33.3) 90 (37.8) 29 (28.2)

    Yes 172 (53.2) 78 (66.7) 148 (62.2) 74 (71.8)
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of invasive upgrade (all p < 0.05, respectively). In the 
subgroup of mammographically detected lesions (n = 
341), presence of related symptoms, biopsy method, and 
nuclear grade were significantly associated with invasive 
upgrade (Additional file 1: Table S1).

For mammographic variables, combined features, 
higher BI-RADS assessments, and higher AI-CAD 
scores, either as raw numbers or in grades, were sig-
nificantly associated with invasive upgrade (all p < 0.05, 
respectively) in the total DCIS and mammographically 
detected DCIS (Additional file 1: Table S1).

Table  3 summarizes the multivariable logistic regres-
sion analysis results in the total DCIS group. After adjust-
ing for clinicopathological variables, mammographic 
variables of combined features (odds ratio (OR): 2.225, 
95% confidence interval (CI): 1.068–4.633, p = 0.033), BI-
RADS 4c and 5 assessments (OR: 2.473, 95% CI: 1.135–
5.390, p = 0.023 and OR: 5.190, 95% CI: 2.175–12.384, p 
< 0.001, respectively), higher AI-CAD score (1.009, 95% 
CI: 1.003–1.016, p = 0.007), AI-CAD score ≥ 50% (OR: 
1.960, 95% CI: 1.130–3.399, p = 0.017), and AI-CAD 
score ≥ 75% (OR: 2.306, 95% CI: 1.233–4.313, p = 0.009) 
were all independent predictors of invasive upgrade. 

Multivariable logistic regression analysis in mammo-
graphically detected DCIS showed that combined fea-
tures (OR: 2.194, 95% CI: 1.057–4.557, p = 0.035) and 
higher AI-CAD score (OR: 1.008, 95% CI: 1.000–1.017, 
p = 0.047) were independent predictors of invasive 
upgrade (Table  4). However, the final BI-RADS assess-
ment, AI-CAD score ≥ 50%, and AI-CAD score ≥ 75% 
were not independent predictors for invasive upgrade in 
mammographically detected DCIS.

Discussion
In this study, we investigated the clinicopathologic and 
mammographic factors associated with DCIS upgrade 
to invasive cancer after surgery. Clinicopathologic fac-
tors such as biopsy method and nuclear grade on biopsy 
were significant predictors of invasive upgrade. Among 
mammographic factors, combined features, BI-RADS 4c 
and 5 assessments, and AI-CAD scores—raw numbers, ≥ 
50%, and ≥ 75%—were independent predictors of inva-
sive upgrade. In the subgroup analysis of mammographi-
cally detected DCIS, the AI-CAD scores in raw numbers 
remained an independent predictor for invasive upgrade.

Table 2  Comparison of mammographic factors between pure DCIS and DCIS with invasive upgrade

Percentages are in parentheses. DCIS Ductal carcinoma in situ, Q1 First quartile, Q3 Third quartile, BI-RADS Breast Imaging Reporting And Data System, AI-CAD Artificial 
intelligence-based computer-aided detection/diagnosis

Total DCIS (n = 440) Mammographically detected DCIS (n = 341)

Pure DCIS (n = 323) DCIS with invasive 
upgrade (n = 117)

p value Pure DCIS (n = 238) DCIS with invasive 
upgrade (n = 103)

p value

Imaging features on mammography < 0.001 0.007

  Occult 85 (26.3) 14 (21.0) - -

  Calcifications only 123 (38.1) 47 (40.2) 123 (51.7) 47 (45.6)

  Mass/asymmetry/distortion 58 (18.0) 15 (12.8) 58 (24.4) 15 (14.6)

  Combined 57 (17.7) 41 (35.0) 57 (23.9) 41 (39.8)

Final assessment on mammography < 0.001 < 0.001

  BI-RADS 1–2 85 (26.3) 14 (12.0) - -

  BI-RADS 3 12 (3.7) 3 (2.5) 12 (5.0) 3 (2.9)

  BI-RADS 4a 65 (20.1) 12 (10.3) 65 (27.3) 12 (11.7)

  BI-RADS 4b 55 (17.0) 16 (13.7) 55 (23.1) 16 (15.5)

  BI-RADS 4c 74 (22.9) 33 (28.2) 74 (31.1) 33 (32.0)

  BI-RADS 5 32 (9.9) 39 (33.3) 32 (13.4) 39 (37.9)

Raw numerical AI-CAD score (%, 
median [Q1,Q3])

56.9 (5.9, 97.3) 96.6 (44.8, 99.5) < 0.001 88.9 (33.1, 98.7) 98.1 (83.0, 99.6) < 0.001

Dichotomized AI-CAD score < 0.001 0.002

  AI-CAD score < 50% 155 (48.0) 30 (25.6) 76 (31.3) 16 (15.5)

  AI-CAD score ≥ 50% 168 (52.0) 87 (74.4) 167 (68.7) 87 (84.5)

Graded AI-CAD score < 0.001 0.016

  AI-CAD score < 25% 123 (38.1) 22 (18.8) 47 (19.7) 9 (8.7)

  AI-CAD score 25–50% 32 (9.9) 8 (6.8) 24 (10.1) 7 (6.8)

  AI-CAD score 50–75% 27 (8.4) 8 (6.8) 26 (10.9) 8 (7.8)

  AI-CAD score ≥ 75% 141 (43.7) 79 (67.5) 141 (59.2) 79 (76.7)
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Our results showed that DCIS presenting as com-
bined mass/asymmetry/distortion with calcifications 
had a significantly higher likelihood of being upgraded 
to invasive cancer. In the multivariable logistic regres-
sion analysis, OR was 2.225 and 2.194 for the total 440 
DCIS and the mammographically detected DCIS, respec-
tively. The association between DCIS presenting as soft 
tissue lesions combined with calcifications and inva-
sive upgrade has been previously reported [3, 24]. In 
the meta-analysis by Brennan et al. [3], DCIS appearing 
as a mass with calcifications on mammography was sig-
nificantly associated with invasive upgrade with an OR of 
1.83. A higher level of suspicion for breast cancer indi-
cated by a higher BI-RADS final assessment made by a 
radiologist was also associated with an increased rate of 
DCIS with invasive upgrade, as in prior studies [3, 25]. 
When suspicious mass/asymmetry/distortion is accom-
panied by suspicious calcifications, final assessments are 
commonly elevated. Therefore, the association between 
combined features and invasive upgrade of DCIS aligns 
with the association between higher BI-RADS assess-
ment and DCIS upgrade.

Having radiologists evaluate abnormal findings on 
mammography possesses inherent limitations due to 
subjectivity and low reproducibility [26]. Notable disa-
greements have been observed among radiologists 
with various levels of experience when using BI-RADS 
descriptors and assessments for mammographic inter-
pretation [27, 28]. In this aspect, image analysis data pro-
vided by AI-CAD can be used not only to assist image 
interpretation but also as objective imaging biomarkers. 
In this aspect, we evaluated the analysis data of a com-
mercially available AI-CAD system designed for mam-
mographic interpretation to see if the information could 
be used as biomarkers to predict invasive upgrade in 
DCIS diagnosed by percutaneous biopsy. Our results 
showed that the AI-CAD score could potentially predict 
invasive upgrade in DCIS: higher AI-CAD score (OR 
1.009), AI-CAD score ≥ 50% (OR 1.960), and AI-CAD 
score ≥ 75% (OR 2.306) were independent predictors of 
invasive upgrade in the total DCIS, and a higher AI-CAD 
score was an independent predictor of invasive upgrade 
(OR 1.008) in mammographically detected DCIS. Based 
on our results, DCIS with higher AI-CAD scores, espe-
cially in the highest quartile of ≥ 75%, can be considered 
to have invasive components (Figs. 2 and 3).

When combining clinicopathologic variables with AI-
CAD scores to construct a predictive model for invasive 
upgrade, we achieved acceptable diagnostic perfor-
mance with an AUROC of 0.699–0.703 for total DCIS 
(Table 3) and an AUROC of 0.677–0.688 for mammo-
graphically detected DCIS (Table  4). These results are 
comparable to the AUROCs of 0.71 (95% CI, 0.67–0.75) 

and 0.70 (95% CI, 0.68–0.73) reported in prior stud-
ies, where algorithms predicting invasive upgrade were 
developed by applying CNN to the mammography 
images of biopsy-proven DCIS patients [29, 30]. Nota-
bly, our study utilized a commercially available AI algo-
rithm designed for breast cancer detection, rather than 
an AI algorithm specifically trained to predict invasive 
upgrade. In this context, comparable outcomes can be 
considered highly promising, as this achievement sug-
gests that pre-existing AI technologies can be used to 
predict invasive upgrade.

Predicting DCIS upgrade before surgery is crucial for 
surgical decision-making, as the overall incidence of axil-
lary lymph node metastasis is around 5% but rises to 20% 
for preoperatively underestimated lesions [31–33]. This 
highlights the need for performing sentinel biopsies on 
patients with a strong preoperative upgrade prediction to 
prevent additional completion surgery. Moreover, given 
the current trend towards less aggressive treatment for 
low-risk DCIS including the omission of surgery [8–10, 
34], accurately identifying DCIS with invasive compo-
nents becomes vital in selecting the right patients for 
active monitoring. Our results show that in addition to 
clinicopathological predictors such as biopsy method 
or nuclear grades, imaging features either evaluated by 
radiologists or AI-CAD can be used as biomarkers for 
predicting invasive upgrade. We look forward to future 
studies that can validate our results.

Interestingly, the imaging predictors that significantly 
predicted invasive upgrade in total DCIS—BI-RADS 
assessment by the radiologist, AI-CAD score ≥ 50%, and 
≥ 75%—lost their significance within the mammographi-
cally detected DCIS subgroup. Approximately 78.6% (268 
of 341) of mammographically detected DCIS in our study 
presented with calcifications, and this may have attrib-
uted to this result. Calcifications representative of DCIS 
have a broad range of imaging features from round/
amorphous, benign-appearing calcifications to fine pleo-
morphic/fine linear branching suspicious calcifications 
where the BI-RADS assessments may have been evenly 
distributed among the BI-RADS 4 subgroup. Radiolo-
gists encounter difficulties assessing abnormalities with 
ambiguous, overlapping imaging features, which seems 
to be the same for AI-CAD as dichotomized or graded 
AI-CAD scores could not independently predict DCIS 
upgrade in mammographically detected ones. Nonethe-
less, raw numerical AI-CAD scores showed significance 
even in the mammographically detected DCIS, sup-
porting our claim that quantitative AI-CAD assessment 
has the potential to provide more substantial predictive 
value compared to radiologists when identifying invasive 
upgrades within DCIS diagnosed through percutaneous 
biopsy.
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There are several limitations to our study. First, this was 
a retrospective study performed in a single institution, 
and therefore, selection bias was inevitable. Also, the 
women included in this study were all Asian, and most 
had mammographically dense breasts (88.4% with breasts 
assessed as parenchymal density grade C or D). Second, 
mammographic features of DCIS and the BI-RADS final 
assessments were determined by one experienced breast 
radiologist. Results may differ when readers with varying 
levels of experience are involved in mammography inter-
pretation. Third, we only used one commercially available 
AI-CAD system, and our results cannot be generalized to 
other AI platforms.

Conclusion
In conclusion, when applying AI-CAD for mammogra-
phy, the AI-CAD score was an independent predictor of 
invasive upgrade in DCIS. Higher AI-CAD scores, espe-
cially in the highest quartile of ≥ 75%, can be used as an 
objective imaging biomarker to predict invasive upgrade 
in DCIS diagnosed with percutaneous biopsy.
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