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Abstract 

Objective  To evaluate the efficacy of the CT-based intratumoral, peritumoral, and combined radiomics signatures 
in predicting progression-free survival (PFS) of patients with chondrosarcoma (CS).

Methods  In this study, patients diagnosed with CS between January 2009 and January 2022 were retrospectively 
screened, and 214 patients with CS from two centers were respectively enrolled into the training cohorts (institu-
tion 1, n = 113) and test cohorts (institution 2, n = 101). The intratumoral and peritumoral radiomics features were 
extracted from CT images. The intratumoral, peritumoral, and combined radiomics signatures were constructed 
respectively, and their radiomics scores (Rad-score) were calculated. The performance of intratumoral, peritumoral, 
and combined radiomics signatures in PFS prediction in patients with CS was evaluated by C-index, time-dependent 
area under the receiver operating characteristics curve (time-AUC), and time-dependent C-index (time C-index).

Results  Eleven, 7, and 16 features were used to construct the intratumoral, peritumoral, and combined radiomics 
signatures, respectively. The combined radiomics signature showed the best prediction ability in the training cohort 
(C-index, 0.835; 95%; confidence interval [CI], 0.764–0.905) and the test cohort (C-index, 0.800; 95% CI, 0.681–0.920). 
Time-AUC and time C-index showed that the combined signature outperformed the intratumoral and peritumoral 
radiomics signatures in the prediction of PFS.

Conclusion  The CT-based combined signature incorporating intratumoral and peritumoral radiomics features can 
predict PFS in patients with CS, which might assist clinicians in selecting individualized surveillance and treatment 
plans for CS patients.

Critical relevance statement  Develop and validate CT-based intratumoral, peritumoral, and combined radiomics 
signatures to evaluate the efficacy in predicting prognosis of patients with CS.

Key points   
• Reliable prognostic models for preoperative chondrosarcoma are lacking.

• Combined radiomics signature incorporating intratumoral and peritumoral features can predict progression-free 
survival in patients with chondrosarcoma.
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• Combined radiomics signature may facilitate individualized stratification and management of patients 
with chondrosarcoma.
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Graphical Abstract

Introduction
Chondrosarcoma (CS) is one of the primary malignant 
bone tumors characterized by the formation of hyaline 
cartilage tumor tissue. It accounts for 30% of all primary 
bone tumors and is the second most common solid 
bone tumor after osteosarcoma [1]. CS has a low sen-
sitivity to chemotherapy due to its low cell division rate 
and poor vascular distribution [2, 3]. Currently, surgical 
excision is the most effective treatment [4]. Although 
most patients will benefit from surgery, approximately 
15–25% of patients will experience local recurrence [5–
7]. In the age of precision medicine, accurate prediction 
of prognosis before surgery is crucial for individualized 
management of patients and guiding clinical decision-
making. However, a reliable survival prediction model 
for chondrosarcoma is still lacking.

In recent years, several scholars have conducted stud-
ies on the prognosis of CS patients. Yan et al. compared 
the performance of deep learning-based algorithms and 
conventional methods in predicting the overall survival 

(OS) of CS patients; nine features including histologi-
cal type, primary site, tumor size, and other clinical fac-
tors were selected for the development of the models. 
The results showed the best predictive performance of 
the deep survival model, which integrated the cox pro-
portional hazards model with the neural network, with 
a C-index of 0.832 for the test database [8]. Song et al. 
identified six independent prognostic factors based on 
the Surveillance, Epidemiology, and End Results (SEER) 
database, including age, histological subtype, grade, 
surgery, tumor size, and distant metastasis, and incor-
porated them into the construction of nomograms. 
They found good agreement between nomogram-pre-
dicted survival and actual survival, with C-indexes of 
0.803 and 0.829 in the validation cohort in predicting 
OS- and cancer-specific survival in CS patients, respec-
tively [9]. However, most previous prognostic studies 
of CS were based on clinical or pathological factors 
and did not take the addition of imaging features into 
account.
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Medical imaging plays an important role in the man-
agement of patients with CS, including the detection, 
staging, diagnosis, and prediction of outcome [10]. 
A few scholars have suggested that radiographically 
observed osteolytic lesions and apparent osteoporosis 
may be associated with poor prognosis in CS patients, 
but there have been few relevant studies [11, 12]. Con-
ventional imaging relies on visible features, which pro-
vide limited information and might lose a large amount 
of information associated with tumor heterogeneity 
[13]. In the period of big data, radiomics, which can 
noninvasively and quantitatively transform lesion het-
erogeneity into high-dimensional image features, has 
been successfully applied to predict the prognosis of 
tumors originating from the digestive system [14], 
nervous system [15], and reproductive system [16], 
thus facilitating precise cancer management and clini-
cal decision-making [17]. To the best of our knowledge, 
most of the radiomics studies in CS have focused on 
differential diagnosis and pathological grading [18–21] 
and were based on intratumoral radiomics features. 
Peritumoral radiomics features have also demonstrated 
predictive utility in a variety of cancers [22, 23]. How-
ever, the intratumoral and peritumoral radiomics on 
predicting the outcome of CS has not been evaluated.

The objective of this study was to evaluate the efficacy 
of the intratumoral, peritumoral, and combined radi-
omics signatures in predicting the prognosis of patients 
with CS.

Materials and methods
Patients
This retrospective multicenter study was conducted 
under institutional review board with a waiver of 
informed consent.

We searched the institutional pathological databases 
from January 2009 to January 2022 to select patients 
diagnosed with CS from surgically resected or biopsy 
specimens. The inclusion criteria were as follows: (1) CS 
patients confirmed by surgical or biopsy pathology and 
(2) CS patients who underwent non-contrast-enhanced 
CT examinations within 2 weeks prior to obtaining sur-
gical or biopsy pathology. Exclusion criteria included 
patients with other malignancies, insufficient image qual-
ity (images with metallic or motion artifacts), and incom-
plete follow-up data. Finally, a total of 214 patients from 
the Affiliated Hospital of Qingdao University (training 
cohort, n = 113) and Shandong Provincial Hospital Affili-
ated to Shandong First Medical University (test cohort, n 
= 101) were enrolled in this study (Fig. 1).

Clinical and pathological data including age, sex, 
height, weight, tumor size, tumor site, pathologic grade, 
and treatment strategy were collected from the electronic 
medical records.

Follow‑up
Patients were followed up at least every 6–12 months for 
the first 2 years and then annually. The last follow-up date 
was December 28, 2022. The follow-up data was obtained 
through medical records, imaging findings (X-ray, CT, 

Fig. 1  Flow diagram depicting the patient selection process. *The Affiliated Hospital of Qingdao University. **Shandong Provincial Hospital 
Affiliated to Shandong First Medical University
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MRI), or telephone. The endpoint of this study was pro-
gression-free survival (PFS), defined as the time from the 
date of diagnosis until local recurrence, distant metasta-
sis, death from any cause, or last follow-up.

CT data acquisition
Non-contrast-enhanced CT was performed in all 
patients. Six CT scanners at two centers were used for 
axial scanning. Detailed CT scanning protocols are 
shown in Table S1.

Image segmentation and radiomics features extraction
The workflow of radiomics is shown in Fig. 2. The three-
dimensional (3-D) region of interest of the tumor (ROI 
region) was segmented on axial CT images by two radi-
ologists (Reader 1 and Reader 2, with 6 and 8 years of 
experience in interpretation of musculoskeletal imaging, 
respectively) using ITK-SNAP software (version 3.8.0, 
www.​itksn​ap.​org). The peritumoral region of interest 
(ROI peri) was generated by the “ROI operation” module 
of the RIAS software [24], which automatically expanded 
3 mm outwards the tumor and removed the tumor area.

As the patients were from different centers, the CT 
images were resampled and grayscale discretized and 
normalized before feature extraction. The extraction of 
radiomics features was conducted through the RadCloud 
platform (Huiying Medical Technology Co., Ltd). A total 
of 2818 (1409 + 1409) radiomics features were extracted 
from the intratumoral and peritumoral ROIs, including 
first-order statistics, shape- and size-based features, tex-
ture features, and higher-order statistical features. The 

details of the radiomics features are shown in supplemen-
tary methods.

Intra‑observer and inter‑observer reproducibility
Intra- and inter-class correlation coefficients (ICCs) were 
used to evaluate intra- and inter-observer reproducibil-
ity. Forty CT images were randomly selected, and ROI 
segmentation was performed independently by Reader 
1 and Reader 2 to assess the inter-observer reproducibil-
ity. Reader 1 repeated the segmentation 2 weeks later to 
assess the intra-observer reproducibility. Intra- and inter-
observer ICC > 0.75 indicated good reproducibility and 
radiomics features with ICC < 0.75 have been excluded 
[25]. The remaining image segmentations were performed 
by Reader 1.

Development of intratumoral, peritumoral, and combined 
radiomics signatures
The selection of radiomics features was divided into 
three steps; both intratumoral and peritumoral radiom-
ics features underwent the same process respectively. 
First, Pearson correlation analysis was used to reduce 
the redundancy of radiation signatures. Then, univariate 
Cox proportional regression analysis was used to select 
the radiomics features with p <  0.05. Finally, the least 
absolute shrinkage and selection operator (LASSO) Cox 
regression model was used to select the optimal features. 
λ was the regularization parameter of LASSO regression 
and was selected when the cross-validation error is mini-
mum. Radiomics score (Rad-score) was calculated for 
each patient using a Cox proportional hazard regression 
model.

Fig. 2  The workflow of the multicenter study. The tumor was segmented to determine the intratumoral ROI (red) and peritumoral ROI (yellow) 
from non-contrast-enhanced CT images. More related images of this case can be found in the supplementary material. ICC, intra-/inter-class 
correlation coefficient; LASSO, least absolute shrinkage and selection operator; AUC, area under the curve

http://www.itksnap.org
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Evaluation of intratumoral, peritumoral, and combined 
radiomics signatures
Harrell’s concordance index (C-index) and hazard ratio 
(HR) were used to assess the accuracy of the three radi-
omics signatures in predicting PFS in the training cohort 
and verified in the test cohort. X-tile software was used 
to determine the optimal threshold for Rad-score, and 
Kaplan-Meier survival analysis was used to analyze PFS 
in both groups to evaluate the prognostic significance of 
the three radiomics signatures. In order to compare the 
signature-predicted survival with the actual survival, 
calibration curves were generated. To investigate the 
prognostic performance of different radiomics signa-
tures, time-dependent area under the receiver operating 
characteristics curve (time-AUC) and time-dependent 
C-index (time C-index) were used. The net reclassifica-
tion improvement (NRI) was calculated to evaluate the 
incremental value of the combined signature over the 
single signature.

Statistics
SPSS 26.0 software (IBM, Chicago, IL, USA) was used 
for independent sample Student t-test or Mann-Whitney 
U-test, chi-square (χ2) test, or Fisher exact test, where 
appropriate. ICC, Pearson correlation analysis, univariate 
Cox proportional regression analysis, LASSO Cox regres-
sion analysis, calibration plots, Kaplan-Meier survival 
analysis, C-index, time C-index, time-AUC analysis, and 
NRI analysis were performed with R statistical software  
(Version 4.2.1, https://​www.r-​proje​ct.​org). A two-sided  
p < 0.05 was considered statistically significant.

Results
Clinical characteristics and follow‑up
Table  1 shows the baseline characteristics of the 214 
patients with CS. There was no significant difference in 
clinical and pathological characteristics between the 

training and test cohorts. During follow-up, 49 patients 
(22.9%) developed local recurrence or distant metas-
tasis. The median PFS were 13 months (quartile range 
5–34 months) and 40 months (quartile range 22.5–67.5 
months) in patients with and without recurrence, 
respectively.

Feature selection and construction of intratumoral, 
peritumoral, and combined radiomics signatures
Finally, 11, 7, and 16 radiomics features were selected to 
construct the intratumoral, peritumoral, and combined 
radiomics signatures (RS region, RS peri, RS combine), respec-
tively. Details on feature selection and the formula for 
calculation of the Rad-score are shown in supplementary 
methods.

Evaluation of intratumoral, peritumoral, and combined 
radiomics signatures
Table  2 shows estimates of C-index and HR associated 
with recurrence in different risk groups for each signa-
ture. RS combine had the best predictive capacity, with a 
C-index of 0.800 (95% CI: 0.681–0.920) in the test cohort.

Kaplan-Meier survival analysis showed that the Rad-
score calculated by the three signatures was correlated 
with PFS (Fig. 3). The calibration curves of each signature 
are shown in Fig. S3. Compared with RS region and RS peri, 
RS combine showed higher time-AUCs and time-depend-
ent C-indices (Fig.  4). Compared with the RS region, the 
combined signature provided an NRI of 0.297 (95% CI: 
0.119–0.442, p < 0.001). The RS combine provided an NRI 
of 0.217 (95% CI: 0.103–0.418, p = 0.03) when compared 
with the peritumoral signature.

Discussion
In this retrospective multicenter study, we developed 
and validated CT-based intratumoral, peritumoral, and 
combined radiomics signatures to predict PFS in patients 

Table 1  Clinical characteristics of the patients with chondrosarcoma

SD, standard deviation; PFS, progression-free survival

Clinical characteristics Training cohort (n = 113) Test cohort (n = 101) P

Age (mean ± SD), year 53.21 ± 13.811 51.25 ± 15.046 0.320

Sex (male/female) 58/55 48/56 0.322

Height (mean ± SD), cm 163.92 ± 15.841 160.10 ± 29.292 0.344

Weight (mean ± SD), kg 68.21 ± 12.416 66.09 ± 12.187 0.220

Location (extremity/other) 38/75 38/63 0.542

Tumor size (median [interquartile range]), mm 58 (42.97) 54 (32.79) 0.106

Surgery (yes/no) 100/13 95/6 0.153

Radiotherapy/chemotherapy (yes/no) 22/91 17/84 0.618

Histological grade (I/II & III) 58/54 63/39 0.144

PFS (median [interquartile range]), month 24 (8, 55) 26 (16, 45) 0.342

https://www.r-project.org
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with CS. We evaluated the predictive performance of the 
three signatures and found that all three signatures have 
the ability to classify high-risk patients from low-risk 
ones for progression; the combined radiomics signature 
provided higher predictive values than the other two sin-
gle radiomics signatures for the outcome of CS patients.

CS is the second most common primary malignant 
bone tumor. More than 90% of CS are low-to-interme-
diate-grade tumors, and 5–10% of CS are high-grade 
aggressive tumors with a high propensity to metastasize 
[26, 27]. Accurate prediction of outcomes for CS patients 
is of great importance as it may facilitate clinicians in 
selecting proper surveillance and treatment strategies, 

thus improving the prognosis of CS patients. Several 
prognostic factors associated with recurrence have been 
identified, such as tumor size, grade, and stage [1, 28, 
29]. The preoperative evaluation of bone tumors usu-
ally requires a combination of clinical features, imaging 
findings, and histopathological findings. With the rapid 
development of artificial intelligence, the power and 
potential of big image data are increasingly recognized in 
the field of oncology [13]. Yin et  al. developed a nomo-
gram based on 3D MR radiomics and clinical features 
for the assessment of early recurrence of pelvic CS; they 
found that the combined nomogram was superior to the 
clinical model (AUC: 0.891 vs. 0.625), and the Rad-score 

Table 2  The performance of the RS region, RS peri, and RS combine in predicting PFS of the patients with chondrosarcoma

RS, radiomics signature; C-index, concordance index; HR, hazard ratio; CI, confidence interval

Model Training cohort Test cohort

C-index (95% CI) HR (95% CI) C-index (95% CI) HR (95% CI)

RS region 0.733 (0.645–0.820) 5.574 (2.653–11.712) 0.722 (0.585–0.860) 13.095 (2.788–61.518)

RS peri 0.716 (0.621–0.811) 28.712 (8.676–95.011) 0.705 (0.551–0.858) 19.824 (3.870–101.550)

RS combine 0.835 (0.764–0.905) 228.754 (70.068–746.830) 0.800 (0.681–0.920) 11.841 (3.337–42.025)

Fig. 3  Kaplan-Meier survival curves for progression-free survival (PFS) by the intratumoral radiomics signature (RS region; a training cohort; d test 
cohort), peritumoral radiomics signature (RS peri; c training cohort; e test cohort), and combined radiomics signature (RS combine; c training cohort; f 
test cohort), respectively, in patients with chondrosarcoma
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was the most important independent risk factor in pre-
dicting early recurrence of pelvic CS (OR = 3, p < 0.01) 
[21]. Our study also verified the association between 
radiomics-based tumor heterogeneity and PFS in patients 
with CS. The C-index of the RS region in the test cohort 
was 0.722, indicating a favorable predictive value of the 
intratumoral radiomics signature for CS patients.

The changes in the stroma surrounding the tumor 
determine the ability of the tumor to grow and spread, 
evade the body’s immune protection, and resist thera-
peutic interventions [30]. In addition, evidence suggests 
that peritumoral areas are reflecting peritumoral immune 
cell infiltration [31, 32]. Therefore, peritumoral hetero-
geneity and microenvironment are also associated with 
the aggressive behaviors of tumors. However, the features 
of the peritumoral areas cannot be effectively charac-
terized by radiomics analysis of the tumor parenchyma. 
Nowadays, many studies have integrated the peritumoral 
radiomics features into intratumoral radiomics models 
or clinical models in survival analysis, such as esopha-
geal carcinoma [22], breast cancer [33], hepatocellular 
carcinoma [34], and lung cancer [35]. Hu et  al. demon-
strated that a combined model consisting of intra- and 

peri-tumoral radiomics features could predict patho-
logical complete response in patients with esophageal 
squamous cell carcinoma after neoadjuvant chemoradio-
therapy, with an AUC of 0.852 (95% CI, 0.753–0.951) and 
the accuracy of 84.3% in the test cohort [22]. Khorrami 
et al. revealed that the intra- and peritumoral shape and 
texture features extracted from CT images could identify 
pathological response to neoadjuvant chemoradiotherapy 
in patients with non-small cell lung cancer with AUCs of 
0.90 and 0.86 in the training cohort and the test cohort. 
In addition, the radiomics features were also significantly 
associated with OS (HR, 11.18%; 95% CI, 3.17–44.1) 
and PFS (HR, 2.78; 95% CI, 1.11–4.12) [36]. Chong et al. 
developed a peritumoral radiomic model using liver-
biliary-specific Gd-EOB-DTPA MRI in patients with 
hepatocellular carcinoma (HCC) and found this model 
provided the best clinical net benefit (NRI: 35.9–66.1%, 
p < 0.001) and was substantially more efficient than the 
existing clinical algorithms in predicting early recurrence 
of HCC [37].

Sufficient characterization of intra- and peritumoral 
heterogeneity and microenvironment contributes to 
precise outcome prediction for CS. Although intra- and 

Fig. 4  The time-area under the curve (time-AUC; a training cohort; b test cohort) and time-dependent C-index (c training cohort; d test cohort) 
of the intratumoral radiomics signature (RS region), the peritumoral radiomics signature (RS peri), and the combined radiomics signature (RS combine) 
in the prediction of progression-free survival (PFS) in patients with chondrosarcoma
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peritumoral radiomics features represent different spa-
tially heterogeneous information, they are not redun-
dant but complementary. In this study, the CT-based 
peritumoral radiomics signature yielded a C-index of 
0.705 in predicting the PFS of the patients with CS in 
the test cohort. By incorporating the peritumoral radi-
omics features into the intratumoral ones, the RS combine 
achieved a higher C-index (0.800, in the test cohort), 
time-AUC, and NRI than the RS region and RS peri alone, 
indicating the incremental value of the peritumoral 
heterogeneity and microenvironment to the intratu-
moral radiomics in individualized survival estimation 
in CS. Therefore, we believe that intratumoral and peri-
tumoral radiomics features can be incorporated, which 
may provide additional predictive value for survival in 
patients with CS. Guided by the combined signature, if 
the patients are stratified as high risk for progression, 
intensive surveillance and systemic adjuvant therapy 
will be recommended. On the contrary, only regular 
surveillance is advocated for the RS combine-predicted 
low-risk patients.

Admittedly, there were some limitations to this study. 
First, since the patients come from different centers, 
there was an inevitable difference in scanner param-
eters. To avoid the impact of this discrepancy, the 
radiomics analysis should be standardized before its 
implementation in clinical practice, including image 
acquisition, feature extraction, and data processing. 
Second, in the current study, 3D segmentations of the 
tumors, which were manually performed, were chal-
lenging and time-consuming. The development of 
advanced machine learning methods for semiauto-
mated or fully automated tumor segmentation is likely 
to drive its wide application in the future. Third, only 
about 30% of CS patients were enrolled in our study 
according to the inclusion and exclusion criteria. This 
is because our study was a retrospective study, which 
could not carry out the homogeneous management of 
patients. Patients should be better managed to address 
this issue in future applications. We will use larger 
patient cohorts and establish prognostic models based 
on CT, MR, and radiograph respectively in the future 
study to apply to different patient populations.

In conclusion, our study revealed that the intratu-
moral and peritumoral radiomics features are potential 
prognostic biomarkers in CS patients. The combined 
radiomics signature incorporating the intratumoral and 
peritumoral radiomics features may serve as a novel 
imaging tool to predict the prognosis of patients with 
CS, thus improving individualized treatment and man-
agement of CS patients and further promoting precision 
medicine.
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and their corresponding coefficients. Fig. S3. The calibration curves of 
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the peritumoral radiomics signature (c, training cohort; d, test cohort), 
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