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Abstract 

Objective  This study aims to compare the feasibility and effectiveness of automatic deep learning network and radi-
omics models in differentiating low tumor stroma ratio (TSR) from high TSR in pancreatic ductal adenocarcinoma 
(PDAC).

Methods  A retrospective analysis was conducted on a total of 207 PDAC patients from three centers (training cohort: 
n = 160; test cohort: n = 47). TSR was assessed on hematoxylin and eosin-stained specimens by experienced patholo-
gists and divided as low TSR and high TSR. Deep learning and radiomics models were developed including Shuf-
fulNetV2, Xception, MobileNetV3, ResNet18, support vector machine (SVM), k-nearest neighbor (KNN), random forest 
(RF), and logistic regression (LR). Additionally, the clinical models were constructed through univariate and multivari-
ate logistic regression. Kaplan–Meier survival analysis and log-rank tests were conducted to compare the overall 
survival time between different TSR groups.

Results  To differentiate low TSR from high TSR, the deep learning models based on ShuffulNetV2, Xception, Mobile-
NetV3, and ResNet18 achieved AUCs of 0.846, 0.924, 0.930, and 0.941, respectively, outperforming the radiomics 
models based on SVM, KNN, RF, and LR with AUCs of 0.739, 0.717, 0.763, and 0.756, respectively. Resnet 18 achieved 
the best predictive performance. The clinical model based on T stage alone performed worse than deep learning 
models and radiomics models. The survival analysis based on 142 of the 207 patients demonstrated that patients 
with low TSR had longer overall survival.

Conclusions  Deep learning models demonstrate feasibility and superiority over radiomics in differentiating TSR 
in PDAC. The tumor stroma ratio in the PDAC microenvironment plays a significant role in determining prognosis.
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Critical relevance statement  The objective was to compare the feasibility and effectiveness of automatic deep 
learning networks and radiomics models in identifying the tumor-stroma ratio in pancreatic ductal adenocarcinoma. 
Our findings demonstrate deep learning models exhibited superior performance compared to traditional radiomics 
models.

Key points 

• Deep learning demonstrates better performance than radiomics in differentiating tumor-stroma ratio in pancreatic 
ductal adenocarcinoma.

• The tumor-stroma ratio in the pancreatic ductal adenocarcinoma microenvironment plays a protective role 
in prognosis.

• Preoperative prediction of tumor-stroma ratio contributes to clinical decision-making and guiding precise medicine.

Keywords  Machine learning, Radiomics, Deep learning, Tumor stroma ratio, Pancreatic ductal adenocarcinoma

Graphical Abstract

Introduction
Pancreatic ductal adenocarcinoma (PDAC) has one of 
the most dismal prognoses among all human cancers, 
with a 5-year survival rate of approximately 9% [1, 2]. It 
is projected to become the second leading cause of can-
cer-related death in the coming decade [3]. Despite sim-
ilar imaging manifestations and clinical stages, PDAC 
patients often exhibit significant variations in clinical 
outcomes [4, 5]. Traditional indicators alone are insuf-
ficient to predict prognosis accurately, necessitating the 

exploration of underlying biological characteristics to 
stratify patients based on their clinical outcomes.

The tumor microenvironment (TME) in PDAC is 
characterized by the presence of cancerous cells sur-
rounded by desmoplastic and fibrotic stroma [6]. Pre-
vious studies have demonstrated that a high stromal 
content in PDAC patients plays a critical role in prog-
nosis [7–9]. The tumor-stroma ratio (TSR), defined as 
the ratio of cancerous cells to the surrounding stroma 
[10, 11], has emerged as a significant indicator for 
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evaluating disease progression in breast cancer, lung 
cancer, and gastric cancer [12–14]. Increasing evidence 
suggested low TSR is associated with longer postop-
erative survival, while high TSR is inclined to predict 
shorter survival and higher mortality [15, 16]. Addi-
tionally, an obvious improvement of prognosis after 
surgical resection was not observed in the high TSR 
group, and these patients must endure postoperative 
complications like pancreatitis and pancreatic fistula, 
which resulted in an adverse impact on quality of liv-
ing [17, 18]. Emerging studies showed that the PDAC 
patients with more tumor-associated stroma result in 
the greater antitumor activity of hemotherapy agents 
or immune-mediated hypoxic necrosis of the tumor, 
who are more likely to benefit from interstitial targeted 
therapy [19]. Thus, the choice of treatment strategy 
may vary based on the distinct stromal composition of 
the tumor, and it is essential for clinicians to assess the 
stromal content prior to devising a more personalized 
and targeted therapeutic plan. However, obtaining TSR 
typically requires stained sections of surgical speci-
mens, making it impractical for preoperative assess-
ment. As a result, there exists a significant demand for 
the non-invasive and preoperative evaluation of TSR in 
cases of PDAC.

In recent years, machine learning techniques, includ-
ing radiomics and deep learning, have shown tremen-
dous potential in the field of medical imaging due 
to their reliability, high accuracy, and effectiveness 
in developing predictive models. Radiomics refers 
to extracting handcrafted features in a high-dimen-
sional feature space from the region of interest (ROI) 
of radiographic images (CT, MRI, PET, etc.), and ana-
lyzing such image features (also known as biomarker) 
for accurate and quantitative evaluation of the lesions, 
and eventually used to assist in the diagnosis, classifi-
cation of the disease. Deep learning as a new research 
direction in the field of machine learning, automatically 
learning complex features by combining lower-level 
features to form more abstract higher-level features. 
The advantage of deep learning is to replace manually 
designed hard-coded feature extraction used in radi-
omics [20–22]. With advancements in algorithms and 
artificial intelligence, several studies have explored the 
application of machine learning technology in PDAC 
[23–25]. Past studies have explored the correlation 
between radiomics features and TSR, constructing 
predictive models for TSR in PDAC [15, 16, 26]. Nev-
ertheless, radiomics models come with their own set 
of limitations. In contrast, deep learning models have 
demonstrated superior ability in capturing the bio-
logical information revealed by CT images [27]. Nev-
ertheless, few studies have constructed deep learning 

models for preoperative differentiation of TSR in PDAC 
patients [15, 16]. Therefore, the objective of our study 
was to compare the feasibility and effectiveness of auto-
matic deep learning networks and radiomics models in 
identifying TSR in PDAC.

Materials and methods
Study population
This retrospective study received approval from the 
local institutional review board (approval number: 
No.2022–63), and the need for informed consent was 
waived in accordance with the 1964 Helsinki declara-
tion. The study was conducted using three tertiary refer-
ral hospitals in Chongqing Province. A total of 207 PDAC 
patients with confirmed pathology were recruited con-
secutively finally in the study. The training cohort (160 
patients) was enrolled from the First Affiliated Hospital 
of Chongqing Medical University between 2013 Jan and 
2021 Sep, and the independent test cohort (47 patients) 
was enrolled from Daping Hospital of Army Medical 
University between 2020 Sep and 2022 Jan and the Third 
Affiliated Hospital of Chongqing Medical University 
between 2021 March and 2022 June. The inclusion crite-
ria were as follows: (1) patients who underwent surgical 
resection of the tumor, (2) availability of CT scans taken 
within 1  month before the surgery, and (3) visible pan-
creatic lesions on the CT images. The exclusion criteria 
were as follows: (1) patients who received any antitumor 
treatment (radiotherapy, chemotherapy, or chemoradio-
therapy) prior to the CT examination, (2) images with 
noticeable noise or severe motion artifacts, and (3) 
incomplete clinical information. Due to the patients ini-
tially collected all underwent surgical resection, so PDAC 
patients with liver metastases and/or peritoneal carcino-
matosis before surgery wouldn’t be enrolled for selection. 
The specific selection flowchart was displayed in Fig.  1. 
Baseline clinical data were collected from the electronic 
medical records system. Patients’ follow-up information 
was obtained through outpatient visits and telephone 
follow-ups. The overall survival time (OS) was defined as 
the interval between the date of operation and the date of 
death or the last known alive status.

Imaging acquisition
A 128-slice multidetector-row CT scanner (SOMATOM 
Definition Flash, Siemens Healthineers) was used for 
the training cohort, and a 256-slice multidetector-row 
CT scanner (GE Revolution 256, GE Healthcare) and a 
64-slice multidetector-row CT scanner (GE lightspeed 
vct) were used for the test cohort, respectively. Scans 
were performed in a craniocaudal direction, starting 
from the hepatic dome to the bilateral anterior superior 
iliac spine. The imaging protocol included an unenhanced 
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phase, followed by the injection of a non-ionic contrast 
agent (Ultravist 350/370, Bayer Healthcare) at a specific 
dose (1.2 mL/kg) and flow rate (3.5–5.0 mL/s). A saline 
flush of 30–40 mL at the same injection rate was admin-
istered. The arterial phase scanning was initiated 10–15 s 
after reaching a trigger threshold (100 HU) in the abdom-
inal aorta, and the portal venous phase scanning was 
conducted 30–35 s after the end of the arterial phase.

The acquisition parameters included tube voltages of 
120 kVp, collimation of 128 × 0.6 mm (for Siemens scan-
ner) and 64 × 0.625  mm (for GE scanners), gantry rota-
tion time of 0.5  s, and spiral pitch of 1.0 (for Siemens 
scanner) or 0.7 (for GE scanners). All images were recon-
structed with a thickness of 5 mm, an increment of 5 mm.

Pathological image analysis
This was a retrospective process where the pathologists 
had access to specimens from a tissue bank in every 
hospital. The pathologists cut the entire specimens into 
5-mm thick sections, generating 10–35 formalin-fixed 
paraffin-embedded (FFPE) blocks per specimen. Each 
FFPE block was sliced into 4 µm  thick sections and 
stained with hematoxylin and eosin. A single field of 
moderate magnification (100 ×) was selected for analysis, 
ensuring that all four corners of the field of vision were 
within the tumor. The tumor-stroma ratio (TSR) was 
evaluated by quantifying the proportion of tumor and 
stroma components under microscopic examination. A 
TSR value of 5/5 was considered the optimal cutoff value 
based on previous studies [15, 16]. High stroma content 
was defined as TSR ≤ 1, while low stroma content was 
defined as TSR > 1. Based on the present observations, 

the TSR values were categorized into a low TSR group 
and a high TSR group. TSR evaluation was performed 
by two experienced pathologists, and a consensus was 
reached through joint evaluation in cases of disagree-
ment in every hospital. In actuality, inconsistent observa-
tion between two pathologists was rare.

Radiological imaging analysis
Image characteristics were assessed by two radiologists 
with 8 and 10 years of experience in abdominal imaging 
diagnosis, respectively, at a PACS workstation. Any dis-
crepancies were resolved by consultation with the third 
radiologist (with 28  years of experience in abdominal 
imaging diagnosis). The baseline characteristics of all 
tumors were evaluated, including (1) clinical character-
istics: age, sex, abdominal pain, pancreatitis history, and 
jaundice; (2) pathological characteristics: T stage, his-
tological grade, lymph node metastasis, and duodenal 
invasion; (3) image characteristics: CT-reported tumor 
size, tumor location, parenchymal atrophy, pancreatic 
duct dilatation, and common bile duct dilatation; and 
(4) biochemical characteristics: carbohydrate antigen 
19–9 (CA19-9) level, carcinoembryonic antigen (CEA) 
level, and total bilirubin (TBIL) level. Univariate and 
multivariate logistic regression analyses were performed 
on the above-mentioned variables. Ultimately, statisti-
cally significant features were selected for clinical model 
development.

Radiomics workflow
The standardized radiomics analysis workflow was employed 
following the Image Biomarker Standardization Initiative 

Fig. 1  Flow chart illustrating the patient selection process
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(IBSI) reporting guidelines [28]. (1) Tumor segmentation: 
Radiologist 1 performed three-dimensional volume of inter-
est (3D-VOI) segmentation along the tumor margin exclud-
ing cysts, necrosis, blood vessels, and lymph nodes in side 
tumor on axial portal venous phase CT images using ITK-
SNAP software (version 3.8.0, http://​www.​itksn​ap.​org/). We 
did not choose the arterial phase because the tumor bound-
ary was more distinct and evident in the portal venous 
phase, which contribute to tumor segmentation. To assess 
interobserver reliability, radiologist 2 conducted independ-
ent VOI delineations on the images of 30 randomly selected 
patients from both cohorts. One month later, radiolo-
gist 1 repeated the segmentation for 30 randomly selected 
patients who were different from 30 patients selected by 
radiologist 2 from both cohorts to evaluate intraobserver 
reliability. The inter- and intraobserver reliability was evalu-
ated using the intraclass correlation coefficient (ICC), with 
ICC values > 0.75 indicating good consistency. (2) Feature 
extraction: Radiomics features, including shape features, 
first-order histogram features, and five texture features (gray 
level cooccurrence matrix (GLCM), gray level run length 
matrix (GLRLM), gray level size zone matrix (GLSZM), 
neighboring gray tone difference matrix (NGTDM), and 
gray level dependence matrix (GLDM)), were extracted 
using PyRadiomics 3.0 [29]. (3) Feature reduction and selec-
tion: analysis of variance, least absolute shrinkage, selection 
operator (Lasso) regression, and principal component anal-
ysis (PCA) were successively applied to screen and reduce 
the dimensionality of the features. The final selected fea-
tures were normalized using a sigmoid function to ensure 
values between 0 and 1. (4) Radiomics model construction: 
In the selection of traditional radiomics models, we choose 
the representative of different machine learning algorithms, 
such as linear classifiers — logistic regression (LR), sup-
port vector machine (SVM); tree model-based algorithms 
— random forest (RF); classical clustering algorithms 
— K-nearest neighbor (KNN). Through these different 
machine learning algorithms, we evaluated which classi-
fication ideas were more suitable for this task. All models 
were constructed using five-fold cross-validation to avoid 
overfitting and ensure repeatability and reproductivity. A 
complete schematic is presented in Fig. 2a.

Deep learning workflow
All original abdominal CT images, without any manual 
segmentation, were used in 3D format as input for the 
network. To enhance the robustness of the model and 
avoid overfitting, data augmentation strategies, includ-
ing random clipping, random horizontal flip, and ran-
dom vertical flip, were applied before feeding the images 
into the network. The loss function was calculated as 

the deviation between the output of the neural net-
work and the label, and the weights of each layer were 
updated using the back-propagation algorithm. The best 
weights were determined based on the minimal loss 
value and fixed for subsequent use on the test cohort. 
Due to the small amount of experimental data, in the 
selection of the deep learning model, we chose repre-
sentative lightweight deep learning model or networks 
with fewer parameters for experiments in deep learning: 
ShuffulNetv2, Xecption, MobileNetV3, and ResNet18 
[30–32]. Specifically, the convolutional neural network 
has a good ability to extract local features, and this task 
requires the network to pay attention to local details of 
images, which is in line with the advantages of the con-
volutional neural network. Therefore, we chose a con-
volutional neural network to conduct the experiment. 
Next, our task is a coarse-grained prediction task with 
a small amount of data, and the use of a network with 
many parameters will result in serious overfitting and 
make it difficult for the network to learn effective infor-
mation. Lightweight CNN models usually perform well 
on small data sets and are not easy to overfit because 
they are easier to generalize to previously unseen data. 
More complex models on small data sets may be more 
susceptible to noise or chance in the data. Therefore, 
we choose such four kinds of convolutional neural net-
works with fewer parameters and strong universality to 
conduct experiments, and further determine the net-
works more suitable for this task through experiments. 
These four pretrained 3D convolutional neural net-
works (CNNs) were used to construct end-to-end mod-
els. The AdamW optimizer with momentum parameters 
β1 = 0.9 and β2 = 0.999 was utilized, and the initial 
learning rate was set to 0.00001. CosineAnnealing was 
employed for learning rate decay. A total of 30 epochs 
were trained, with a penalty coefficient of 0.01, warm-
up set to 1, batch size of 2, and dropout of 0.75. The 
experiments were conducted using python (https://​
www.​python.​org) and the pyTorch (https://​www.​pytor​
ch.​org) framework on an NVIDIA GeForce GTX 2080 
SUPER GPU.

To enhance the transparency and interpretability of 
the model’s decision-making process, we applied gradi-
ent-weighted class activation mapping (Grad-CAM) to 
provide a visual explanation. Grad-CAM utilizes the gra-
dient information from the last convolutional layer of the 
CNNs to obtain a class activation map. This map offered 
insights into the image regions that contributed most sig-
nificantly to the model’s classification and helped in vali-
dating its performance and identifying potential areas for 
improvement.

http://www.itksnap.org/
https://www.python.org
https://www.python.org
https://www.pytorch.org
https://www.pytorch.org
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Model evaluation and statistical analysis
The prediction performance of the radiomics and deep 
learning models was evaluated using various metrics, 
including the area under the curve (AUC), accuracy 
(ACC), precision, recall, and F1 score. The models’ per-
formance was visualized using receiver operating charac-
teristic (ROC) curves. Decision curve analysis (DCA) was 
used to quantify the net benefits with different threshold 
probabilities. Calibration curve analysis was employed to 
fit the actual and predicted incidence rates. The DeLong 
test was performed to compare the diagnostic efficiency 
among different models.

Quantitative variables between groups were compared 
using Student’s t-test if the distribution was normal, or 
the Mann‒Whitney U test if the distribution was non-
normal. Qualitative variables between groups were com-
pared using the chi-square test or Fisher’s exact test. A 
p-value of less than 0.05 was considered statistically sig-
nificant. SPSS software (version 23.0) was used for statis-
tical analyses.

Results
Patient characteristics
In the training cohort, there were 72 (45%) patients in the 
TSR-low group and 88 (55%) patients in the TSR-high 
group. The independent test cohort consisted of 20 (43%) 
patients in the TSR-low group and 27 (57%) patients in 
the TSR-high group (Table  1). Significant statistical dif-
ferences between the TSR-low and TSR-high groups 
were observed in the T stage (p = 0.048) in the train-
ing cohort and histological grade (p = 0.013) in the test 
cohort. No significant differences in any of the baseline 
characteristics were observed between training and test 
groups. After univariate and multvariate logistic regres-
sion, only the T stage (OR: 0.410, 95% CI: 0.205–0.821, 
p = 0.012) was retained for clinical model development 
(Table  2). The clinical model achieved an AUC of 0.566 
(0.477, 0.654) in the training cohort and an AUC of 
0.610 (0.448, 0.772) in the test cohort. Of the total 142 
patients from the training cohort available for survival 
analysis (TSR-low: 69 patients, TSR-high: 73 patients), 

Fig. 2  Workflow of this study and network structure of ResNet18. a The flowchart of this study. b Network structure of ResNet18 
and the representative feature of shortcut connection
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Table 1  Baseline characteristics in the training and test cohorts

Characteristics Training cohort (n = 160) External test cohort (n = 47) P
(Inter)

TSR-low
(n = 72)

TSR-high
(n = 88)

P (Intra) TSR-low
(n = 20)

TSR-high
(n = 27)

P (Intra)

Clinical characteristics

Age (years), mean ± SD 60.40 ± 9.45 60.55 ± 9.66 0.925 59.48 ± 9.04 59.85 ± 9.25 0.892 0.784

Gender 0.720 0.726 0.895

  Female 24 (33.3) 27 (30.7) 5 (25.0) 8 (29.6)

  Male 48 (66.7) 61 (69.3) 15 (75.0) 19 (70.4)

Abdominal pain 0.106 0.770 0.592

  Yes 37 (51.4) 34 (38.6) 9 (45.0) 11 (40.7)

  No 35 (48.6) 54 (61.4) 11 (55.0) 16 (59.3)

Pancreatitis history 0.302 0.640 0.611

  No 55 (76.4) 73 (83.0) 16 (80.0) 23 (85.2)

  Yes 17 (23.6) 15 (17.0) 4 (20.0) 4 (14.8)

Jaundice 0.806 0.380 0.457

  No 56 (77.8) 67 (76.1) 15 ((75.0) 23 (85.2)

  Yes 16 (22.2) 21 (23.9) 5 (25.0) 4 (14.8)

Pathological characteristics

  T stage 0.048* 0.095 0.301

    T1–2 61 (84.7) 63 (71.6) 17 (85.0) 17 (63.0)

    T3–4 11 (15.3) 25 (28.4) 3 (15.0) 10 (37.0)

  Histological grade 0.829 0.013* 0.052

    Low-grade 47 (65.3) 56 (63.6) 14 (70.0) 9 (33.3)

    High-grade 25 (34.7) 32 (36.4) 6 (30.0) 18 (66.7)

  Lymph node metastasis 0.423 0.638 0.413

    Negative 43 (59.7) 47 (53.4) 12 (60.0) 18 (66.7)

    Positive 29 (40.3) 41 (46.6) 8 (40.0) 9 (33.3)

  Duodenum invasion 0.112 0.333 0.599

    Negative 41 (56.9) 39 (44.3) 9 (45.0) 16 (59.3)

    Positive 31 (43.1) 49 (55.7) 11 (55.0) 11 (40.7)

Imaging characteristics

  CT-reported tumor size 26.65 ± 11.31 28.57 ± 10.43 0.270 24.78 ± 17.31 29.95 ± 8.78 0.228 0.772

  Location 0.173 0.905 0.850

    Head and neck 50 (69.4) 73 (83.0) 13 (65.0) 18 (66.7)

    Body and tail 22 (30.6) 15 (17.0) 7 (35.0) 9 (33.3)

  Parenchymal atrophy 0.946 0.642 0.368

    No 27 (38.0) 33 (37.5) 9 (45.0) 14 (51.9)

    Yes 44 (62.0) 55 (62.5) 11 (55.0) 13 (48.1)

  PD dilatation 0.493 0.635 0.859

    No 18 (25.0) 18 (20.5) 4 (20.0) 7 (25.9)

    Yes 54 (75.0) 70 (79.5) 16 (80.0) 20 (74.1)

  CBD dilatation 0.607 0.381 0.914

    No 24 (33.3) 26 (29.5) 5 (25.0) 10 (37.0)

    Yes 48 (66.7) 62 (70.5) 15 (75.0) 17 (63.0)

Biochemical characteristics

  CA-199 level 0.167 0.260 0.774

    Normal 27 (18.1) 24 (35.2) 2 (10.0) 11 (40.7)

    Abnormal 45 (81.9) 64 (64.8) 18 (90.0) 16 (59.3)
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the Kaplan‒Meier curves demonstrated a significant 
difference (p < 0.05) between the TSR-high and TSR-
low groups. The log-rank test indicated a significantly 
longer survival duration in the TSR-low group (mean: 
25.81 months, 95% confidence interval [CI]: 21.39–30.23) 
compared to the TSR-high group (mean: 17.95  months, 
95% CI: 14.28–21.62).

Model performance based on radiomics and deep learning
For manual tumor segmentation, good interobserver 
ICCs ranging from 0.80 to 0.89 and intraobserver ICCs 
ranging from 0.83 to 0.91 were obtained. A total of 1051 

radiomics features were initially extracted from the 3D 
segmented VOI based on the portal venous phase. The 
analysis of variance performs initial feature screening to 
reduce the complexity of LASSO feature screening. 10 
features with nonzero coefficients were selected through 
lasso regression (Table  3). Figure  3 illustrates the selec-
tion process of the LASSO model and the visualization 
of features. Finally, to prevent overfitting due to an exces-
sive number of features, PCA was performed to reduce 
dimensionality, and features were finally reduced to 6.

In general, no matter in the training cohort or test 
cohort, deep learning models surpassed radiomic 

Table 1  (continued)

Characteristics Training cohort (n = 160) External test cohort (n = 47) P
(Inter)

TSR-low
(n = 72)

TSR-high
(n = 88)

P (Intra) TSR-low
(n = 20)

TSR-high
(n = 27)

P (Intra)

  CEA level 0.626 0.404 0.378

    Normal 61 (84.7) 72 (81.8) 17 (85.0) 25 (92.6)

    Abnormal 11 (15.3) 26 (18.2) 3 (15.0) 2 (7.4)

  TBIL level 0.274 0.689 0.699

    Normal 34 (47.2) 34 (38.6) 7 (35.0) 11 (40.7)

    Abnormal 38 (52.8) 54 (61.4) 13 (65.0) 16 (59.3)

p(Intra) represents the result of univariable analyses between TSR-low and TSR-high groups, p(Inter) represents the significant difference between training and test 
groups

PD pancreatic duct, CBD common bile duct, CA-199 carbohydrate antigen 199, CEA carcino-embryonic antigen, TBIL total bilirubin
* Represents p < 0.05

Table 2  Univariate and multivariable logistic regression analyses for selecting clinical features of model development

OR odds ratio, CI confidence interval, PD pancreatic duct, CBD common bile duct, CA-199 carbohydrate antigen 199, CEA carcino-embryonic antigen, TBIL total 
bilirubin
* Represents p < 0.05

Characteristics Univariate analysis Multivariate analysis

OR (95% CI) p-value OR (95% CI) p-value

Age 1.004 (0.972, 1.038) 0.793

Gender 1.112 (0.575, 2.15) 0.753

Abdominal pain 1.84 (0.944, 3.586) 0.074

Pancreatitis history 0.612 (0.285, 1.314) 0.208

Jaundice 0.822 (0.395, 1.708) 0.599

T stage 0.416 (0.192, 0.902) 0.026* 0.410 (0.205, 0.821) 0.012*

Histological grade 1.729 (0.895, 3.342) 0.103

Lymph node metastasis 1.102 (0.576, 2.111) 0.769

Duodenum Invasion 1.32 (0.658, 2.648) 0.435

CT-reported tumor size 0.978 (0.951, 1.006) 0.121

Location 0.687 (0.331, 1.429) 0.316

Parenchymal atrophy 0.835 (0.424, 1.646) 0.602

PD dilatation 1.044 (0.452, 2.41) 0.92

CBD dilatation 0.558 (0.227, 1.371) 0.203

CA-199 level 1.281 (0.65, 2.526) 0.474

CEA level 1.103 (0.467, 2.606) 0.824

TBIL level 0.558 (0.227, 1.371) 0.149
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models. Specifically, in test cohort, deep learning mod-
els, including ShuffulNet, Xecption, MobileNet, and 
ResNet18, achieved AUCs of 0.846, 0.924, 0.930, and 
0.941, respectively, outperforming radiomics models 
based on SVM, KNN, RF, and LR with AUCs of 0.739, 
0.717, 0.763, and 0.756, respectively (Table  4, Fig.  4a, 
b). Furthermore, deep learning models exhibited higher 
accuracies: 0.830, 0.851, 0.872, and 0.894 for ShuffulNet, 

Xecption, MobileNet, and ResNet18, respectively, com-
pared to 0.766, 0.702, 0.702, and 0.681 for radiomics 
models based on SVM, KNN, RF, and LR, respectively. 
Calibration curves demonstrated good calibration for 
both radiomics and deep learning models (Fig.  4c, d), 
however, radiomics models calibrated better than deep 
learning models. Decision curves indicated that the pre-
diction models provided greater benefit than treating all 
or none of the patients, with deep learning models offer-
ing greater benefits than radiomics models (Fig.  4e, f ). 
Additionally, we performed the DeLong test among eight 
models (Table 5). The results showed no significant dif-
ference was observed in four radiomics models alone or 
four deep learning models alone (all p > 0.05), whereas a 
significant difference was observed between radiomics 
models and deep learning models.

The overall performance of Resnet 18 surpassed that of 
the other CNN models in the test cohort. Figure  5 dis-
played the training curves, and Resnet 18 exhibited the 
lowest loss value with the ability to minimize errors dur-
ing training and showed faster convergence compared 
to any other CNN model tested. The specific network 
architecture of Resnet 18 is illustrated in Fig. 2b, with its 
most distinctive feature being the utilization of a residual 

Table 3  Lasso features’ selection results

ID Radiomics’s feature name

1 original_shape_LeastAxisLength

2 original_glszm_SizeZoneNonUniformity

3 log-sigma-3-mm-3D_glrlm_RunVariance

4 log-sigma-3-mm-3D_glszm_SizeZoneNonUniformity

5 log-sigma-5-mm-3D_gldm_SmallDependenceEmphasis

6 wavelet-LHL_glcm_Imc2

7 wavelet-LHL_glrlm_RunLengthNonUniformity

8 wavelet-HLL_glszm_LargeAreaHighGrayLevelEmphasis

9 wavelet-HLL_glszm_SizeZoneNonUniformityNormalized

10 wavelet-LLL_glszm_SizeZoneNonUniformity

Fig. 3  The selection process of the LASSO model. a Lasso coefficient profile plot with different log (λ) was shown. The vertical dashed lines 
represent 10 radiomics features with nonzero coefficients selected with the optimal λ value. b The LASSO model’s tuning parameter (λ) selection 
via minimum criterion. The vertical lines indicate the optimal value of the LASSO tuning parameter (λ). c Feature’s weights of selected 10 features. d 
Heatmap of 10 features
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network. Among all models evaluated, the ResNet18 
model demonstrated the best diagnostic efficacy for 
this task. Figure  6a presents the confusion matrices of 
all models in the test cohort, revealing accurate predic-
tions for 96.3% (26/27) of patients in the TSR-high group 
and 80% (16/20) of patients in the TSR-low group using 
the ResNet18 model. The Grad-CAM generated from 
ResNet18 provides a visual interpretation of the classified 
images, the ResNet18 model effectively highlighted the 
attention regions which contribute to classification deci-
sion within the samples (Fig. 6b). The darker the color is, 
the more focused the model is.

Discussion
In our study, we aimed to compare the performance of 
automatic deep learning networks and radiomics models 
in differentiating TSR in patients with PDAC. Overall, 
our findings indicated that deep learning models out-
performed radiomics models, with the ResNet18 model 
demonstrating the best performance. The models we 
developed and validated showed the potential for gener-
alization, repeatability, and future clinical application.

In this study, we revealed that the TSR-low group had 
a significantly longer survival duration compared to the 
TSR-high group, suggesting a protective role of tumor 
stroma in the pathogenesis of PDAC. This finding is 
consistent with previous studies that have shown the 
impact of tumor stroma on tumor progression and prog-
nosis [15, 16]. Additionally, studies by Torphy et al. also 

supported our findings by demonstrating a significant 
association between high stromal density and improved 
survival [8, 9]. Moreover, we observed higher T stages in 
the TSR-high group, which is consistent with the studies 
conducted by Meng et  al., and Cai et  al. [16, 33]. These 
findings collectively strengthen the understanding of the 
relationship between TSR and PDAC progression.

Previous studies have explored the correlation of imag-
ing parameters with tumor stroma due to the compre-
hensive view provided by imaging scans and their ease 
of acquisition [34–36]. For instance, Mayer et  al. dem-
onstrated that the diffusion constant D from diffusion 
kurtosis imaging could be used as a non-invasive imaging 
biomarker to differentiate stroma-rich from stroma-poor 
tumors in PDAC [37]. CT imaging features have also 
been investigated by Cai et al. and Koay et al. as indica-
tors of tumor stroma proportion in PDAC, with attenu-
ation differences at the tumor-parenchyma interface 
showing potential for stratifying patients into prognostic 
subtypes [33, 35]. However, the afore-mentioned studies 
did not develop predictive models constructed by artifi-
cial intelligence technology.

In our study, we developed four radiomics and four 
deep learning models to compare their feasibility and 
effectiveness in CT-based TSR prediction. The AUCs 
achieved by our models ranged from 0.859 to 1.000 in the 
training group and 0.717 to 0.941 in the test group, sur-
passing previous similar research with an AUC of 0.93 in 
the training group and 0.63 in the validation group which 

Table 4  The performance comparison of different models

AUC​ area under the curve, ACC​ accuracy

Model Category Cohort AUC (95% CI) ACC​ Precision Recall F1-Score

Clinical T stage Train 0.566 (0.477, 0.654) 0.550 0.694 0.284 0.402

Test 0.610 (0.448, 0.772) 0.574 0.769 0.370 0.500

Radiomics KNeigbors Train 0.865 (0.832, 0.897) 0.785 0.784 0.785 0.784

Test 0.717 (0.686, 0.757) 0.702 0.698 0.702 0.699

SVM Train 0.925 (0.908, 0.944) 0.847 0.847 0.847 0.847

Test 0.739 (0.691, 0.791) 0.766 0.761 0.757 0.759

Logistic regression Train 0.859 (0.830, 0.886) 0.799 0.798 0.799 0.798

Test 0.756 (0.719, 0.804) 0.681 0.673 0.670 0.671

Random forest Train 0.978 (0.970, 0.987) 0.889 0.891 0.889 0.888

Test 0.763 (0.725, 0.802) 0.702 0.706 0.676 0.678

Deep learning ShuffulNet Train 1.000 (1.000, 1.000) 0.987 0.988 0.988 0.987

Test 0.846 (0.816, 0.891) 0.830 0.826 0.826 0.826

Xecption Train 0.999 (0.999, 1.000) 0.987 0.988 0.988 0.987

Test 0.924 (0.904, 0.940) 0.851 0.897 0.825 0.860

MobileNet Train 0.999 (0.999, 1.000) 0.988 0.988 0.988 0.987

Test 0.930 (0.911, 0.951) 0.872 0.874 0.882 0.878

ResNet18 Train 1.000 (1.000, 1.000) 0.998 0.998 0.998 0.998

Test 0.941 (0.926, 0.962) 0.894 0.904 0.882 0.893
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Fig. 4  The ROC curves, calibration curves, decision curves among radiomics and deep learning groups, respectively. a, c, e ROC curves, calibration 
curves, and decision curves among radiomics models. b, d, f ROC curves, calibration curves, decision curves among deep learning models. The RF 
model and Resnet18 achieved the optimal efficiency in radiomics models and deep learning models, respectively. The calibration curves presented 
a good consistency between predicted and actual TSR in radiomics and deep learning models. The graphs show that the SVM model and ResNet18 
have the greatest net benefit in radiomics models and deep learning models, respectively



Page 12 of 16Liao et al. Insights into Imaging          (2023) 14:223 

only used XGBoost model based on radiomics model 
[16]. Our study had several advantages. Firstly, we col-
lected data from three centers, ensuring dataset diver-
sity and model generalization. Secondly, our end-to-end 
deep learning models automatically learned semantic 
and spatial features and eliminated the need for manually 
designed feature extraction, simplifying the process, and 
reducing the burden on doctors. This contrasted with 
traditional radiomics methods that required engineered 
features designed by humans. Lastly, our study high-
lighted the relatively poor generalizability of the radiom-
ics model based on handcrafted features, as indicated by 
its lower sensitivity (ranging from 0.676 to 0.757) com-
pared to the deep learning models (ranging from 0.825 
to 0.882). In addition, radiomics models calibrated better 
than deep learning models in this study, we guessed the 
reason was due to traditional machine learning methods 
do well in small samples with diverse scanning protocols.

The lackluster performance across all four distinct radi-
omics models suggests that traditional radiomics features 
offer limited assistance in discerning high and low TSR. 
Notably, the random forest model outperforms the rest, 
which we attribute to its potency as a robust ensemble 
learning technique. By constructing numerous decision 
trees and amalgamating their predictions, the random 
forest effectively synthesizes forecasts from multiple 
machine learning models. Furthermore, its efficacy in 
diminishing overfitting through techniques like random 
feature selection and data sampling contributes to the 
model’s enhanced generalization capabilities.

The notable superiority of all four deep learning mod-
els over traditional radiomics models suggests that this 
advantage arises from the deep learning models’ ability to 
extract features from three-dimensional medical images 
that better suit this specific medical image discrimination 
task. Unlike fixed and unchanging radiomics features, 

Table 5  Comparison of ROC curves among different models by DeLong test

KNN knearest neighbor, SVM support vector machine, RF random forest, LR logistic regression, SN ShuffulNetV2, Xec Xception, Mob MobileNetV3, Res ResNet18
* Represents p < 0.05

KNN/SVM 0.8313 SVM/LR 0.8927 LR/SN 0.3350 RF/Res 0.0206*

KNN/LR 0.7372 SVM/RF 0.8394 LR/Xec 0.0196* SN/Xec 0.2722

KNN/RF 0.5784 SVM/SN 0.3140 LR/Mob 0.0276* SN/Mob 0.2742

KNN/SN 0.1656 SVM/Xec 0.0534 LR/Res 0.0165* SN/Res 0.1053

KNN/Xec 0.0106* SVM/Mob 0.0368* RF/SN 0.3752 Xec/Mob 0.9100

KNN/Mob 0.0051* SVM/Res 0.0243* RF/Xec 0.0238* Xec/Res 0.6912

KNN/Res 0.0054* LR/RF 0.9430 RF/Mob 0.0379* Mob/Res 0.8273

Fig. 5  The loss values of various deep learning models in the training set showed fluctuation across different iteration steps
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deep learning models can dynamically learn feature rep-
resentations. The notable dissimilarity in feature expres-
sions learned by deep learning models demonstrates the 
potential limitations of relying solely on conventional 
radiomics features. Among these models, ResNet18 out-
performs the rest, and its exceptional performance solidi-
fies ResNet18 as an exceptionally favorable choice for the 
specific task. This success can be attributed to its residual 
architecture enabling the network to capture features at 
varying scales and abstraction levels across different lay-
ers, thus enhancing the model’s proficiency in represent-
ing features extracted from medical images.

Grad-CAM is a widely utilized post hoc interpret-
able technique applied to medical image research by 
using CNN. In the context of Grad-CAM, regions 
within the image displaying heterogeneous signals play 
a pivotal role in influencing the model’s prediction. The 
intensity of color within the Grad-CAM visualization 
denotes the level of significance and is attributed to 
these regions’ contribution to the model’s final classifi-
cation determination. Previous studies indicated these 
heterogeneous signals are often the regions of greater 
interest in clinical work [38, 39]. Additionally, it pri-
marily focused on the boundary and internal regions of 

Fig. 6  The confusion matrix of all models and original images and the corresponding gradient weighted class activation mapping (Grad-CAM) 
generated by ResNet18 of the representative patients. a The figure shows the number of patients in the test set who were correctly and incorrectly 
classified. b A 63-year-old man was diagnosed with pancreatic ductal adenocarcinoma (PDAC) with a high tumor stroma ratio (TSR). The tumor 
was in the pancreatic head. b, c Sixty-two-year-old man was diagnosed with PDAC with a low TSR. The tumor was in the pancreatic tail
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the tumor, the blood vessels, bones, and normal pan-
creatic parenchyma adjacent to tumor regions did not 
exhibit significant activation, demonstrating its ability 
to ignore non-core areas for analysis.

However, our study had some limitations. First, we 
excluded patients who received antitumor therapy 
before surgery, which might have introduced selection 
bias. Because uniform selection standard for patients’ 
therapy management contributes to avoid confound-
ing influence on the survival time of PDAC except 
for tumor stroma. We speculated that patients who 
received antitumor therapy (radiotherapy, chemother-
apy, chemoradiotherapy) before surgery  may affected 
the pathological observation on TSR, so we strict 
screening criteria in this study. In the future, we will 
enroll more cases including patients with and without 
antitumor therapy before surgery to investigate the 
role of TSR from a more comprehensive perspective, in 
addition, we will collect patients only with antitumor 
therapy before surgery to complete subgroup analysis. 
Second, our study was retrospective and the evalua-
tion of TSR goes beyond routine clinical needs, result-
ing in a limited quantity of sample data and potential 
mild overfitting. However, for the radiomics models, we 
employed feature dimensionality reduction techniques 
such as PCA and fine-tune hyperparameters to prevent 
overfitting and mitigate model complexity. Additionally, 
an ensemble learning approach such as RF was adopted 
to combine multiple decision tree models and mitigate 
the impact of overfitting on individual trees. Within 
deep learning models, we introduced data augmenta-
tion techniques on the training dataset, involving rota-
tions, translations, and scaling, to augment the diversity 
of medical images and enhance the model’s ability to 
generalize. Moreover, regularization techniques were 
employed by incorporating regularization terms within 
both the model architecture and loss function to pre-
vent overfitting. Lastly, we implemented dropout on 
the model’s classifier, randomly deactivating a fraction 
of neurons by setting them to zero, thereby reducing 
complex co-adaptations between neurons and aiding in 
overfitting prevention. In general, we leveraged cross-
validation techniques to partition the limited data into 
multiple subsets for model training and validation. This 
approach maximizes data utilization and yields a more 
reliable estimation of model performance. Further-
more, by utilizing pre-trained models, we transferred 
knowledge from other data sources to the constrained 
medical image dataset, effectively enhancing the over-
all model performance. Third, we trained deep learn-
ing models using original abdominal images instead of 
segmented tumor VOI, which may cause interference 

from underlying background factors; however, the use 
of grad-cam revealed that attention regions were pre-
dominantly focused on the tumor itself, guaranteeing 
efficiency and accuracy of the model’s performance.

In conclusion, non-invasive assessment of stroma 
proportion provides a feasible approach for stratifying 
patients with distinct clinical outcomes in PDAC. Deep 
learning, as a quantitative method, shows promising 
performance in predicting poor prognosis compared to 
the traditional radiomics workflow. Therefore, preoper-
ative TSR prediction offers new insights into the diag-
nosis and treatment of this lethal disease.
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