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Abstract 

Purpose  To investigate the clinical value of radiomic analysis on [18F]FDG and [18F]FLT PET on the differentiation 
of [18F]FDG-avid benign and malignant pulmonary nodules (PNs).

Methods  Data of 113 patients with inconclusive PNs based on preoperative [18F]FDG PET/CT who underwent addi-
tional [18F]FLT PET/CT scans within a week were retrospectively analyzed in the present study. Three methods of analy-
sis including visual analysis, radiomic analysis based on [18F]FDG PET/CT images alone, and radiomic analysis based 
on dual-tracer PET/CT images were evaluated for differential diagnostic value of benign and malignant PNs.

Results  A total of 678 radiomic features were extracted from volumes of interest (VOIs) of 123 PNs. Fourteen valu-
able features were thereafter selected. Based on a visual analysis of [18F]FDG PET/CT images, the diagnostic accuracy, 
sensitivity, and specificity were 61.6%, 90%, and 28.8%, respectively. For the test set, the area under the curve (AUC), 
sensitivity, and specificity of the radiomic models based on [18F]FDG PET/CT plus [18F]FLT signature were equal or bet-
ter than radiomics based on [18F]FDG PET/CT only (0.838 vs 0.810, 0.778 vs 0.778, 0.750 vs 0.688, respectively).

Conclusion  Radiomic analysis based on dual-tracer PET/CT images is clinically promising and feasible for the differ-
entiation between benign and malignant PNs.

Clinical relevance statement  Radiomic analysis will add differential diagnostic value of benign and malignant pul-
monary nodules: a hybrid imaging study based on [18F]FDG and [18F]FLT PET/CT.

Key points   
• Radiomics brings new insights into the differentiation of benign and malignant pulmonary nodules 
beyond the naked eyes.

• Dual-tracer imaging shows the biological behaviors of cancerous cells from different aspects.

• Radiomics helps us get to the histological view in a non-invasive approach.
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Introduction
Lung cancer is the leading cause of cancer-related 
deaths worldwide with a generally low survival rate [1, 
2]. The increasing number of pulmonary nodules (PNs), 
a precancerous entity of lung cancer, can be detected 
and screened by computed tomography (CT) [3]. Malig-
nant PNs detected at a late stage can increase mortality 
[4]. Therefore, it is crucial to improve the accuracy of 
early differential diagnosis between benign and malig-
nant PNs.

In this scenario, [18F]fluorodeoxyglucose positron 
emission tomography ([18F]FDG PET), as a non-
invasively practical imaging standard, is a key tool to 
detect lung cancer and evaluate its staging and prog-
nosis [5]. The maximum standard uptake value (SUV-
max), which is used clinically to assess tracer uptakes 
in lung cancer, provides information about the highest 
uptake point but not about tracer distribution within 
the tumor. Different features of the tumor such as cell 
proliferation, necrosis, microvessel density, blood flow, 
and hypoxia may be responsible for the heterogene-
ous distribution of FDG uptakes in different tumor 
types [6, 7]. Thus, [18F]FDG metabolic maps, showing 

the heterogeneous uptakes within the lesion, might be 
helpful in differentiating benign and malignant nodules 
[8]. Under this context, radiomic analysis, revealing a 
variety of quantitative radiomic features [9–11], could 
express the heterogeneity of a mass in a sequence of 
algorithms. Previous research demonstrated the bene-
fit of radiomic analysis on [18F]FDG PET/CT images in 
the detection and identification of solitary pulmonary 
nodules (SPN) by distinguishing between benign and 
malignant PNs [12–14].

[18F]fluoropyrimidine ([18F]FLT) phosphorylated by 
thymidine kinase-1 (TK-1) can accumulate in cells dur-
ing S-phase and is therefore a well-established tracer 
for monitoring cell proliferation [15, 16]. In general, 
[18F]FLT concentrates less in tumor cells compared to 
[18F]FDG, as S-phase is the only time for its accumu-
lation [17]. In non-small cell lung cancer (NSCLC), 
intratumoral [18F]FLT uptake is directly correlated to 
Ki-67 expression which stains proliferating cells on his-
topathological slides [18, 19]. Since malignant lesions 
have a greater proliferation rate than benign mass, [18F]
FLT may serve as a potent biomarker to distinguish 
malignant lesions from benign PNs [19–21].
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In this study, we aim to discern the malignancy of 
pulmonary nodules by radiomic analysis based on [18F]
FDG and [18F]FLT signatures and further compare its 
value with radiomic analysis based on [18F]FDG PET 
alone and visual analysis.

Materials and methods
Patients
The evaluation of retrospective data was approved in 
accordance with the ethical standards of the Chinese 
PLA General Hospital Committee.

From January 2016 to April 2018, we retrospectively 
reviewed data of 113 patients with inconclusive PNs on 
[18F]FDG PET/CT, all of whom underwent additional 
preoperative [18F]FLT PET/CT scans within a week 
[22]. An inconclusive PN was considered when the fol-
lowing criteria were met: (1) the lesions have appar-
ently higher SUV than the rest of the lung; (2) there is 
no obvious evidence of nodal or distant metastasis, and 
(3) there are no definite indications of morphological 
malignancy, such as air bronchograms, spiculated or 
irregular margins, or lobulated shape.

The inclusion criteria of the study were (a) radiologi-
cally clear propensity to be diagnosed as a pulmonary 
nodule with a diameter of no more than 3  cm, (b) no 
definite diagnosis prior to [18F]FDG and [18F]FLT PET/
CT examinations, (c) no treatments before PET/CT 
examination, (d) no indications of major organ dys-
functions or disorders, and (e) clear histopathologic 
identification or the endpoint of long-term follow-up.

Imaging protocols
[18F]FDG and [18F]FLT were produced, and both their 
radiochemical purities are higher than 95%. Every 
patient fasted for over 4  h with a blood glucose level 
of < 11.1 mmol/L and rested in a quiet room for about 
half an hour. Then, the [18F]FDG tracer was given intra-
venously in a standardized dose of 3.70–4.44 MBq/kg. 
An hour after the tracer administration, every patient 
underwent [18F]FDG PET/CT scan (Discovery ST; GE 
Healthcare), and at least 1  day after [18F]FDG PET 
scan, the [18F]FLT tracer was also injected at a dose 
of 3.70–4.44  MBq/kg, and an hour later, every patient 
underwent [18F]FLT PET/CT scan (Discovery ST; GE 
Healthcare).

For both tracers’ scans, we ran the following settings 
to get low-dose CT (LDCT) scans to prevent patients 
from excessive radiation: 120  kV, 100–250  mAs with 
automatic adjustment, 0.8 s rotation, 1.25 mm collima-
tion, and a pitch varied according to the geometry of 
CT detector (4, 8, or 16 slices). Meanwhile, PET was 

scanned in 2 min/bed, 3- or 4-bed positions (axial field 
view 15.7  cm) in three-dimensional mode with three 
iterations, and 21 subsets. Then, images were acquired. 
All the PET/CT data were reconstructed with the Fou-
rier rebinding iterative algorithm and a Gaussian filter 
of 4 mm full width at half maximum.

Visual analysis
Three clinicians with more than 10  years of diagnostic 
experience in pulmonary diseases conducted the vis-
ual analysis of PET/CT images. All the PET/CT image 
interpreters were blind to the patients’ information. The 
interpretation of PN malignancy was listed in Additional 
file 1. Also, the final diagnosis was determined based on 
all listed characteristics. Discrepancies between inter-
preters were resolved in a consensus meeting.

Segmentation
All of the PET/CT data were analyzed by a semi-auto-
mated adaptive threshold method at the RadCloud plat-
form (Huiying Medical Technology Co., Ltd., Beijing, 
China). Volumes of interest (VOIs) of the PN were ini-
tially drawn with a threshold of 40% of the SUVmax 
according to PET images via a commercial software (PET 
VCAR, GE Healthcare, Waukesha, WI, USA). After that, 
VOIs were checked visually on whether they have cov-
ered the whole components shown on the CT. If not, a 
lower threshold was then used [23]. If the VOI contains 
surrounding physical tissues, such as the adjacent myo-
cardial activity, we would adjust its boundary manually 
[24]. All the segmentation was conducted by the same 
handler (a nuclear medicine physician with 4  years of 
experience in tumor drawing).

Feature extraction
Both of the CT and PET images were analyzed, where 
radiomic feature calculations were performed within the 
same VOI in the settings of MATLAB (The MathWorks 
Inc.). When the respiratory motion leads to mismatches 
between CT and PET images, the extension of the VOI 
would be manually adapted to CT images. Before the 
computation of radiomic features, image voxel intensi-
ties were resampled into equally spaced bin widths of 
0.1 [25]. The radiomic features extracted from [18F]FDG 
PET/CT images include shape features, histogram-based 
features, and texture features. Furthermore, texture fea-
tures covered gray level cooccurrence matrix (GLCM), 
run length matrix (GLRLM), size zone matrix (GLSZM),  
and neighborhood gray-tone difference matrix (NGTDM) 
features. For more information about the description of 
the texture feature, see Additional file 1.
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Data analysis
To build the radiomic models, we took the histologi-
cally confirmed malignant or benign PN as the ground. 
In detail, firstly, the dataset was randomly divided into 
a training set and a test set in a ratio of 7:3, of which 
the training set was used for feature selection and 
modeling while the test set was used to test the mod-
els’ performance (the distribution of the dataset is 
shown in Table  1). Secondly, an analysis of variance 
(ANOVA) was applied to univariate feature selection 
to clarify the value of image features in the dataset in 
the differentiation of benign PNs from malignant. To be 
more detailed, features were eliminated if the p value 
exceeded 0.05. Then, the least absolute shrinkage and 
selection operator (LASSO) method was applied to 
the high-dimensional data regression to screen out the 
most valuable discriminative features from the train-
ing set [26], to prevent machine learning models from 
overfitting. The minimum mean square error (MSE) 
was calculated through fivefold cross-validation. Based 
on MSE under different parameters, the best penalty 
parameters and fitting model of LASSO were obtained. 
Finally, the non-zero coefficient features were selected 
for model training.

Development of an individualized prediction model
Two radiomics-based models were established using 
logistic regression (LR) for the distinguished diagnosis 
of benign PNs from malignant. The radiomic features 
selected by ANOVA and LASSO on [18F]FDG PET/CT 
images were used for modeling. Meanwhile, we classified 
PNs’ uptakes indicated on [18F]FLT PET images into no 
uptake, slight uptakes (lower than half the value of tho-
racic vertebrae), and apparent uptakes. In the model of 
FDG-based radiomic analysis, the threshold of the pre-
dictive probability value is 0.699. In the model of radi-
omic analysis based on FDG and FLT, the threshold of 
predictive probability value is 0.594. That is, if the value 
is more than the threshold, then the PN was regarded as 
malignant and otherwise it was benign. The classification 
was regarded as a signature, which was then integrated 
with the selected features of [18F]FDG PET/CT images 
to build another model. By doing so, we tried to find out 

whether the modeling performances could be improved. 
At last, the performances of the two models were tested 
with the 5-fold cross-validation method and then quanti-
tatively assessed through the area under the curve (AUC), 
sensitivity, and specificity based on the receiver operating 
characteristic (ROC). Besides, a separate test set was run 
for verification.

Results
A total of 123 lesions were recorded from 113 patients 
(74 men, 39 women) aged between 27 and 83  years 
(mean age 56.4  years), of which 63 benign lesions 
were respectively diagnosed as inflammation (n = 12), 
tuberculosis (n = 29), or other diseases confirmed by 
follow-up (n = 22) while 60 malignant lesions included 
adenocarcinoma (n = 30), squamous cell carcinoma 
(n = 16), small cell carcinoma (n = 1), bronchioloalveo-
lar carcinoma (n = 6), and others (n = 7) (Table 2).

Based on the visual analysis of [18F]FDG PET/CT 
images, the diagnostic accuracy, sensitivity, and speci-
ficity were 61.6%, 90%, and 28.8%, respectively. Repre-
sentative images of the two cases are shown in Fig. 1.

In total, 678 radiomic features were extracted from 
VOIs (shown in Fig.  2). After ANOVA preprocess-
ing, 294 features were selected for subsequent LASSO 
analysis. The entire process is shown in Fig.  3. Finally, 
14 features with the closest relation to the differentia-
tion of benign and malignant PNs were selected based 
on p value. CT-derived features and PET-based fea-
tures were ranked by the coefficient value of the model, 
which indicates the correlation level, and are catego-
rized in Fig.  4. Among these 14 features, 7 features 
were derived from PET images and 7 features were CT-
based. More details of radiomic features are shown in 
Additional file 2.

We based the selected features and the features com-
bined FLT signature to build two LR models, whose 
ROC are shown in Fig.  5. Based on [18F]FDG PET/
CT plus [18F]FLT signature, the AUC, sensitivity, and 

Table 1  The distribution of the dataset between benign and 
malignant PNs

Benign Malignant Dataset

Training set 36 42 78

Test set 16 18 34

Total 52 (53.57%) 60 (46.43%) 112

Table 2  The pathological diagnosis of 123 lesions

Pathological results Number

benign (n = 63) Inflammation 12

Tuberculosis 29

Follow-up or others 22

Malignant (n = 60) Adenocarcinoma 30

Squamous cell carcinoma 16

Small cell carcinoma 1

Bronchioloalveolar carcinoma 6

Follow-up or others 7
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specificity under the training set are 0.879, 0.810, and 
0.750 in proper order while under the test set, they 
are 0.838, 0.778, and 0.750 successively. Based on [18F]
FDG PET/CT images, the AUC, sensitivity, and speci-
ficity under the training set are 0.834, 0.786, and 0.778, 
respectively, while under the test set, they are 0.810, 
0.778, and 0.688 in proper order. Table 3 reveals these 
results.

Discussion
Early detection of lung cancer using LDCT, a clini-
cally routine examination to discern the benign from 
malignant PNs, allows patients to receive timely treat-
ment and better clinical outcomes, especially longer 
survival. Statistically, this could lead to a reduction 

of mortality in the long term. For accurate detection 
of lung cancer, the American College of Radiology 
(ACR) has developed the Lung Imaging Reporting and 
Data System (Lung-RADS) to standardize CT images 
[22, 27], which, however, still has its own limitations 
because LDCT decreased the sensitivity of PNs’ detec-
tion and further delayed the early identification of 
PNs’ malignancy. Therefore, it is extremely important 
to explore new methods to promote early and precise 
detection of PNs.

In this study, the performance of radiomic analy-
sis supported by the combination of the dual trac-
ers [18F]FLT and [18F]FDG PET/CT was shown to be 
better than [18F]FDG PET/CT, which convincingly 
demonstrated the added value of [18F]FLT PET/CT. 

Fig. 1  Representative dual-tracer PET/CT images of two cases. a Patient 1, male, 87 years old, malignant PN (lung cancer) (A–C). [18F]FDG PET/
CT images show a small nodule without smooth, well-marginated borders, which lied near the aortic arch in the upper lobe of the left lung. 
The size was about 1.1 × 1.2 cm. Besides, higher glucose uptakes were observed within the nodule (SUVmax: 6.94) (D–F). [18F]FLT PET/CT images 
indicate higher tracer uptakes inside the nodule (SUVmax: 2.12). b Patient 2, male, 59 years old, benign PN (tuberculosis) (A–C). [18F]FDG PET/CT 
images show an irregularly shaped nodule with badly defined borders, which stood close to the pleura in the upper lobe of the right lung. The size 
was around 2.6 × 2.4 cm. Besides, there were tracer accumulation within the nodule (SUVmax: 8.26) (D–F). [18F]FLT PET/CT images indicated higher 
tracer uptakes inside the nodule (SUVmax: 2.48)
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Fig. 2  The workflows of VOI extraction and radiomic analysis. VOIs of the lesions were extracted based on its coronal, sagittal, and cross-sectional 
[18F]FDG and [18F]FLT PET/CT images. Then, the radiomic features were extracted according to VOIs

Fig. 3  Feature selection using the LASSO binary logistic model. a The mean square error on each fold in fivefold cross-validation method. Vertical 
dotted line was drawn at the minimum mean square error of average. The optimal penalty parameter alpha was obtained based on the line.  
b LASSO coefficient solution path of the fourteen features. A coefficient profile plot was produced according to the log (alpha) sequence
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Fig. 4  A total of 14 features were finally selected to predict the malignancy of PNs. These 14 features were ranked by the coefficient value 
of the model, among which there were 7 PET-based features and 7 CT-based features. The PET-based features were LBPtop_ri_2_16, LBPtop_
ri_1_10, LGRE_1_1_1.8, LBPtop_ri_2_14, LBTtop_riu2_1_7, LBTtop_ri_1_17, and LBTtop_ri_3_6. The CT-based features were LBPtop_ri_2_24, 
LRLGE_1_1_1.10, LBPtop_ri_2_14, Contrast_1_1_1.1, LGRE_1_1_1.1, LBPtop_ri_2_8, and LRE_1_1_1.7

Fig. 5  ROC curves for machine learning of radiomics. a ROC curves of visual analysis under the test set. b ROC analysis of radiomics based on [18F]
FDG PET/CT under the test set. c ROC analysis of radiomics based on [18F]FDG PET/CT images plus [18F]FLT signature under the test set

Table 3  The AUC, sensitivity, and specificity of three analysis methods under the test set

Analysis methods AUC​ Sensitivity Specificity 95% CI

Radiomic analysis based on [18F]FDG and [18F]FLT PET/CT 0.838 0.778 0.750 0.765 to 0.912

Radiomic analysis based on [18F]FDG PET/CT alone 0.810 0.778 0.688 0.728 to 0.892

Visual analysis 0.594 0.900 0.288 0.521 to 0.667

Radiomic analysis based on [18F]FLT PET/CT 0.785 0.788 0.783 0.723 to 0.851



Page 8 of 10Ning et al. Insights into Imaging          (2023) 14:197 

Furthermore, the diagnostic efficacy of visual analysis 
tended to be lower than that of the radiomic analy-
sis, which may be partly explained by the fact that the 
included subjects were difficult to diagnose on the basis 
of [18F]FDG PET/CT images. In particular, a large pro-
portion of patients with tuberculosis toughened the 
problem because tuberculosis also presented high FDG 
uptakes on PET images, which makes it more difficult 
to differentiate from malignant PNs. However, machine 
learning-based radiomic analysis has the potential to 
distinguish solitary lung adenocarcinoma from tuber-
culosis [28]. Thus, it can be demonstrated that radiomic 
analysis was a viable and non-invasive potential tool for 
these cases, especially when combined with [18F]FLT 
PET/CT modality.

Generally speaking, the accuracy of image-reading 
results is subject to the interpretation criteria and phy-
sicians’ accumulation of professional skills and clinical 
experience. So, the precise identification of various dis-
eases calls for the highest possible objective and quan-
titative view [29]. Although biopsy is thought of as the 
gold protocol for clear diagnosis of diseases, its limita-
tions undoubtedly cannot be ignored, such as the inva-
sivity, poor repeatability, higher incidence of secondary 
complications, and lack of whole body assessment or 
other spatial information other than puncture sites [30]. 
In both scenarios, radiomics is growing and thriving as a 
key area of clinical interest as a result of continued efforts 
to determine independent imaging features.

Radiomics-based analyses have been successfully used 
in assessing spatial patterns of non-uniform distribu-
tion in a way to measure the intra-lesion heterogeneity 
morphologically and quantitatively [7, 31]. Moreover, it 
has been reported that functional biomarkers including 
the glucose metabolism indicated by SUV maps do bet-
ter than morphological parameters visualized on CT in 
the differentiation of PNs with different properties [32]. 
A previous study also indicated that integrating the mor-
phological complexity and metabolic diversity of FDG 
improves the accuracy of lung cancer diagnosis, particu-
larly by increasing the specificity [33]. These studies have 
shown that [18F]FDG PET/CT-based radiomic analysis, 
as a combined manner of both morphological complexity 
and FDG uptake heterogeneity, is of vital importance in 
facilitating accurate diagnosis and clear differentiation of 
diseases.

Van Velden et  al. [33] observed lower FDG uptakes 
within malignant PN (lung cancer), which was consid-
ered as a reflection of metabolic heterogeneity within 
cancer lesions. Under the same circumstance, a quanti-
tative parameter indicating FDG metabolic heterogeneity 

within tumors was put forward to evaluate NSCLC 
patients’ feedback to the clinical management [34]. To 
the same end, Tixier et al. [35] had clarified that hetero-
geneous distribution of FDG uptake within lesions could 
predict response to chemoradiation therapy in patients 
with esophageal cancer.

Currently, [18F]FLT has been recognized as a better-
targeted tracer than [18F]FDG as it has a strong record 
of outstanding sensitivity in detecting primary carci-
noma. However, clinical settings mainly focus on its 
potential to evaluate therapy response rather than other 
applications. Through the comparison between [18F]
FDG and [18F]FLT uptakes in lung cancers, a conclusion 
was reached in a previous research that [18F]FLT uptakes 
achieved extraordinarily high specificity in correla-
tion with malignant tumors. Comparatively, [18F]FDG 
uptakes occurred in half the benign lesions, resulting 
in a non-negligible false-positive rate [36]. Also, Buck 
et al. detected [18F]FLT’s extreme insensitivity to lymph 
node staging (53%) [37]. However, no physiological con-
centration of the tracer was found in the brain, making 
it suitable for the interference-free diagnosis of brain 
metastases [37]. That was why he proposed [18F]FLT as 
a better tracer to assess the therapeutic feedback and 
clinical prognosis. Our findings with radiomic analysis 
based on [18F]FLT alone also indicated FLT performs 
better in the distinguish the benign PNs from malig-
nant PNs. Similarly, a research enrolling 31 NSCLC 
patients demonstrated the sensitivity of [18F]FLT was 
much higher than that of [18F]FDG to primary lesions 
(74% vs 94%) (p = 0.003) [38]. Furthermore, a study of 
18 subjects with lung nodules who underwent [18F]FLT 
and [18F]FDG scans summed up as a more favorable 
performance of dual-tracer imaging than one of tracers 
alone [21]. In this study, there was also a consistent con-
clusion that the [18F]FLT signature enhances the per-
formance of radiomic analysis in distinguishing benign 
from malignant PNs.

From the statistical point of view, ANOVA and LASSO 
were used to screen the features in order to get rid of 
redundant features and avoid overfitting the models. 
Along the way of modeling, penalty was adopted as L2, 
which led to better learning of models and the two mod-
els constructed with satisfactory results. As pretreatment 
of feature selection, ANOVA ignored the correlation 
among features based on sparse assumption. So, the 
LASSO, a regression analysis method for variable selec-
tion and regularization, was adopted in order to further 
select features. Finally, we could assume that we have 
filtered out the most valuable features from a higher 
dimensional group of features.
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This study has several limitations. There is some evi-
dence suggesting that machine learning in FDG radiomic 
analysis is useful in distinguishing between subtypes with 
different levels of [18F]FDG uptake, such as squamous cell 
carcinoma and adenocarcinoma [39]. However, designed 
as retrospective, the present study had a relatively small 
sample size, which to some extent led to the heterogene-
ity in the lesions and selection bias in the analysis. Just as 
such, we did not analyze imaging biomarkers according 
to different histological subtypes of benign and malignant 
PNs. Furthermore, we only chose LDCT in the PET/CT 
scanner so as to protect subjects from excessive radia-
tion exposure, unavoidably causing the absence of mul-
tiplanar reconstruction, contrast enhancement, or other 
classical methods. Although the effectiveness of LDCT 
has been confirmed, it may not be plausible enough to 
fully acclaim the diagnostic value of CT [40]. Addition-
ally, the lack of motion correction on PET images could 
potentially lead to quantification errors and reduction 
of diagnostic confidence. At last, collective blind read-
ing was conducted by professionals with various clini-
cal backgrounds. That was how we tried to minimize the 
deviations from the right diagnosis. Yet, along with that, 
diverse window settings and perspectives may contrib-
ute to the discrepancy of judgment preferences. In other 
words, subjective factors cannot be completely excluded. 
Therefore, further research series with more homogene-
ous patients are needed to clarify the distinction between 
benign and malignant PN with a well-controlled and pro-
spective design.

Conclusions
Despite the clinical recognition of visual inspection, 
radiometric analysis has become more prevalent in the 
accurate differentiation of PNs by providing quantitative 
and comprehensive biological features. In particular, the 
addition of the [18F]FLT modality enriches the visualiza-
tion of the heterogeneity of PNs under different aspects 
of cellular activity characteristics. Therefore, radiomic 
analysis based on PET/CT images with two/more trac-
ers may be a clinical potential and a viable solution for 
the detectable evaluation of benign and malignant PNs, 
which requires further detailed exploration.
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