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Abstract 

Purpose To investigate the reproducibility of radiomics features extracted from two-dimensional regions of interest 
(2D ROIs) versus whole lung (3D) ROIs in repeated in-vivo fetal magnetic resonance imaging (MRI) acquisitions.

Methods Thirty fetal MRI scans including two axial T2-weighted acquisitions of the lungs were analysed. 2D (lung 
at the level of the carina) and 3D (whole lung) ROIs were manually segmented using ITK-Snap. Ninety-five radiomics 
features were extracted from 2 and 3D ROIs in initial and repeat acquisitions using Pyradiomics. Radiomics feature 
intra-class correlation coefficients (ICC) were calculated between 2 and 3D ROIs in the initial acquisition, and between 
2 and 3D ROIs in repeated acquisitions, respectively.

Results MRI data of 11 (36.7%) female and 19 (63.3%) male fetuses acquired at a median 25 + 0 gestational weeks 
plus days (GW) (interquartile range [IQR] 23 + 4 − 27 + 0 GW) were assessed. Median radiomics feature ICC between 
2 and 3D ROIs in the initial MRI acquisition was 0.733 (IQR 0.313–0.814, range 0.018–0.970). ICCs between radiomics 
features extracted using 3D ROIs in initial and repeat acquisitions (median 0.908 [IQR 0.824–0.929, range 0.335–0.996]) 
were significantly higher compared to 2D ROIs (0.771 [0.699–0.835, 0.048–0.965]) (p < 0.001).

Conclusion Fetal MRI radiomics features extracted from 3D whole lung segmentation masks showed significantly 
higher reproducibility across repeat acquisitions compared to 2D ROIs. Therefore, fetal MRI whole lung radiomics 
features are robust diagnostic and potentially prognostic tools in the image-based in-vivo quantitative assessment of 
lung development.

Key points 

• Standardised fetal MRI delivers reproducible quantitative whole lung radiomics features.
• 2D lung ROI radiomics features are not representative of the whole fetal lung.
• Whole lung radiomics features are better reproducible than 2D ROI features.
• Whole lung radiomics features are more sensitive to subtle differences between normal and pathological fetal 

lung development compared to 2D lung ROI features.
• Fetal MRI whole lung radiomics may improve non-invasive in-vivo lung development assessment.
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Background
Prenatal detection of pathologic lung development is 
a prerequisite for timely resource allocation, including 
delivery in a centre offering advanced neonatal respira-
tory support techniques such as extra-corporeal mem-
brane oxygenation. Currently, non-invasive in-vivo 
imaging assessment of fetal lung growth relies primar-
ily on fetal ultrasound or magnetic resonance imaging 
(MRI) based lung volumetry [1]. This approach is lim-
ited by wide gestational age and body volume-adjusted 
normal lung volume ranges that may only inaccurately 
identify fetuses at risk for postnatal respiratory insuf-
ficiency [2, 3]. Research on fetal MRI signal intensity-
based analysis of lung maturity has produced variable 
results, thus far precluding its clinical translation [4].

The use of radiomics, a quantitative image analysis 
method that is used to extract a large number of fea-
tures from medical image data, has been proposed to 
increase the diagnostic and prognostic imaging yield 
in a variety of conditions [5–7]. Recently, studies have 
highlighted the potential of radiomics for the identifi-
cation of fetuses with abnormal lung development and 
texture-based neonatal respiratory distress prediction 
[8–10]. Thus far, fetal lung radiomics features have been 
extracted from two-dimensional (2D), representative-
appearing regions of interest (ROI) in fetal lung ultra-
sound images [10]. However, it is unclear if features 
extracted from 2D ROIs are sufficient to reflect the 
developmental status of the entire fetal lung. In addi-
tion, reproducibility of radiomics features in test–retest 
conditions is a precondition for their safe and mean-
ingful application according to the Radiomics Quality 
Score proposed by Lambin et  al. [11]. To date, there 
is a lack of evidence regarding the reproducibility of 
radiomics features extracted from the fetal lung using 
2D ROIs, limiting the wider application of radiomics 
in fetal lung imaging and beyond. Fetal MRI offers the 
opportunity to obtain three-dimensional (3D) image 
data of the developing lungs in a standardised fashion, 
and may facilitate reproducible radiomics-based quan-
titative assessment of lung development.

Therefore, this study had two aims: First, to inves-
tigate whether fetal MRI lung radiomics features 
extracted from 2D ROIs are representative of features 
extracted from whole lung segmentation masks (3D 
ROIs). Second, to investigate the reproducibility of lung 
radiomics features extracted from 2 and 3D ROIs in 
repeated standardised fetal MRI acquisitions.

Methods
This retrospective, single-centre study was approved 
by the Ethics Committee of the Medical University 
of Vienna (1232/2022). The requirement to obtain 
informed consent was waived. A part of the study 
cohort (n = 29) has been previously reported in a study 
that did not include 2D radiomics feature analyses [12].

Patients
A retrospective search of the hospital picture and 
archiving system (PACS) was conducted to identify 
thirty cases that underwent clinically indicated fetal 
MRI including two axial T2-weighted acquisitions of 
the developing lung between January of 2016 and Feb-
ruary of 2022. The sample size was chosen in accord-
ance with previous test–retest studies investigating 
radiomics feature reproducibility [13–15]. In order to 
assess radiomics feature reproducibility, cases with 
normal and diffuse lung pathology (e.g. pulmonary 
hypoplasia due to premature rupture of membranes) 
at different gestational ages were included. Cases were 
excluded from analysis for lack of ultrasound-based 
gestational age estimation, presence of a focal lung 
malformation, incomplete lung representation on fetal 
MRI, lung tissue visible on five or fewer MRI slices, or 
presence of (fetal or maternal) motion artifacts.

Fetal MRI
Fetal MRI data from clinically indicated scans were ret-
rospectively identified. Repeated standardised axial 
T2-weighted acquisitions of the lungs were routinely 
performed for e.g. lung volumetry or data collection for 
super-resolution body imaging according to the clini-
cal indication and in accordance with ISUOG guidelines 
[16]. One 1.5  T MRI scanner (Ingenia, Philips Health-
care, Best, The Netherlands) was used for all exams. Axial 
T2-weighted acquisitions were acquired in a standardised 
fashion using a body coil and the following parameters: 
200 to 300  mm field of view, 3 to 4  mm slice thickness 
(thinner slices used in early gestation), 0.3 to 0.4 mm gap, 
256 × 256 matrix, shortest (7536.2 to 31,575  ms) rep-
etition time, 100  ms echo time, and 90° flip angle. Spe-
cific absorption rates were less than 2W/kg for all cases. 
Fetal MRI scans were performed without administration 
of sedation or contrast medium. The time in minutes 
between initial and repeat axial T2-weighted acquisitions 
was calculated for each case. Gestational age in weeks 
plus days (GW) post menstruationem at the time of the 
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fetal MRI scan was calculated based on the first fetal 
ultrasound examination.

Radiomics
Anonymised fetal MRI data were exported from the 
hospital PACS (Dedalus HealthCare, Bonn, Germany). 
Manual segmentation masks of the whole lung (3D ROI) 
were obtained for initial and repeat T2-weighted axial 
fetal MRI acquisitions by one radiologist with five years 
of experience in fetal MRI (F.P.) using ITK-Snap [17]. For 
each 3D ROI, the slice index at the level of the carina 
was recorded. MRI images and lung segmentation masks 
were saved as nifti-files. In addition, image and lung seg-
mentation mask slices at the level of the carina were con-
verted to 2D nifti-files using the python package nibabel 
(MIT). Radiomics features were extracted from 2 and 3D 
ROIs using Pyradiomics [18], under Python 3.7.1 with the 
following settings: normalise parameter ’true’, normalise 
Scale parameter 100, voxelArrayShift 300, (3 SDs × 100) 
ensuring that only outlier values > 3 SDs below the mean 
remain negative, binWidth 5, ’sitkBSpline’ as interpola-
tor, and resampledPixelSpacing ’[2, 2, 2]’ for 3D or ‘[2, 
2]’ for 2D image data. Radiomics features encompassed 
the following classes: First Order (n = 18), 3D or 2D 
Shape (n = 9), Grey Level Co-occurrence Matrix (GLCM, 
n = 22), Grey Level Size Zone Matrix (GLSZM, n = 16), 
Grey Level Run Length Matrix (GLRLM, n = 16), and 
Grey Level Dependence Matrix (GLDM, n = 14). A list of 

all radiomics features is provided in the Additional file 1. 
See Fig. 1 for an illustration of the study design.

Statistical evaluation
R version 4.0.5 (R Core Team, Vienna, Austria) was used 
for statistical analysis. Intra-class correlation coefficients 
(ICC) were calculated to assess radiomics feature repro-
ducibility within the initial MRI acquisition between 2 
and 3D ROIs, and between initial and repeat MRI acqui-
sition for 2D vs 2D ROIs, and 3D versus 3D ROIs, respec-
tively. The psych R package (version 2.1.9) was used to 
calculate ICCs, applying two-way mixed effects models 
(ICC3) and single rater unit. ICCs > 0.9 were consid-
ered excellent, > 0.75 to 0.9 good, 0.5 to 0.75 moderate, 
and < 0.5 poor according to Koo et  al. [19]. The paired 
Wilcoxon Rank Sum test was used to compare ICCs of 
radiomics feature extracted from 2D ROIs in initial 
and repeat MRI acquisitions, and of radiomics features 
extracted from 3D ROIs in initial and repeat MRI acqui-
sitions. Differences in radiomics features between fetuses 
with pathological or healthy lung development were 
assessed using ANCOVA followed by estimated mar-
ginal mean (EMM, emmeans R package) comparisons, 
whereby gestational age was included as a covariate and 
binned into 20  day intervals (< 160, 160–180, 180–200, 
200–220 and > 220 days) to control for potential non-lin-
ear growth effects. EMM comparison p values were cor-
rected for multiple testing using the false discovery rate 
(FDR). A two-sided p value of < 0.05 or a false discovery 

Fig. 1 Study design. Repeated acquisitions of T2-weighted axial MRI images of the lung in a fetus at gestational week 32. Three-dimensional 
(3D) regions of interest (ROIs) encompassing the whole lung were manually segmented in initial (green) and repeat (blue) acquisitions of 30 
fetuses. Two-dimensional (2D) ROIs were defined as lung segmentations at the level of the carina in initial (red) and repeat (orange) acquisitions, 
respectively. Radiomics feature reproducibility was assessed between features extracted from 2 and 3D ROIs in the initial acquisition (red vs. green), 
2D ROIs in repeated acquisitions (red vs. orange), and 3D ROIs in repeated acquisitions (green vs. blue)
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rate of < 0.1 combined with a two-sided p value of < 0.05, 
as applicable, were considered statistically significant.

Results
Key characteristics of the study cohort are given in 
Table  1. The median time between initial and repeat 
axial T2-weighted MRI acquisitions was 3.7  min (IQR 
0.9–5.9  min, range 0.7–24.2  min). Radiomics features 
extracted from 2 and 3D ROIs in the initial MRI acqui-
sition were reproducible to a variable degree (Fig.  2A, 
B): The median ICC across all features was 0.733 (IQR 
0.313–0.814, range 0.018–0.970). Five of 95 (5.3%) fea-
tures showed excellent, 36 (37.9%) good, 22 (23.2%) 
moderate, and 32 (33.7%) poor reproducibility. All five 
features with excellent reproducibility belonged to the 
class ‘First Order’ (Fig. 2B).

Radiomics features extracted from 2D ROIs in ini-
tial and repeat MRI acquisitions exhibited a median 
ICC of 0.771 (IQR 0.699–0.835, range 0.048–0.965; 
see Fig.  3A). Twelve of 95 (12.6%) features showed 
excellent, 44 (46.3%) good, 26 (27.4%) moderate, 13 
(13.7%) poor reproducibility (see Fig.  3B). Radiomics 
features extracted from 3D ROIs in initial and repeat 
MRI acquisitions exhibited a median ICC of 0.908 

(IQR 0.824–0.929, range 0.335–0.996). Forty-nine of 95 
(51.6%) showed excellent, 32 (33.7%) good, 13 (13.7%) 
moderate, and 1 (1.1%) poor reproducibility (see 
Fig. 3B). Table 2 shows radiomics feature reproducibil-
ity according to feature classes.

ICCs were significantly higher between initial and 
repeat MRI acquisitions if 3D ROIs were used for 
radiomics feature extraction compared to 2D ROIs 
(p < 0.001) (see Fig.  3C). A complete list of radiom-
ics feature ICCs between 2 and 3D ROIs in initial MRI 
acquisition, and between initial and repeat MRI acqui-
sitions using 2D ROIs, and 3D ROIs is provided in the 
Additional file 1: Table S1.

Means and standard deviations of radiomics features 
for all fetuses, and for fetuses with normal and patho-
logical lung development, as well as raw and FDR-cor-
rected p values are shown in Additional file  1: Tables 
S2 (for 3D ROIs) and S3 (for 2D ROIs). Eleven of 100 
features (11%) were found to be significantly different 
between fetuses with normal and pathological lung 
development when using 3D ROIs (see Additional 
file 1: Fig. S1). Meanwhile, none of the 100 features (0%) 
passed the nominal threshold for statistical significance 
when using 2D ROIs.

Table 1 Study cohort characteristics

Key characteristics of the study cohort: Fetal and maternal ages are given as median and interquartile range

GW gestational week plus days post menstruationem, IQR interquartile range

*Fetal lung development was considered normal if lung volume was within gestational age-adjusted normal volume ranges

Sex Female 11/30 (36.7%)

Male 19/30 (63.3%)

Age Fetal 25 + 0 GW (IQR 3 + 3)

Maternal 29.7 (IQR 7.3)

Normal lung development* 22/30 (73.3%)

Normal fetal development 9/30 (30%)

Ventricular asymmetry 3/30 (10%)

Ventriculomegaly 1/30 (3.3%)

Macrocephaly 1/30 (3.3%)

Diastematomyelia 1/30 (3.3%)

Cleft lip and palate 1/30 (3.3%)

Cardiomegaly 1/30 (3.3%)

Hypoplastic right heart 1/30 (3.3%)

Transposition of great arteries 1/30 (3.3%)

Unilateral ureteral stenosis 1/30 (3.3%)

Posterior ureteral valve 1/30 (3.3%)

Muscular atrophy 1/30 (3.3%)

Pathologic lung development 8/30 (26.7%)

Pulmonary hypoplasia due to premature rupture of membranes and oligohydramnios 6/30 (20%)

Pulmonary hypoplasia due to hypoplastic kidneys and oligohydramnios 1/30 (3.3%)

Pulmonary hypoplasia due to autosomal recessive polycystic kidney disease and  
oligohydramnios

1/30 (3.3%)
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Discussion
Radiomics have the potential to enhance the assessment 
of fetal MRI data by extracting quantitative image fea-
tures that may not be visually perceivable [20]. However, 
reliable radiomics-assisted fetal-MRI-based tissue char-
acterisation requires excellent feature reproducibility 
[11]. The presented findings show that the use of 2D ver-
sus 3D lung ROIs for radiomics feature extraction from 
fetal MRI data severely impacts feature values. In addi-
tion, radiomics features extracted from 3D ROIs encom-
passing the whole fetal lung outperformed features 
extracted from 2D lung ROIs with regard to reproduc-
ibility in repeated image acquisitions. Therefore, in the 
future, highly-reproducible fetal MRI radiomics features 
extracted from whole lung segmentation masks may 
improve non-invasive quantitative assessment of lung 
development.

Non-invasive in-vivo MRI assessment of the fetal 
lungs is safe and feasible during the second and third 
trimesters, which corresponds to the canalicular and 
saccular phases of lung development [1]. During this 
time, besides volume growth, lung organogenesis is 
characterised by microstructural changes including the 

formation of pulmonary acini, differentiation of type I 
and II pneumocytes, and increasing production of lung 
fluid and surfactant. This can be observed in fetal MRI 
as an increase in lung volume along with an increase 
in signal intensity [21]. However, visual assessment of 
fetal lung signal intensity in MRI is subjective. Integra-
tion of quantitative measures of tissue characteristics 
in the form of lung-to-liver, lung-to-muscle, or lung-to 
spinal fluid signal intensity ratios into fetal MRI lung 
assessment have produced mixed results [4, 22–24], so 
far prohibiting their translation into clinical routine. 
Therefore, current image-based assessment of fetal 
lung development focuses primarily on tissue quantity 
in the form of lung volume rather than tissue quality. 
Unfortunately, volume alone is an imperfect descrip-
tor of lung developmental status as gestational age-
adjusted growth curves show wide normal ranges [2]. 
Recently, the use of novel fetal MRI techniques includ-
ing diffusion-weighted imaging [25], intra-voxel inco-
herent motion analysis [26] and T2* mapping [27] for 
the microstructural characterisation of fetal lung tissue 
has been advocated but their benefit remains largely 
unclear.
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Fig. 2 2D versus 3D fetal MRI lung radiomics features. a Intra-class correlation coefficients (ICCs) and 95% confidence intervals (CI) between 2 
and 3D ROIs in a single MRI acquisition for each of the 95 investigated radiomics features. Lines indicate ICCs, and ribbons 95% CI. Features are 
grouped according to class. b Barplots depicting the proportions of radiomics features with poor (ICC < 0.5), moderate (0.5–0.75), good (0.75–0.9) 
and excellent (> 0.9) reproducibility grouped according to class; CI confidence interval GLCM: grey level co-occurrence matrix, GLDM: grey level 
dependence matrix, GLRLM: grey level run length matrix, GLSZM: grey level size zone matrix, ICC intra-class correlation coefficient
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In order to facilitate non-invasive, image-based and 
timely detection of abnormal fetal lung development, 
reliable quantitative lung tissue features beyond volume 
are needed. Radiomics allows the extraction of a multi-
tude of features reflecting various aspects of shape and 

texture from 2D or 3D image ROIs [28]. Fetal MRI is 
ideally suited for the extraction of quantitative lung radi-
omics features since image acquisition follows a stand-
ardised protocol. Most fetal imaging centres use a single 
MRI scanner, which has been shown to be essential for 

a

b

0.00

0.50

0.75

0.90
1.00

S
iz

e
M

es
hS

iz
e

M
aj

or
A

xi
sL

en
gt

h
Pe

rim
et

er
O

rS
ur

fa
ce

A
re

a
M

ax
im

um
D

ia
m

et
er

M
in

or
A

xi
sL

en
gt

h
Pe

rim
et

er
S

ur
fa

ce
O

rS
ur

fa
ce

Vo
lu

m
eR

at
io

E
lo

ng
at

io
n

S
ph

er
ic

ity

Shape

IC
C

 (9
5%

 C
I)

E
ne

rg
y

To
ta

lE
ne

rg
y

90
Pe

rc
en

til
e

R
oo

tM
ea

nS
qu

ar
ed

M
ed

ia
n

M
ea

n
10

Pe
rc

en
til

e
E

nt
ro

py
Va

ria
nc

e
M

ea
nA

bs
ol

ut
eD

ev
ia

tio
n

U
ni

fo
rm

ity
R

ob
us

tM
ea

nA
bs

ol
ut

eD
ev

ia
tio

n
In

te
rq

ua
rti

le
R

an
ge

M
ax

im
um

R
an

ge
M

in
im

um
S

ke
w

ne
ss

Ku
rto

si
s

Firstorder

Id
D

iff
er

en
ce

Av
er

ag
e

Id
m

D
iff

er
en

ce
E

nt
ro

py
D

iff
er

en
ce

Va
ria

nc
e

In
ve

rs
eV

ar
ia

nc
e

Jo
in

tE
nt

ro
py

C
on

tra
st

S
um

S
qu

ar
es

S
um

E
nt

ro
py

C
lu

st
er

Te
nd

en
cy

C
lu

st
er

P
ro

m
in

en
ce

Jo
in

tE
ne

rg
y

Au
to

co
rr

el
at

io
n

Jo
in

tA
ve

ra
ge

C
lu

st
er

S
ha

de
M

ax
im

um
P

ro
ba

bi
lit

y
C

or
re

la
tio

n
Im

c1
Im

c2 Id
n

Id
m

n

GLCM

R
un

Le
ng

th
N

on
U

ni
fo

rm
ity

G
ra

yL
ev

el
N

on
U

ni
fo

rm
ity

R
un

E
nt

ro
py

R
un

Pe
rc

en
ta

ge
Lo

ng
R

un
E

m
ph

as
is

R
un

Va
ria

nc
e

R
un

Le
ng

th
N

on
U

ni
fo

rm
ity

N
or

m
al

iz
ed

S
ho

rtR
un

E
m

ph
as

is
G

ra
yL

ev
el

Va
ria

nc
e

G
ra

yL
ev

el
N

on
U

ni
fo

rm
ity

N
or

m
al

iz
ed

Lo
ng

R
un

H
ig

hG
ra

yL
ev

el
E

m
ph

as
is

H
ig

hG
ra

yL
ev

el
R

un
E

m
ph

as
is

S
ho

rtR
un

H
ig

hG
ra

yL
ev

el
E

m
ph

as
is

Lo
ng

R
un

Lo
w

G
ra

yL
ev

el
E

m
ph

as
is

Lo
w

G
ra

yL
ev

el
R

un
E

m
ph

as
is

S
ho

rtR
un

Lo
w

G
ra

yL
ev

el
E

m
ph

as
is

GLRLM

G
ra

yL
ev

el
N

on
U

ni
fo

rm
ity

S
iz

eZ
on

eN
on

U
ni

fo
rm

ity
G

ra
yL

ev
el

N
on

U
ni

fo
rm

ity
N

or
m

al
iz

ed
G

ra
yL

ev
el

Va
ria

nc
e

Zo
ne

E
nt

ro
py

Zo
ne

Pe
rc

en
ta

ge
La

rg
eA

re
aH

ig
hG

ra
yL

ev
el

E
m

ph
as

is
La

rg
eA

re
aE

m
ph

as
is

Zo
ne

Va
ria

nc
e

H
ig

hG
ra

yL
ev

el
Zo

ne
E

m
ph

as
is

S
m

al
lA

re
aH

ig
hG

ra
yL

ev
el

E
m

ph
as

is
S

iz
eZ

on
eN

on
U

ni
fo

rm
ity

N
or

m
al

iz
ed

S
m

al
lA

re
aE

m
ph

as
is

La
rg

eA
re

aL
ow

G
ra

yL
ev

el
E

m
ph

as
is

Lo
w

G
ra

yL
ev

el
Zo

ne
E

m
ph

as
is

S
m

al
lA

re
aL

ow
G

ra
yL

ev
el

E
m

ph
as

is

GLSZM

D
ep

en
de

nc
eN

on
U

ni
fo

rm
ity

G
ra

yL
ev

el
N

on
U

ni
fo

rm
ity

D
ep

en
de

nc
eN

on
U

ni
fo

rm
ity

N
or

m
al

iz
ed

S
m

al
lD

ep
en

de
nc

eE
m

ph
as

is
D

ep
en

de
nc

eE
nt

ro
py

La
rg

eD
ep

en
de

nc
eH

ig
hG

ra
yL

ev
el

E
m

ph
as

is
G

ra
yL

ev
el

Va
ria

nc
e

La
rg

eD
ep

en
de

nc
eE

m
ph

as
is

D
ep

en
de

nc
eV

ar
ia

nc
e

La
rg

eD
ep

en
de

nc
eL

ow
G

ra
yL

ev
el

E
m

ph
as

is
H

ig
hG

ra
yL

ev
el

E
m

ph
as

is
S

m
al

lD
ep

en
de

nc
eH

ig
hG

ra
yL

ev
el

E
m

ph
as

is
Lo

w
G

ra
yL

ev
el

E
m

ph
as

is
S

m
al

lD
ep

en
de

nc
eL

ow
G

ra
yL

ev
el

E
m

ph
as

is

GLDM

Comparison
2D3D

0

25

50

75

100

%
 R

ad
io

m
ic

s 
fe

at
ur

es

0

25

50

75

100
3D 2D

S
ha

pe

Fi
rs

to
rd

er

G
LC

M

G
LR

LM

G
LS

ZM

G
LD

M

S
ha

pe

Fi
rs

to
rd

er

G
LC

M

G
LR

LM

G
LS

ZM

G
LD

M

excellent (>0.9)

good (0.75−0.9)

moderate (0.5−0.75)

poor (<0.5)

p < 0.001

0.00

0.50

0.75

0.90
1.00

3D 2D
Comparison

IC
C

C

Fig. 3 Reproducibility of 2D and 3D fetal MRI lung radiomics features. a Intra-class correlation coefficients (ICCs) and 95% confidence intervals (CI) 
between 2 and 3D regions of interest (ROIs) in repeat examinations for each of the 95 investigated features. Lines (ICCs) and ribbons (95% CI) are 
coloured according to the comparisons depicted (3D blue, 2D red). Features are grouped according to class. b Barplots depicting the proportions 
of radiomics features with poor (ICC < 0.5), moderate (0.5–0.75), good (0.75–0.9) and excellent (> 0.9) reproducibility according to feature class and 
2D or 3D ROIs in repeat examinations. c Radiomics feature ICCs were significantly higher between initial and repeat MRI acquisitions if 3D ROIs 
were used for radiomics feature extraction compared to 2D ROIs; CI confidence interval GLCM: grey level co-occurrence matrix, GLDM: grey level 
dependence matrix, GLRLM: grey level run length matrix, GLSZM: grey level size zone matrix, ICC intra-class correlation coefficient

Table 2 Radiomics feature reproducibility

Summary of radiomics feature reproducibility for the use of two-and three-dimensional regions of interest in a single and in repeated MRI acquisitions. Excellent 
reproducibility was defined as intra-class correlation coefficient > 0.9. Texture features include the following classes: Grey Level Co-occurrence Matrix, Grey Level Size 
Zone Matrix, Grey Level Run Length Matrix, and Grey Level Dependence Matrix

ICC intra-class correlation coefficient, ROI region of interest

MRI acquisitions First order statistics Shape features Texture features

ICC > 0.9 ICC ≤ 0.9 ICC > 0.9 ICC ≤ 0.9 ICC > 0.9 ICC ≤ 0.9

Single

2D versus 3D ROI 5/18 (27.8%) 13/18 (72.2%) 0/9 (0%) 9/9 (100%) 0/68 (0%) 68/68 (100%)

Repeated

2D versus 2D ROI 7/18 (38.9%) 11/18 (61.1%) 4/9 (44.4%) 5/9 (55.6%) 1/68 (1.5%) 67/68 (98.5%)

3D versus 3D ROI 10/18 (55.6%) 8/18 (44.4%) 7/9 (77.8%) 2/9 (22.2%) 32/68 (47.1%) 36/68 (52.9%)
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radiomics feature reproducibility. Moreover, dedicated 
fetal MRI lung assessments already requires manual 
whole lung segmentation to obtain lung volume [29]. 
These lung segmentations could be integrated into a 
post-processing pipeline for radiomics feature extraction 
that has potential for automation due to the high level of 
standardisation recommended by the Image Biomarker 
Standardisation Initiative [30]. Therefore, fetal MRI 
radiomics analysis of lung development could be imple-
mented without the need for additional costly resources.

Fetal lung texture analysis has thus far only been 
explored using ultrasound images: Previous stud-
ies assessed lung maturity [31], identified cases at risk 
for pulmonary hypoplasia [32], and predicted neona-
tal respiratory insufficiency [33] with promising results. 
However, ultrasound studies used 2D fetal lung ROIs 
to extract texture features, e.g. from lung tissue at the 
level of the four chamber view. In addition, physicians 
placed ultrasound ROIs in ‘representative lung areas’ 
while avoiding artifacts. This approach raises questions 
with regard to the reliability of radiomics-based fetal 
lung assessment: Cardiac position (and the level of the 
four chamber view) may vary in pathologies where lung 
development is of particular interest, such as in fetuses 
with congenital diaphragmatic hernia, or congenital pul-
monary airway malformation. Furthermore, it is unclear 
whether a two-dimensional ROI sufficiently represents 
tissue characteristics of a much larger three-dimensional 
structure, particularly if subjective criteria are used to 
determine the ROI’s location. Lastly, there is a lack of 
evidence regarding the reproducibility of radiomics fea-
tures extracted from 2D ROIs in repeated image data 
acquisitions.

The presented results suggest that radiomics features 
extracted from 2D fetal MRI lung ROIs do not adequately 
represent whole lung tissue characteristics. Few features 
(5 of 95 [5.3%]; 10Percentile, Mean, RootMeanSquared, 
Median, 90Percentile) showed excellent reproducibility 
between the use of 2D and 3D ROIs in fetal MRI data 
from a single acquisition. Moreover, these features all 
reflected basic first order statistics but none shape or 
higher-order texture, effectively excluding potentially 
crucial information contained within the lung’s micro-
structure from further analysis. Another essential finding 
concerns the limited radiomics feature reproducibility for 
the use of 2D lung ROIs in repeated fetal MRI acquisi-
tions. Here, excellent reproducibility was found in only 
twelve of 95 (12.6%) features. Notably, this was achieved 
using standardised 2D ROIs that covered the entire 
lung tissue except hilar structures on an axial fetal MRI 
slice at the level of the carina. Subjective segmentation 
of representative-appearing lung areas may have fur-
ther increased radiomics feature variability. In contrast, 

excellent radiomics feature reproducibility was found in 
a majority of features (49 of 95, 51.6%), including a vari-
ety of shape and higher-order texture features, if 3D lung 
ROIs were used for both fetal MRI acquisitions.

The complex and dynamically changing microstructure 
of the fetal lung are unlikely to be adequately reflected by 
one quantitative parameter, which may explain the lim-
ited utility of previously explored lung signal intensity 
ratios for outcome prediction [23, 24]. Rather, a com-
bination of images markers, i.e. ‘a radiomics signature’ 
focusing on different fetal lung characteristics, such as 
texture and shape, may be more suitable as a quantita-
tive descriptor of lung development. Undoubtedly, lung 
volume remains an essential parameter to determine 
whether lung development is age-appropriate. By adding 
texture and shape features to a lung radiomics signature, 
the sensitivity of fetal MRI for the detection of abnormal 
lung development may be increased, e.g. in cases where 
lung volume is within normal ranges but lung micro-
structure is altered. As demonstrated, whole lung fetal 
MRI radiomics enables the extraction of a large number 
of highly-reproducible lung shape and texture features 
that may be used to develop radiomics signatures of nor-
mal and pathologic lung development in the future.

As a proof of concept, we tested whether 3D and 2D 
ROIs were sufficient to detect significant differences 
between radiomics features extracted from fetal lungs 
with normal or pathological development in our limited 
sample size. We found 11% of radiomics features were 
significantly different between lungs with normal com-
pared to pathological development when using 3D ROIs. 
Critically, in case of the use of 2D ROIs, no significant 
difference in radiomics features was observed, indicating 
that radiomics features extracted from 3D ROIs are more 
sensitive to subtle, visually not perceivable changes in the 
fetal lung’s microstructure. Further studies are necessary 
to confirm these findings and identify robust and predic-
tive 3D fetal lung radiomics features.

This study had several limitations: The number of 
included cases was relatively small but similar or larger 
compared to previous test–retest studies on radiomics 
feature reproducibility [13–15]. A single 1.5 T MRI scan-
ner was used. Due to the retrospective study design, rou-
tinely performed repeated MRI acquisitions from a single 
examination were utilised rather than repeated fetal MRI 
scans. While T2-weighted images are widely used for 
visual assessment of the fetal lung [34], it is not known 
which MRI sequence is best suited for radiomics-based 
analysis. The radiomics feature set included in the cur-
rent analysis is limited, but is compatible with the Image 
Biomarker Standardisation Initiative guidelines [30]. 
Pyradiomics has been widely used in lung imaging and 
beyond facilitating comparability and generalizability of 
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results [18]. Excellent radiomics feature reproducibility 
was conservatively defined as ICC > 0.9, but there is a lack 
of evidence concerning an optimal cut-off value.

Conclusion
In conclusion, this study demonstrates that fetal MRI 
radiomics features extracted from 2D ROIs do not 
adequately represent tissue characteristics of 3D ROIs 
encompassing the whole lung. In addition, they exhibit 
insufficient reproducibility between repeated standard-
ised fetal MRI acquisitions. In contrast, a majority of fetal 
MRI radiomics features extracted from 3D whole lung 
segmentation masks are excellently reproducible. There-
fore, highly-reproducible whole lung radiomics features 
represent potential image biomarkers for improved fetal 
MRI-based prediction of abnormal lung development 
and neonatal respiratory function.
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