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Abstract 

Objective  The purpose of the study is to investigate the performance of radiomics-based analysis in prediction of 
pure ground-glass nodule (pGGN) lung adenocarcinomas invasiveness using thin-section computed tomography 
images.

Methods  A total of 382 patients surgically resected single pGGN and pathologically confirmed were enrolled in the 
retrospective study. The pGGN cases were divided into two groups: the noninvasive group and the invasive adenocar-
cinoma (IAC) group. 330 patients were randomly assigned to the training and testing cohorts with a ratio of 7:3 (245 
noninvasive lesions, 85 IAC lesions), while 52 patients (30 noninvasive lesions, 22 IAC lesions) were assigned to the 
external validation cohort. A  model, radiomics model, and combined clinical-radiographic-radiomic model were built 
using the LASSO and multivariate backward stepwise regression analysis on the basis of the selected  and radiomics 
features. The area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate and compare the 
model performance for invasiveness discrimination among the three cohorts.

Results  Three clinical-radiographic features (including age, gender and the mean CT value) and three radiomics 
features were selected for model building. The combined model and radiomics model performed better than the clin-
ical-radiographic model. The AUCs of the combined model in the training, testing, and validation cohorts were 0.856, 
0.859, and 0.765, respectively. The DCA demonstrated the radiomics signatures incorporating clinical-radiographic 
feature was clinically useful in predicting pGGN invasiveness.

Conclusions  The proposed radiomics-based analysis incorporating the clinical-radiographic feature could accurately 
predict pGGN invasiveness, providing a noninvasive biomarker for the individualized and precise medical treatment of 
patients.

Key points 

•	 Radiomics have potentials to differentiate the invasiveness of pGGNs lung adenocarcinoma.
•	 Clinical-radiographic feature adds discriminative value to radiomics in pGGNs pathological subtype.
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•	 Combined clinical-radiographic-radiomic model can successfully stratify patients into noninvasive pGGNs and 
invasive pGGNs in patients with resectable lung adenocarcinoma.

Keywords  Radiomics, Lung adenocarcinoma, Ground glass opacity, Tomography (X-Ray Computed), Pulmonary 
nodules

Introduction
Lung cancer is one of the most common and serious 
causes of cancer-related deaths worldwide [1]. With the 
development of high-resolution computed tomography 
(CT) and the popularization of low-dose CT screening, 
the incidence of pure ground-glass nodules (pGGNs) is 
rapidly increasing [2, 3]. A pGGN can be defined as a 
nodule with a hazy attenuation increase in the lung win-
dow, without a solid component when viewed with medi-
astinal window settings, and without vessel and bronchial 
structure obscuring [4, 5]. According to the new classifi-
cation proposed by the International Association for the 
Study of Lung Cancer, the American Thoracic Society, 
and the European Respiratory Society, lung adenocarci-
nomas include atypical adenomatous hyperplasia (AAH), 
adenocarcinoma in situ (AIS), minimally invasive adeno-
carcinoma (MIA), and invasive adenocarcinoma (IAC) 
[6]. Persistent pGGNs lasting for more than three months 
have been proven to be associated with early stage lung 
adenocarcinoma including AAH, AIS, MIA and IAC [7–
11]. Most pure GGNs are preinvasive lesions; however, 
recent histologic studies have shown that approximately 
20% to 50% have invasive components [12–15]. In recent 
study, Ye et  al. found that 10.8% of pure ground-glass 
lung adenocarcinoma nodules were of the IAC subtype 
among 988 pulmonary nodules [16].

Lobectomy is the standard surgical treatment for IACs; 
however, AIS and MIA may be candidates for sublobar 
resection [17]. Previous studies have demonstrated that 
the 5-year disease-free survival (DFS) of patients with 
AIS and MIA can reach 100% or almost 100%, while 
the DFS of patients with IAC is 40–85% [18]. Therefore, 
distinguishing IACs from preinvasive lesions and MIAs 
before surgery is crucial for clinical management and 
prognosis prediction in patients with pGGNs.

Clinical features including age, sex, and smoking his-
tory have been found as predictors of nodule growth and 
pathologic diagnosis [8, 19, 20]. Adenocarcinoma also 
accounts for a large percentage of lung tumors in female 
patients [21]. Huang et  al. found that non-smoking 
female patients with lung cancer were more likely to have 
adenocarcinoma [22]. IAC occurred more often in older 
patients; Hu et al. found that aged ≥ 60 years was one of 
independent predictors of pGGNs histologic invasiveness 
[23].

CT is the most commonly used technique for the 
detection and differentiation of pGGN invasiveness 
[24]. Previous studies have shown that IAC differentia-
tion is mainly based on radiographic features, including 
morphological features (margin, shape, vessel change, 
bubble sign, and pleural indentation) and quantitative 
features (lesion size, CT value, and volume) [14, 15, 19, 
20, 25, 26]. While morphological features widely depend 
on the experience of observers and quantitative features 
are affected by scanning parameters (e.g., consistency 
of measurement), some features in pGGNs overlap; this 
is especially true in small nodules with a size of < 6 mm 
[27].

Radiomics that can extract high-throughput data from 
medical images and analyses with numerous quantita-
tive descriptors in order to investigate the associations 
between imaging features and various endpoints have 
a promising potential for the evaluation of pGGN inva-
sion [28–30]. Most previous studies have only extracted 
texture features from nonenhanced CT images and have 
included a small number of lesions. It would be very 
helpful in deciding on the optimal treatment plan if using 
clinical, radiographic and radiomics features for the dif-
ferentiation of IAC from MIA and preinvasion (AAH and 
AIS) in evaluating pGGNs.

Therefore, the authors of the present study hypothesized 
that the combination of clinical, radiographic and radiom-
ics features can improve the diagnostic ability to determine 
the histological invasiveness of adenocarcinomas appear-
ing as pGGNs. The purpose of this study is to develop a 
combined prediction model in order to help guide an indi-
vidualized preoperative design of surgical procedures.

Materials and methods
Study population
The present retrospective study was approved by the 
institutional research board, and the requirement for 
informed consent was waived.

The records and images of patients with pGGNs who 
underwent a preoperative chest CT were retrospectively 
reviewed. All nodules were pathologically confirmed as 
lung adenocarcinomas (AAH, AIS, MIA, and IAC) via 
surgical resection between January 2017 and December 
2020 (Fig.  1 shows the flowchart of study population), 
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lobectomy resection for patients with IAC, whereas lim-
ited resections for patients with AAH, AIS or MIA.

Inclusion criteria: (1) Patients with a single pGGN on 
thin-slice (≤ 1.50 mm) CT lung window images (window 
width: 1200 HU and −600 HU); (2) patients with a nod-
ule diameter of < 30 mm; and (3) patients who underwent 
surgical resection (including lobectomy resection and 
limited resections) within one week of receiving a CT 
scan.

Exclusion criteria: (1) Patients who received preopera-
tive treatment or biopsy which hemorrhage or exudates 
occurred around pGGNs; (2) patients with a history of 
malignant tumors; (3) patients who had preoperative 
CT images with obvious artifacts affecting further analy-
sis, the decision was made by an experienced radiologist 
before grouping; and (4) patients with multiple GGN 
(mGGN).

Finally, 382 patients aged 35–73  years (mean 
age = 56 ± 10  years) with a total of 382 pGGNs were 
enrolled in the present study. The patients comprised 123 
males aged 35–67  years (mean age = 54 ± 11  years) and 
259 females aged 38–73 years (mean age = 58 ± 13 years). 
Of these patients, 231 were assigned to the training 
cohort and 99 were assigned to the test cohort randomly 
assigned to the training and testing cohorts with a ratio of 
7:3; meanwhile, 52 patients scanned at the third CT were 
assigned to the external validation cohort. According to 
the pathological results (AAH, AIS, MIA, and IAC), pre-
invasive adenocarcinoma and MIA were considered non-
invasive lesions. All included pGGNs were divided into 

two groups: the non-IAC group (n = 275; 72%) and the 
IAC group (n = 107; 28%).

Acquisition of CT imaging
All patients received a contrast-enhanced chest CT using 
the Siemens SOMATOM Definition Flash, Siemens 
SOMATOM Sensation Open CT or GE Revolution. 
The detailed scanning parameters are listed in Table  1. 
The contrast-enhanced CT was performed after 25  s of 
intravenous administration of iodinated contrast mate-
rial (2 mL/kg) at a rate of 3 mL/sec. The CT scans were 
acquired from all patients in the supine position at full 
inspiration. Scan coverage was from the lung base to the 
thoracic inlet.

Image preprocessing
To minimize noise and processing artifacts, resampling 
of image data was avoided wherever possible, as previ-
ously described in similar investigations [31]. First, linear 
interpolate was applied to re-sampled the CT images and 
make voxel isotropic of 1 × 1 × 1 mm. Second, the image 
was discretized in gray scale and the binwidth was set to 
25. Third, a Laplacian of Gaussian convolution kernel fil-
ter (σ = 3, 5, and 7) and wavelet transform was employed 
to decrease noise and enhance features at different spatial 
scales.

Clinical characteristics and CT image evaluation
According to the research literature related to lung can-
cer [32], the clinical characteristics, including age, gender, 

Fig. 1  The flowchart of study population
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smoking status, and clinical symptoms, were derived 
from medical records. Two thoracic radiologists with 5 
and 10 years of experience, respectively, reviewed the CT 
images of each patient and identified the radiographic 
features including morphological and quantitative fea-
tures without knowledge of the patient’s pathologi-
cal results. Decisions regarding the CT features were 
reached by consensus. Morphological features included 
lobulation, spiculation, pleural indentation, and the vacu-
ole sign. Quantitative features included the lesion maxi-
mum diameter and mean CT value. The CT images were 
read with a lung window setting (width: 1200 HU; level: 
−600 HU).

Reproducibility analysis
To ensure reader reproducibility, 50 patients were ran-
domly selected for a reproducibility analysis. For the 
evaluation of the interobserver agreement of the radi-
omics features, two radiologists with 8  years (Reader 1) 
and 10 years (Reader 2) of experience in chest CT inter-
pretation, respectively, completed the region of interest 
(ROI) delineation without any information regarding the 
patients. Next, Reader 1 repeated the ROI delineation 
with an interval of one week for the assessment of the 
interobserver agreement. The interobserver and inter-
observer agreement of the radiomics feature extraction 
were evaluated using interclass and intraclass correla-
tion coefficients (ICC). Features with an ICC of > 0.8 were 
regarded as an acceptable agreement and were included 
in the subsequent analyses.

Segmentation of pulmonary nodules
Segmentation of pulmonary nodules was performed on 
the thin-slice enhanced images with a lung window set-
ting (width, 1200 HU; level, −600 HU) using the ITK-
SNAP software (version 3.8.0, https://​www.​itksn​ap.​org). 
The radiologist delineated the nodule length, and the 
software automatically drew regions of interest covering 
the entire range of the tumor on the axial CT images. The 

radiologist manually adjusted and identified the bound-
ary regions on each section. The involved pleura, blood 
vessels, and bronchi at the edge of the nodules were 
excluded from nodule segmentation.

Radiomics feature extraction
Radiomics feature extraction was performed using the 
PyRadiomics. A total of 1130 radiomics features were 
extracted from the contrast-enhanced CT image for 
each patient [33]. The extracted features comprised 
tumor shape features, first-order statistic features, and 
texture features, such as the gray-level co-occurrence 
matrix (GLCM), gray-level run length matrix, gray-level 
dependence matrix, gray-level zone matrix (GLSZM), 
and neighborhood gray tone difference matrix, to reflect 
internal heterogeneity as previously described [34].

clinical‑radiographic‑feature‑based model
Relevant clinical features, including sex, age, smoking 
history, and clinical symptoms, and radiographic features 
including morphological and quantitative features were 
analyzed to build clinical-radiographic-based model.

The clinical feature selection was performed in three 
steps: (1) The Shapiro–Wilk test was used to test the nor-
mality of the data sets; (2) the Student t test or Wilcoxon 
rank sum test was used for the continuous variables 
(mean CT value and maximum diameter), and the χ2 or 
Fisher exact test was applied for the categorical variables 
(sex, smoking history, and clinical symptoms); and (3) the 
stepwise multivariable logistic regression analysis was 
applied to obtain the independent clinical risk factors 
and build a clinical-feature-based model.

Radiomics‑feature‑based model
The radiomics-feature-based model was built in four 
steps: (1) The correlation analysis was performed to 
identify the redundant features (features with a corre-
lation coefficient of > 0.8 were eliminated) [28]; (2) the 
Mann–Whitney U-test was performed to compare the 

Table 1  CT scanning parameters

Setting Siemens SOMATOM definition flash Siemens SOMATOM sensation open CT GE revolution

Tube voltage (kV) 120 120 120

Tube current (mA) 35 mAs 35 mAs Smart mAs

Pitch 1.2 1.2 1

Matrix 512 × 512 512 × 512 512 × 512

Slice thickness (mm) 1.0 1.0 1.25

Reconstruction algorithm B60 B60 STND

Window width (HU) 1200 1200 1200

Window level (HU) −600 −600 −600

https://www.itksnap.org
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differences between each radiomics feature in the two 
groups (radiomics features with a p value of < 0.05 were 
kept); (3) the least absolute shrinkage and selection oper-
ator (LASSO) was performed for feature selection [35–
38]; and (4) the stepwise multivariate logistic regression 
analysis based on the Akaike information criteria was 
performed to identify the optimal radiomics features for 
the differentiation of noninvasive lesions and IACs. Then, 
a combined predictive model was built with the use of 
selected conventional and radiomics features.

The performance of the three models in the train-
ing, testing, and validation cohorts was evaluated by the 
receiver operating characteristics (ROC) curves; the area 
under the curve (AUC), accuracy, sensitivity, and speci-
ficity were calculated, respectively. A radiomics signa-
ture-based score (Rad-score) for each outcome was then 
obtained from the final model. The Rad-score cut-off 
values for differentiation of the non-IAC group and the 
IAC group were chosen according to the Youden index 
criteria. To estimate model goodness-of-fit, calibration 
curves were performed, and the Hosmer–Lemeshow test 
was used to assess model consistency [39, 40]. Decision 
curve analyses (DCAs) were used to evaluate the poten-
tial net benefit based on the clinical diagnosis, radiomics, 
and the combined model in the different cohorts.

Results
Patient demographic characteristics
A total of 382 patients with pGGNs were enrolled in the 
present retrospective study according to the inclusion 
and exclusion criteria. Among them, 275 were diagnosed 
with noninvasive lesions (AAH, AIS, and MIA) and 107 
were diagnosed with IAC. The training cohort comprised 
330 patients (330 pGGNs); these patients were divided 
into the training cohort and the testing cohort accord-
ing to the ratio of 7:3 with stratified sampling. A total of 
52 patients (52 pGGNs) were assigned to the validation 
cohort. The demographic characteristics of three cohorts 
of the 382 patients are listed in Table 2.

Feature selection
According to the univariate analysis results, three clini-
cal features (gender, age, and smoking history), six radio-
graphic features including four morphological features 
(burr, lobe, vacuole sign, and pleural involvement), and 
two quantitative features (mean CT value and axis max 
length diameter) were found to be significant in the dif-
ferentiation between noninvasive lesions and IPAs in the 
training cohort; only one quantitative feature (mean CT 
value) was found to be significant between noninvasive 
lesion and IPAs in the external validation cohort.

According to multivariable logistic regression, age, 
gender, and the mean CT value were selected to build 

clinical-radiographic-based model. After LASSO and 
the stepwise logistic regression analysis were conducted, 
three radiomics features were ultimately selected to 
build a radiomics-feature-based model. These features 
included the Log.5.0_glszm_SmallAreaHighGrayLev-
elEmphasis, wavelet.LHL_glcm_MCC, and wavelet.
LLL_glcm_SumAverage.

Performance of clinical‑radiographic, radiomics, 
and combined models
The ROCs and AUCs of the three cohorts are shown in 
Fig. 2A–C. The best model was the combined model in 
the training and testing cohorts, with an AUC of 0.856 
and 0.859, in the validation cohort, the radiomics model 
and the combined model performed better than clinical 
model, with an AUC of 0.814, 0.765 and 0.692, respec-
tively. The radiomics models showed an excellent pre-
dictive performance in the discrimination of IACs from 
noninvasive lesions in the three cohorts. The radiomics 
signature yielded an AUC of 0.854, 0.846, and 0.814 in 
the training, testing, and validation cohorts, respectively 
(Table 3), and the sensitivity was 0.883, 0.840 and 0.955, 
specificity was 0.663, 0.644 and 0.633 in three cohorts.

The Rad-score was calculated from the selected radi-
omics features. The corresponding regression coefficients 
and distribution in the training, testing, and validation 
cohorts are presented in Fig.  3. The Rad-score cut-off 
value was −1.66.

The calibration curves showed good predictability 
between prediction and observation in the three cohorts 
(Fig.  4). Compared with the results of the validation 
cohort, the correspondence between actual and ideal 
predictions suggested good calibration of the clinical, 
radiomics, and combined models in the training and test-
ing cohorts.

The decision curve analysis for the three models is pre-
sented in Fig.  5. The decision curve indicated that the 
use of a combined model for the prediction of invasive 
lesions added more net benefit than the use of clinical 
features or radiomics features alone in the differentiation 
of IACs from noninvasive lesions; this was especially true 
in the training and testing cohorts. The DCA in the exter-
nal validation cohort showed that the combined and radi-
omics models achieved higher average precision scores 
than the clinical-radiographic model.

Clinical-radiographic features, including gender, age, 
mean CT value, and radiomics features (Log.5.0_glszm_
SmallAreaHighGrayLevelEmphasis, wavelet.LHL_
glcm_MCC, and wavelet.LLL_glcm_SumAverage), were 
significantly associated with an increased risk of IACs. 
The highest odds ratio (OR) was detected for gender in 
the clinical model (OR = 2.466), for wavelet.LLL_glcm_
SumAverage in the radiomics model (OR = 2.287), and 
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for wavelet.LLL_glcm_SumAverage in the combined 
model (OR = 2.471) (Table 4).

Discussion
Radiomics are a rising field of quantitative imaging that 
can extract high-throughput data features and describe 
tumor phenotype characteristics. Radiomics analysis pro-
vides a noninvasive and powerful alternative for disease 
diagnosis, differentiation, clinical treatment, and assess-
ment [34]. Recent studies have succeeded in radiomics 

analyses in the field of oncology, showing the diagnostic 
and prognostic values [34, 41, 42].

Therefore, in the present study, the radiomics features 
and evaluated clinical features were extracted from CT 
images for the prediction of pGGN invasiveness; they 
were then investigated, and the performance of the 
clinical, radiomics, and combined models for classify-
ing noninvasive lesions and IACs was compared.

The results of the present study showed that the com-
bined model performed better than the radiomics and 
clinical models, with a higher AUC in the training and 

Table 2  Demographic characteristics

*p value is derived from statistical analyses between each of variables and groups. p value < 0.05 indicated statistical significance. Values are presented as no. (%) or 
mean (95%CI). Chi-square test or Fisher’s exact test was used for the categorical variable. A Student’s t test, Mann–Whitney U-test or Kruskal–Wallis H-test were used 
for the continuous variable

Training cohort Testing cohort Validation cohort

NonInvasion Invasion p value* NonInvasion Invasion p value NonInvasion Invasion p value*

N = 172 N = 60 N = 73 N = 25 N = 30 N = 22

Gender 0.041 0.032 0.107

 Female 124 (72.1%) 34 (56.7%) 54 (74.0%) 12 (48.0%) 17 (56.7%) 18 (81.8%)

 Male 48 (27.9%) 26 (43.3%) 19 (26.0%) 13 (52.0%) 13 (43.3%) 4 (18.2%)

Age 56.0 [47.0; 
62.0]

59.5 [53.8; 
64.0]

0.016 55.0 [48.0; 
61.0]

59.0 [54.0; 
64.0]

0.110 57.0 [52.0; 
64.0]

60.5 [53.5; 
65.0]

0.295

Center 0.302 1.000 0.317

 Absent 84 (48.8%) 24 (40.0%) 32 (43.8%) 11 (44.0%) 19 (63.3%) 10 (45.5%)

 Present 88 (51.2%) 36 (60.0%) 41 (56.2%) 14 (56.0%) 11 (36.7%) 12 (54.5%)

AxisMaxLength 1.02 [0.80; 
1.24]

1.53 [1.19; 
1.95]

 < 0.001 1.01 [0.84; 
1.30]

1.56 [1.17; 
1.97]

 < 0.001 1.29 [0.95; 
1.67]

1.28 [1.18; 
1.63]

0.453

Distance 0.99 [0.29; 
1.82]

0.74 [0.00; 
1.56]

0.193 0.68 [0.29; 
1.49]

0.66 [0.00; 
1.20]

0.427 0.50 [0.00; 
1.71]

1.27 [0.59; 
1.86]

0.187

Burr 0.001 0.001 1.000

 Absent 170 (98.8%) 53 (88.3%) 71 (97.3%) 18 (72.0%) 27 (90.0%) 20 (90.9%)

 Present 2 (1.16%) 7 (11.7%) 2 (2.74%) 7 (28.0%) 3 (10.0%) 2 (9.09%)

Lobe 0.001 0.014 0.299

 Absent 170 (98.8%) 53 (88.3%) 72 (98.6%) 21 (84.0%) 29 (96.7%) 19 (86.4%)

 Present 2 (1.16%) 7 (11.7%) 1 (1.37%) 4 (16.0%) 1 (3.33%) 3 (13.6%)

Vacuole 0.224 0.050 1.000

 Absent 163 (94.8%) 54 (90.0%) 72 (98.6%) 22 (88.0%) 29 (96.7%) 21 (95.5%)

 Present 9 (5.23%) 6 (10.0%) 1 (1.37%) 3 (12.0%) 1 (3.33%) 1 (4.55%)

Pleura Involve 0.017 0.255 1.000

 Absent 172 (100%) 57 (95.0%) 73 (100%) 24 (96.0%) 29 (96.7%) 22 (100%)

 Present 0 (0.00%) 3 (5.00%) 0 (0.00%) 1 (4.00%) 1 (3.33%) 0 (0.00%)

MeanCT −562.50 
[−634.72; 
−480.93]

−501.25 
[−545.38; 
−413.53]

 < 0.001 −508.80 
[−588.00; 
−407.60]

−471.90 
[−567.20; 
−408.10]

0.544 −597.55 
[−638.65; 
−551.20]

−493.10 
[−566.88; 
−391.80]

 < 0.001

Clinical 0.497 0.855 0.475

 Absent 130 (75.6%) 42 (70.0%) 53 (72.6%) 17 (68.0%) 23 (76.7%) 14 (63.6%)

 Present 42 (24.4%) 18 (30.0%) 20 (27.4%) 8 (32.0%) 7 (23.3%) 8 (36.4%)

Smoke 0.071 0.004 0.161

 No 146 (84.9%) 44 (73.3%) 66 (90.4%) 16 (64.0%) 22 (73.3%) 20 (90.9%)

 Yes 26 (15.1%) 16 (26.7%) 7 (9.59%) 9 (36.0%) 8 (26.7%) 2 (9.09%)
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Fig. 2  The ROCs of the three models in the training cohort (a), testing cohort (b), and validation cohort (c). The predictive performance for an 
invasive pGGN lesion was better in the combined model than in the clinical and radiomics models in the training and testing cohorts. In the 
validation cohort, the radiomics model and combined model performed better than clinical model

Table 3  Diagnostic performance of three models for the prediction of pGGN invasiveness

95% CI means 95% confidence interval

Cohort Model AUC​ 95% CI Sensitivity Specificity Accuracy

Training cohort Clinical-radiographic model 0.729 0.661–0.798 0.817 0.576 0.638

Radiomics model 0.854 0.804–0.905 0.883 0.663 0.720

Combined model 0.856 0.804–0.908 0.850 0.727 0.759

Testing cohort Clinical-radiographic model 0.652 0.523–0.782 0.680 0.452 0.510

Radiomics model 0.846 0.766–0.927 0.840 0.678 0.729

Combined model 0.859 0.781–0.937 0.880 0.685 0.735

Validation cohort Clinical-radiographic model 0.692 0.542–0.843 0.682 0.600 0.635

Radiomics model 0.814 0.699–0.928 0.955 0.668 0.769

Combined model 0.765 0.638–0.893 0.773 0.656 0.762
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testing cohorts (0.856, 0.859, respectively), suggest-
ing that it is a noninvasive tool for differentiating IACs 
from noninvasive lesions.

Some studies have suggested that radiomics features 
can be used to differentiate pGGN invasiveness. Previous 
studies reported that in clinical practice, lesion size, CT 
value, and morphological characteristics were associated 
with pGGN invasiveness [43–45]. Recent studies have 
highlighted the combined model, which incorporated 
clinical features and radiomics features in the diagnosis 
of lung cancer.

Sun et al. and Liu et al. [46, 47] showed that the predic-
tive model for IAC constructed by integrating the clinical 
and radiomics features based on the radiomics nomo-
gram exhibited excellent accuracy in the differentiation 

of noninvasive lesions from IACs (AUC 0.831; 95% CI: 
0.765–0.897). Although morphological characteris-
tics, such as lobulation, burr, vacuole sign, and pleu-
ral involvement sign, are helpful in the identification of 
nodule invasiveness, they were not included in the final 
clinical model construction of this study; this is mainly 
because the morphological characteristics of early stage 
lung cancer are usually atypical, especially in IACs with a 
smaller diameter than 1 cm. Furthermore, identification 
of the morphological features depended on the radiolo-
gist’s diagnostic experience.

Former studies have found that the mean nodule CT 
value is a significant predictor in the differentiation of 
pGGN invasiveness. Previous study has shown that 

Fig. 3  The box plots show the distribution between noninvasive and invasive lesions for GGNs in the training cohort (a), testing cohort (b), and 
validation cohort (c). The Wilcoxon test obtained p values. The Rad-score was higher in the invasive group than in the noninvasive group
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pGGNs with a mean CT value higher than −600 HU 
indicated invasive adenocarcinoma [23].

Wu et  al. [48] evaluated CT and histopathologic fea-
tures of lung adenocarcinoma with pGGNs that were 
≤ 10 mm in diameter, and the results showed no statisti-
cally significant difference in the CT value between non-
invasive lesions and IACs.

In the present study, the multivariate logistic regression 
analysis revealed that the mean CT value was useful in 
histopathologic subtype differentiation; IACs reflected 
a higher mean CT value than noninvasive lesions. The 
study also showed that the AUC for the clinical model 
established by using gender, age, and the mean CT 
value was lower than the AUC for the radiomics model 

in the three cohorts (AUC = 0.729, 0.652, and 0.692, 
respectively).

Radiomics show the ability to serve as a bridge 
between medical imaging and precise medicine [49–
51]. Yang et  al. [52] utilized 14 radiomics features of 
lung adenocarcinoma to distinguish IACs and non-
invasive lesions; an AUC of 0.77 was achieved. The 
radiomics signatures performed better than the most 
commonly used clinical features, such as the mean CT 
value. Weng et  al. [53] identified that the nomogram, 
which integrated morphology characteristics and radi-
omics features, showed a high performance in the clas-
sification of IACs and MIAs (AUC = 0.888).

Fig. 4  Calibration curves for the prediction of pGGN invasiveness based on the three models in the training cohort (a), testing cohort (b), and 
validation cohort (c). The x-axis represents the predicted probability of IACs based on the clinical, radiomics, and combined models, and the 
y-axis represents the actual probability of pGGN invasiveness. The 45° diagonal line represents ideal prediction, and the red, green, and blue lines 
represent the predictive performance of the nomogram. The closer the line was to the ideal line, the better the predictive nomogram performance
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Fig. 5  Decision curve analysis for the combined model (c) compared with the clinical model (a) and radiomics models (b) alone. The x-axis shows 
the threshold probability, and the y-axis measures the net benefit. The black line represents the hypothesis that all patients with pGGNs had 
noninvasive lesions, and the gray line represents the hypothesis that all patients with pGGNs had invasive lesions

Table 4  Associations between features and invasiveness of pGGNs

OR 95% CI p value

Clinical model

 Gender 2.466 1.266–4.860 0.0083

 Age 1.037 1.033–1.074 0.0356

 Mean CT value 1.006 1.003–1.009 0.0000

Radiomics moel

 Log.5.0_glszm_SmallAreaHighGrayLevelEmphasis 2.232 1.481–3.441 0.0001

 wavelet.LHL_glcm_MCC 0.579 0.370–0.884 0.0132

 wavelet.LLL_glcm_SumAverage 2.287 1.528–3.549 0.0001

Combined model

 Log.5.0_glszm_SmallAreaHighGrayLevelEmphasis 2.201 1.446–3.419 0.0002

 wavelet.LHL_glcm_MCC 0.603 0.382–0.929 0.0247

 wavelet.LLL_glcm_SumAverage 2.471 1.623–3.928 0.0000

 Gender 2.190 1.004–4.832 0.0491
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In the present study, the radiomics features per-
formed a good differentiation ability in three cohorts 
(AUC = 0.854, 0,846, and 0.814, respectively); this abil-
ity was significantly better at predicting IACs than in 
the clinical model. The findings of the present study are 
consistent with the findings of previous studies, which 
have found various texture and shape features to be sig-
nificant predictors of IACs.

Furthermore, radiomics features comprising tumor shape 
features, first-order statistic features, and texture features 
in a noninvasive, three-dimensional manner may allow for 
more precise and personalized treatment than traditional 
modality of these patients with pGGN detected by CT.

The clinical and radiomics models were then com-
bined to improve the diagnosis accuracy; the combined 
model had a better performance than clinical and radi-
omics model alone and achieved a satisfactory result 
in the external validation cohort. The ROC and DCA 
also indicated that using the combined model to pre-
dict invasive lesions added more net benefit than using 
clinical features or radiomics features alone in differen-
tiating IACs from noninvasive lesions, especially in the 
training and testing cohorts.

The present study has several limitations. First, it is a 
single-institutional retrospective study, and the sample 
size is small; large and multi-institutional cohorts will be 
recruited in future research. Second, the CT images were 
acquired from different scanners, and standardization of 
scanning and reconstruction parameters is required for 
further study. Third, although an external validation cohort 
was constructed, the number of patients assigned to it was 
relatively small; thus, it is necessary to increase the number 
of cases in this group to identify the performance of the 
model and usefulness of radiomics signatures.

Conclusion
In conclusion, the radiomics signature from the CT 
images provided a noninvasive modality for IAC pre-
diction. Radiomics signatures combined with clini-
cal features yielded a better performance than using 
alone in differentiating IACs from noninvasive lesions 
appearing as pGGNs on thin-slice CT; this may facili-
tate clinical diagnosis and treatment in further work.
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