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Abstract 

Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of 
dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect 
with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for 
confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of 
improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring 
of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, 
and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease 
spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-
state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Addition-
ally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission 
computed tomography and positron emission tomography with a variety of clinically used and experimental radi-
otracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging 
and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. 
With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid proto-
cols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.

Key points 

• Neurodegenerative diseases represent a growing substantial burden of disease worldwide.
• Clinical diagnosis and standard imaging techniques lack accuracy in diagnosing dementia syndromes.
• Multiparametric magnetic resonance and molecular imaging are tools for evaluating neurodegenerative disease.
• Combined positron emission tomography/magnetic resonance imaging protocols provide the ideal dementia 

appraisal.
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Background
Neurodegenerative disease (NDDs) including demen-
tia syndromes represent a substantial burden of disease 
worldwide. Estimated global prevalence of all-cause 
dementia is 700 per 100,000 persons with the number of 
patients with dementia nearly doubling every five years 
[1]. Clinical diagnosis alone remains not entirely reliable 
with a median sensitivity of 87% and specificity of 58% 
[2]. Proper diagnosis is crucial to aid with prognostica-
tion and pharmacologic management of patients with 
NDDs, with disease modifying therapies an active field of 
research interest and recent US Food and Drug Adminis-
tration approval of aducanumab, an IgG1 anti-amyloid-
beta antibody targeting amyloid beta plaques, the first 
therapy of its kind available, though not yet approved in 
Europe [3–6]. Imaging is often applied to increase diag-
nostic confidence in the setting of a suspected NDD and 
in 2011 the US National Institute on Aging and the Alz-
heimer’s Association incorporated imaging biomarkers 
into the guidelines for diagnosis of Alzheimer’s disease 
(AD) [7]. Structural imaging methods such as magnetic 
resonance imaging (MRI) are often undertaken first, 
though limited sensitivity and specificity and high inter-
observer variability limit the applicability of these more 
commonly used methods [8]. Molecular imaging pro-
vides promise in its unique ability to visualize the spatial 
distribution of pathologic changes in NDDs and has been 
demonstrated to lead to increases in diagnostic certainty 
and provide therapeutic guidance. We aim to provide a 
brief review of the characteristics and epidemiology of 
NDDs, as this topic has been covered in detail elsewhere, 
and focus on their imaging features across multiple 
modalities, particularly advanced multiparametric MRI 
and molecular imaging.

Alzheimer’s disease
Alzheimer’s disease is the most common form of pro-
gressive dementia which accounts for up to 60% of cases 
in patients older than 65 years [9]. Alzheimer’s disease is 
pathologically defined by senile gray matter plaques con-
sisting of neurotoxic deposits of extracellular amyloid–
beta (Aβ) 42 protein, intracellular neurofibrillary tangles 
(NFTs) including the three repeat (3R) and four repeat 
(4R) tau isoforms, and decreased neuronal density from 
neuronal death. Neurofibrillary changes tend to progress 
in an orderly manner starting in the transentorhinal cor-
tex and progressing through the medial temporal lobes 
to neocortical association areas in the frontal, parietal, 
and occipital lobes [10, 11]. Sporadic and familial forms 
have been defined with approximately 10% of patients 
related to presenilin 1 (PSEN1), presenilin 2 (PSEN2), 
and APOE*E4 genes. The clinical course of Alzheimer’s 
disease typically begins with a slow decline in memory 

followed by diminishing function in language, visuospa-
tial, and executive abilities [9, 12]. Patients typically have 
poor recent memory; disorientation to time and place; 
impaired recall, recognition, object and space perception, 
conversational speech, and working memory; and word 
retrieval difficulty.

Structural imaging in the evaluation of AD is typically 
performed with volumetric T1-weighted imaging. Vari-
ous scales and grading systems have been studied includ-
ing those evaluating atrophy of the medial temporal lobes 
[13, 14]. Overall, these have shown adequate sensitiv-
ity and specificity, however, are limited by interobserver 
variation [8]. Automated segmentation methods have 
also shown the ability to discriminate between AD and 
controls [15, 16]. Image analysis software with automated 
volumetric segmentation of brain regions has also shown 
value for the prediction of development of AD from mild 
cognitive impairment (MCI), a condition characterized 
by decline in performance on standardized neurocog-
nitive testing, demonstrating an area under the curve 
between 0.6 and 0.77 [17, 18]. Structural imaging is also 
valuable in following patients on monoclonal anti-Aβ 
antibody therapy, as pooled analysis reported approxi-
mately 40% of patients on aducanumab develop amyloid-
related imaging abnormalities (ARIAs) (Fig. 1) [19].

Advanced non-molecular imaging techniques have 
also been researched for the diagnosis of AD. Diffusion 
tensor imaging (DTI) has shown decreased fractional 
anisotropy (FA) and increased mean diffusivity (MD) 
in medial temporal lobe structures including the hip-
pocampus, parahippocampal cingulum, uncinate fascic-
ulus, and fornix as well as the posterior cingulate cortex 
(PCC), splenium of the corpus callosum, and superior 
longitudinal fasciculus [20, 21]. Magnetization transfer 
imaging (MTI), which relies on the exchange of mag-
netization between protons bound to macromolecules 
and free water, is another advanced MRI biomarker for 
evaluating AD, with values often reported as a magneti-
zation transfer ratio (MTR) calculated by subtracting the 
signal of tissue prior to the pulse sequence by the signal 
following the pulse sequence then dividing by the signal 
prior to the pulse sequence [22]. Decreased MTR has 
been reported in multiple brain regions in AD includ-
ing the locus coeruleus (LC), hippocampus, entorhinal 
cortex, precuneus, and global gray matter [22–24]. The 
proposed mechanism of decreased MTR in the LC is 
loss of neuromelanin and increased free water, with the 
LC potentially one of the earliest structures afflicted 
by NFTs [25, 26]. Decreased N-acetylaspartate (NAA)/
myo-inositol ratio in the PCC may predict develop-
ment of AD [27]. Arterial spin labeling (ASL) has been 
shown to be comparable to 2-[18F]fluoro-2-deoxy-d-
glucose positron emission tomography (FDG-PET) in 
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the diagnosis of AD, however, with lesser diagnostic 
performance in MCI [28]. Resting-state functional MRI 
(rsfMRI) has fairly consistently shown hypoconnectiv-
ity in the default mode network (DMN), which can be 
seen in earlier stages of the disease process, especially 
in impacted mutation carriers [29]. Decreased stiffness 
within the temporal and parietal lobes on magnetic reso-
nance elastography (MRE) has been reported [30].

Recently, molecular imaging has shown promise in 
improving diagnostic confidence in AD. Current targets 
of clinically used radiotracers include glucose metabo-
lism, amyloid beta plaques, and tau. Figure  2 demon-
strates normal patterns of radiotracer activity for these 
agents. Patient preparation, dosing and kinetics, and 
normal and abnormal distribution of the commonly 
used radiotracers are described in Table 1.

Fig. 1 A 67-year-old man with AD on anti-Aβ monoclonal antibody trial. T2 FLAIR image shows hyperintensity in the parasagittal left frontal lobe 
(oval in a), with no evidence of hyperintensity on DWI (b), and associated subcortical microhemorrhages (oval in c). None of these abnormalities 
were present prior to receiving antibody therapy (d–f), consistent with ARIA with edema and hemorrhage. Arterial spin labeling demonstrates 
hypoperfusion to the parietal and frontal lobes (g), with corresponding diffuse cortical uptake on florbetapir PET/CT typical of AD (h)



Page 4 of 35Loftus et al. Insights into Imaging            (2023) 14:8 

Fluorodeoxyglucose PET imaging has been used as 
a discriminatory tool for the diagnosis of AD since the 
early 2000s. Hypometabolism on FDG-PET scans has 
shown to be a reliable indicator of neuronal degenera-
tion in AD [7]. A meta-analysis demonstrated excellent 
performance of FDG-PET in discriminating between AD 
and non-AD neurodegenerative syndromes with a sen-
sitivity of 90% and specificity of 89% [31]. Additionally, 
FDG-PET has also shown signs of value in predicting the 
progression from amnestic type MCI to AD, especially 
when single-subject statistical parametric mapping (ss-
SPM) was utilized, with a low probability of progression 
in three years with a negative study [32, 33]. Typical pat-
terns of hypometabolism in MCI and early typical AD 
include the temporal lobes, parahippocampal gyri, PCC, 
and precuneus, with involvement of the precuneus and 
middle and inferior temporal gyri more characteristic of 
AD [34–36]. Advanced typical AD shows a fairly con-
sistent pattern of diffuse hypometabolism involving the 
aforementioned areas as well as the parietal lobes and 
prefrontal cortex with relative sparing of the precentral 
gyrus, basal ganglia, and occipital cortex (Fig. 3), except 
in the posterior cortical atrophy (PCA, also known as 
Benson’s) clinical phenotype of Alzheimer’s dementia, 
where lateral occipital lobe atrophy and hypometabo-
lism creates the “occipital tunnel” sign (Fig.  4) [37, 38]. 
Limbic-predominant AD tends to have more pronounced 
hypometabolism in the hippocampus and related mesial 
temporal lobe structures with additional involvement of 
the frontal cortex, while the limbic-sparing or cortical-
predominant subtype involves similar regions to typi-
cal AD, with more prominent involvement of the frontal 
lobes and lesser involvement of the mesial temporal lobes 
as its name suggests [39]. Additional clinical AD pheno-
types which can be discriminated on FDG-PET include 
the logopenic variant of primary progressive aphasia 

(lvPPA) which shows left/dominant hemisphere posterior 
perisylvian or parietal hypometabolism and the dysexec-
utive/behavioral variant which has similar temporopari-
etal hypometabolism to typical AD however with variable 
involvement of the PCC and frontal lobes [40, 41].

Along with qualitative assessment, semiquantitative 
assessment of FDG-PET can be performed by calculat-
ing the cerebral metabolic rate of glucose (CMRgluc), 
formally calculated by diving the plasma glucose level 
by a “lumped constant,” to correct for the varying affini-
ties of FDG and glucose for the hexokinase transporter, 
multiplied by the rate of transfer of FDG from blood to 
brain [42]. As the method is invasive and requires numer-
ous blood draws, other methods of calculation have been 
developed to approximate CMRgluc and standard uptake 
value of glucose (SUVgluc) [43, 44]. Studies have linked 
the degree of decreased glucose metabolism with the 
severity of cognitive impairment on standardized mental 
status examinations [45, 46].

Single-subject statistical parametric mapping can also 
be applied to the FDG-PET data set to better quanti-
tate the degree of abnormality of an individual scan. 
This technique allows for voxel-based analysis through 
creation of a statistical map of an individual’s scan and 
comparing the uptake values on that scan to a series of 
control scans [47]. Multiple groups have documented 
increased diagnostic performance with ss-SPM of FDG-
PET/CT [48, 49].

In comparison to FDG, Aβ selective radiotracers pro-
vide a disease-specific means of imaging the pathologic 
changes of AD in  vivo. Carbon-11 (C-11) Pittsburgh 
compound B (PiB) was the first amyloid radiotracer used 
in human studies; however, the short half-life of C-11 
limited its clinical applicability and fluorine-18 (F-18) 
labeled tracers were later produced [50]. Florbetaben 
(Neuraceq, Piramal, Mumbai), florbetapir (Amyvid, Eli 

Fig. 2 Normal patterns of cerebral uptake across multiple radiotracers. Fluorodeoxyglucose PET/CT demonstrates high-grade uptake in the cortical 
and deep gray matter which should be greater than cerebellum (a). Cerebral blood flow imaging with early-frame or dynamic amyloid agents 
shows a similar pattern to FDG (b). Non-specific low-grade white matter activity with absence of gray matter activity is the normal pattern of 
delayed amyloid PET agents (c). Normal distribution of tau agents is low-grade gray and white matter activity with absence of elevated neocortical 
uptake and a variable amount of off-target binding, commonly involving the basal ganglia and choroid plexuses (arrows in d)
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Lilly, USA), and flutemetamol (Vizamyl GE Healthcare, 
USA) are commonly used F-18 labeled Aβ selective radi-
otracers, with third-generation tracers in development 
and preclinical trials. These tracers have also shown 
robust ability to distinguish AD from controls with 
pooled analysis demonstrating a sensitivity and specific-
ity of 90% and 87% for florbetapir and 89% and 88% for 
florbetaben [51]. Amyloid imaging has shown added 
value to FDG-PET and clinical evaluation [52]. Qualita-
tive interpretation of amyloid imaging is either consid-
ered positive (moderate to frequent amyloid plaque) or 
negative (no to sparse amyloid plaque) based on abnor-
mal gray matter uptake on grayscale imaging in one or 
two regions for florbetaben and florbetapir respectively, 
or one region on rainbow color scale for flutemetamol 

[53–55]. Normal studies exhibit physiologic uptake 
within the white matter with the absence of uptake in the 
gray matter creating many named imaging signs, includ-
ing the “diamond” of the white matter tracts of the orbit-
ofrontal gyri, “cartoon hand” and “tree in winter” in the 
white matter of the frontal lobes, “double convex lens” 
involving the frontal and parietal parasagittal region, and 
the “temporo-occipital ridge” (Fig.  5) [56]. Abnormal 
regions demonstrate radiotracer activity within the gray 
matter, leading to blurring of the gray matter-white mat-
ter junction with most common sites including the pre-
cuneus, PCC, and lateral temporal and parietal lobes. The 
activity within the gray matter leads to the appearance of 
“kissing hemispheres” along the interhemispheric fissure, 
“tree in summer” when viewed in the coronal plane, and 

Fig. 3 A 73-year-old man with AD, Mini Mental State Examination (MMSE) 23/30. Fluorodeoxyglucose PET/CT (a) demonstrates hypometabolism 
involving the bilateral parietal lobes (arrows) and precuneus and PCC (oval). Flortaucipir PET/CT (b) shows tau retention in the bilateral parietal lobes 
(arrows) and precuneus and PCC (oval), mirroring the regions of hypometabolism. Florbetapir PET/CT (c) demonstrates diffuse cortical uptake with 
“kissing hemispheres.” Arterial spin labeling (d) demonstrates hypoperfusion to the bilateral parietal lobes (arrows), similar to the FDG-PET/CT
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a “temporal plain” as opposed to a “temporo-occipital 
ridge” (Fig. 5) [9, 12, 56]. Even small amounts of amyloid 
plaques may be predictive of eventual development of 
AD [57]. Positron emission tomography amyloid imaging 
has shown similar diagnostic accuracy to cerebrospinal 
fluid (CSF) analysis, with the obvious advantage of negat-
ing an invasive procedure [58]. Amyloid imaging may 
also be used to follow patients on monoclonal antibody 
therapy to demonstrate clearance of Aβ plaques (Fig. 6).

Semiquantitative analysis can also be performed for 
PET amyloid studies by calculating a standardized uptake 
value ratio (SUVr). This is achieved by first selecting a 
region of interest to determine baseline, most often the 
cerebellar gray matter as this rarely accumulates amy-
loid, and comparing the ratio of uptake in this region 
to specified regions of interest (ROIs) [59]. If the region 
demonstrates a SUVr above a predetermined thresh-
old, it is considered positive for moderate to frequent 
amyloid plaque [60]. Currently there is debate in the lit-
erature about whether qualitative or semiquantitative 
interpretation of amyloid imaging is more efficacious 
[61, 62]. Additionally, as with FDG-PET, ss-SPM can be 

undertaken to increase diagnostic confidence. While the 
literature at the time is sparse, coupling these techniques 
with amyloid PET imaging has shown promising results 
in terms of diagnostic accuracy, with sensitivity and 
specificity near or surpassing 90% [63]. Dynamic imaging 
can also be performed immediately following the bolus 
to estimate cerebral blood flow, with a report suggesting 
decreased early time frame amyloid activity correlating 
with tau retention [64].

Tau selective radiotracers can also be utilized for dis-
ease-specific imaging of AD. Currently, the most widely 
used tau selective radiotracer is older-generation F-18 
flortaucipir (Tauvid; Avid Radiopharmaceuticals, previ-
ously known as AV 1451 and T807) [65]. The limitation 
of this older-generation tau radiotracer is substantial off-
target binding, with one study reporting 64% of the signal 
in amyloid negative healthy controls was due to off-target 
binding primarily from the basal ganglia structures and 
choroid plexuses [66]. Off-target binding can also occur 
in the muscles and secondary to monoamine oxidase 
(MAO) enzymatic activity in astrocytes in non-specified 
neuroinflammation. Newer-generation tau radiotracers 

Fig. 4 A 76-year-old woman with history of memory loss. Fluorodeoxyglucose PET/MRI (a) demonstrates hypometabolism of the parietal lobes 
(arrows), precuneus, and PCC as well as the visual association centers in the lateral occipital lobes (arrows in b). Metabolic activity is preserved in the 
medial occipital lobes (“occipital tunnel sign,” white oval in b). Pattern of hypometabolism is most suggestive of posterior cortical atrophy

Fig. 5 Named signs of normal and abnormal patterns of amyloid activity on florbetapir PET/CT. Normal activity in the white matter of the frontal 
lobes leads to the “tree-in-winter sign” on coronal images, abnormal activity in the gray matter leads to the appearance of leaves known as the 
“tree-in-summer sign” (a, b). Absence of gray matter activity in the medial orbitofrontal lobes creates a diamond pattern of the white matter activity 
which is lost in abnormal studies (c, d). A similar phenomenon is seen at the cerebral convexities where the superior white matter tracts create the 
“double convex lens sign” (e) which is lost with abnormal gray matter activity morphing to the “kissing hemispheres sign” (f). Lastly, normal absence 
of gray matter activity in the temporal and occipital lobes creates a mountainous façade referred to as the “temporo-occipital ridge” (g), whereas 
abnormal gray matter activity leads to a more flat profile termed the “temporo-occipital plain” (h)

(See figure on next page.)
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Fig. 5 (See legend on previous page.)
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including F-18RO-948 (previously RO69558948), 
F-18-MK6240, F-18-PI2620, and F-18-GTP1 are under 
investigation [67–71]. Carbon-11 labeled tau radiotracers 
are also being studied, although as with PiB, C-11 labeled 
radiotracers will inherently be limited by short half-life 
[68, 72]. Fluorine-18-RO-948, F-18-MK6240, and F-18-
GTP1 have been shown to have greater affinity for tau 
than F-18 flortaucipir [70, 72, 73]. In contrast to amyloid 
imaging, tau imaging allows for better visualization of the 
topography of the pathologic changes of AD. The earliest 
regions of radiotracer uptake are in the mesial temporal 
lobes including the entorhinal cortices and hippocampi, 
progressing to the middle and inferior temporal lobes, 
parietal lobes including the angular and supramarginal 
gyrus, cingulate cortex, and dorsolateral frontal lobes, 
with groups showing promise of in  vivo Braak staging 
using tau PET imaging [74, 75]. A recent study demon-
strated a sensitivity of 92.3% to 100.0% and specificity 
ranging from 52.0 to 92.0% for identifying Braak stage 
V or VI disease at postmortem evaluation for F-18 flor-
taucipir (Fig. 7) [76]. Tau imaging may also differentiate 
between AD subtypes better than amyloid and closely 
mirrors cortical gray matter atrophy and FDG-PET hypo-
metabolism [77–79]. As with amyloid radiotracers SUVr 
values can be calculated, again generally using the cere-
bellum for the reference value [80].

Lastly, ongoing research is being performed to utilize 
molecular imaging for the evaluation of neuroinflam-
mation and synaptic density in AD with a variety of 
C-11 and F-18 labeled radiotracers, none of which are 
currently widely used clinically. An 18  kDa translocator 

protein is the typical target for microglial activation 
with the most widely used tracer 11C-PK11195 [81]. 
Astrocytosis in AD is imaged by targeting MAO-B with 
11C-deuterium-l-deprenyl (11C-DED) [82]. Studies 
have reported increased and no significant difference 
in microglial activation in AD patients when compared 
to controls [83–86]. Temporal changes in astrocytosis 
have been reported, with increased radiotracer activity 
in prodromal AD followed by a gradual decline in activ-
ity as the disease progresses which correlates with hypo-
metabolism [87–89]. Uptake of radiotracers 11C-UCB-J 
and 18F-UCB-H, which bind to the synaptic glycoprotein 
2, have been shown to be reduced in the hippocampi of 
patients with AD [90–93].

Dementia with Lewy bodies
Dementia with Lewy bodies (DLB) is considered the sec-
ond or third most common dementia, accounting for 
approximately 5% of all dementia cases in incidence stud-
ies, and up to approximately 20% of all dementia cases in 
prevalence studies [94]. Clinically DLB is defined by fluc-
tuating cognition, visual hallucinations, rapid eye motion 
sleep behavior disorder, and parkinsonism [95]. Patholog-
ically DLB is defined by loss of dopaminergic neurons in 
the substantia nigra with reduced striatal dopaminergic 
activity and neuronal inclusions of alpha-synuclein-posi-
tive Lewy bodies in the cerebral cortex, substantia nigra, 
and brainstem. These findings are indistinguishable from 
Parkinson’s disease (PD); however, the involvement of the 
cortex may be more pronounced in DLB and neuronal 

Fig. 6 A 83-year-old male with typical AD on anti-Aβ monoclonal antibody clinical trial drug. Pre-treatment florbetapir PET/CT demonstrates 
substantial cortical amyloid burden with kissing hemispheres in midline (a). Following treatment there is significant reduction in amyloid uptake 
with visualization of corticomedullary differentiation reminiscent of a normal scan (b)
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loss in the substantia nigra more prominent in PD [96]. 
In addition, there are often concomitant Aβ plaques and 
3R/4R NFTs and over-expression of the APOE*E4 geno-
type, overlapping with the pathologic features of AD [97, 
98].

As with AD, structural MRI plays a role in the assess-
ment of DLB. T1 volumetric analysis of patients with 
DLB demonstrates atrophy of the frontal and temporal 
lobes and insular cortices with less pronounced involve-
ment of the medial temporal lobe when compared to 
AD, hypothesized to be related to comparatively reduced 
NFT formation [99, 100]. Sparse partial least squares 
classification of cortical thickness based on T1-weighted 
imaging demonstrated good discrimination of DLB from 
AD with a sensitivity of 78% and specificity of 75% [101]. 
Atrophy of the midbrain, hypothalamus, and substantia 
innominate have also been shown to be useful in discrim-
inating DLB from AD [102].

Advanced MRI techniques have also been reported to 
be of value in the diagnosis of DLB. Studies have shown 
decreased FA involving the cortical and subcortical 
regions including the parieto-occipital lobes, PCC, pre-
cuneus, inferior longitudinal fasciculus, caudate, puta-
men, and pons [103–106]. Abnormalities in FA in the 
parietal and occipital regions in DLB have been shown 
to not significantly change over time when compared to 
controls, corroborating the theory DLB is primarily asso-
ciated with synaptic dysfunction rather than neuronal 
loss [107]. Absence of the “swallow tail sign,” hypointen-
sity within nigrosome-1 on susceptibility-weighted imag-
ing, has been reported to have a sensitivity of 63–93% 
and a specificity of 79–87% in discrimination DLB from 
other forms of dementia (Fig.  8) [108, 109]. A similar 
finding was demonstrated with postmortem MTI with 

lower signal in the substantia nigra pars compacta in 
patients with DLB and PD, potentially secondary to neu-
romelanin loss [110]. Regions of decreased contrast-to-
noise ratio in the LC on MTI have been shown to relate 
to symptoms in PD [111]. Similar to AD, rsfMRI exhibits 
decreased connectivity in the default mode and executive 
networks and additionally the visual networks including 
the medial occipital network [112, 113].

Molecular imaging also plays a crucial role in the 
diagnosis and potentially response to therapy of DLB. 
Dopamine transporter (DAT) imaging has been a target 
for DLB, specifically the imaging of the density of the 
presynaptic striatal neurons to assess for degeneration 
in presynaptic parkinsonian syndromes. Single-photon 
emission computed tomography (SPECT) imaging with 
iodine-123  N-ω-fluoropropyl-2β-carbomethoxy-3β-[4-
iodophenyl] nortropane (I-123-FP-CIT, DaTSCAN™, 
GE Healthcare), a cocaine analogue with high affinity 
for the dopamine and serotonin transporters allowing 
for in  vivo evaluation of presynaptic striatal neuronal 
degeneration, was initially used clinically for discrimi-
nating PD from essential tremor on the basis of excel-
lent reported specificity [114]. As PD and DLB share 
the same pathologic basis, I-123-FP-CIT has shown 
similar value in the diagnosis of DLB, with a diagnos-
tic accuracy around 90% in discriminating from other 
dementia syndromes; however, DAT imaging is not reli-
able for discriminating DLB from PD-related MCI or 
dementia [115, 116]. Single-photon emission computed 
tomography imaging with I-123-Metaiodobenzylguan-
idine to assess for cardiac postganglionic sympathetic 
denervation observed in DLB is reported to have simi-
lar sensitivity and specificity to I-123-FP-CIT SPECT, 

Fig. 7 In vivo Braak staging on flortaucipir PET/CT. Activity confined to the entorhinal cortices and hippocampi falls into the Braak I-II stages (arrows 
in a), further progression in the temporal lobes and limbic cortices classifies stages III-IV (parahippocampal gyri; arrows in b), and neocortical activity 
defines stages V-VI (arrows in c)
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although pre-existing cardiac disease and diabetes mel-
litus can lead to false positives [117, 118].

Positron emission tomography imaging can also be 
performed to evaluate for DLB. Decreased metabolic 
activity in the occipital, temporoparietal, and pre-
frontal cortices with relative sparing of the pre- and 
post-central gyri and medial temporal lobes has been 
reported in DLB [119]. Additionally, there is relatively 
preserved FDG uptake within the PCC, with sur-
rounding hypometabolic activity in the cuneus and 
precuneus and parietal lobes, creating the so-called 
cingulate island sign, reported to have excellent spec-
ificity of up to 100% in differentiating AD from DLB 
when present (Fig. 9) [120]. The “occipital tunnel sign” 
is also seen in DLB, which is characterized by hypo-
metabolism in the visual association cortex of the lat-
eral occipital lobes and preserved metabolism in the 
medial occipital lobes [38]. Other studies have dem-
onstrated less promising results for FDG-PET in dif-
ferentiating DLB from AD, indicating the value of a 
multimodality assessment [115].

As DLB can pathologically demonstrate Aβ plaques 
and NFTs, both amyloid and tau tracers can be of value in 
the imaging of DLB. The majority of DLB patients show 
amyloid uptake, with a similar pattern to AD involving 
the dorsolateral frontal lobes, parietal lobes including 
the precuneus, and temporal lobes, with greater amyloid 

deposition in the occipital lobes in DLB [121, 122]. Mul-
tiple groups have reported the degree of amyloid burden 
may be related to cognitive decline in DLB and helpful 
in differentiating DLB from PD-related dementia (PDD) 
[122–124]. Combined amyloid and dopamine terminal 
PET imaging was reported to have high accuracy in diag-
nosing dementia subtype when compared to pathologic 
examination [125]. Tau PET imaging is less well studied 
in DLB, with typical areas of increased uptake involving 
the inferolateral temporal lobes, parietal lobes includ-
ing the precuneus, and occipital lobes, with decreased 
degree of uptake and involvement of the medial tempo-
ral lobes when compared to AD, with DLB again show-
ing greater abnormality compared to PDD [126, 127]. 
Attempts at developing a radiotracer to target alpha-
synuclein, the pathologic hallmark of DLB, have not 
been successful at the current time [128–130].

Vascular dementia
Vascular dementia (VaD) is considered the second or 
third most common dementia, varying with DLB by 
source [131]. There are multiple subtypes of vascular 
dementias, attributed to small vessel and large vessel eti-
ologies as well as acquired and inherited conditions, such 
as cerebral autosomal dominant arteriopathy with sub-
cortical infarcts and leukoencephalopathy (CADASIL). 
Clinical presentation is heterogeneous, with the most 

Fig. 8 A 82-year-old female with history of rigidity, bradykinesia, hallucinations, and dementia. Axial susceptibility-weighted imaging demonstrates 
loss of the normal hyperintense signal in nigrosome-1 (arrows), the so-called loss of “swallow tail sign” (a). The normal hyperintense signal in 
nigrosome-1 is shown in (b) (arrows)
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prominent feature decline in frontal lobe tasks including 
executive function and attention with verbal memory less 
impacted [132]. VaD also has a strong correlation with 
neuropsychiatric symptoms including depression [133].

Structural MRI has long held a central role in the 
evaluation of VaD. Two or more large territory, three or 
greater lacunar infarcts, or strategically placed infarcts 
have been considered sufficient imaging evidence for 
VaD by various guidelines [134, 135]. Involvement of 
greater than 25% of a cerebral hemisphere with white 
matter abnormalities/hyperintensities (WMHs) can be 
suggestive of subcortical VaD, although there is inter-
observer variation in making the diagnosis [136, 137]. 

Dilated Virchow-Robins spaces have also been correlated 
with the degree of severity of subcortical VaD [138]. Dif-
fusion tensor imaging may predict the structural changes 
in VaD even prior to development of WMHs and bet-
ter predicts decline in cognition with reduced FA and 
increased MD reported in the centrum semiovale and 
anterior periventricular white matter [139, 140]. Reduced 
FA and increased MD in the inferior fronto-occipital fas-
cicles, forceps minor, genu, and splenium of the corpus 
callosum, and the superior longitudinal fasciculus have 
shown value in discriminating VaD from AD [141]. Early 
studies of rsfMRI demonstrate dysfunction involving the 
DMN [142].

Fig. 9 A 73-year-old man with memory loss and visuospatial processing deficits. Fluorodeoxyglucose PET/CT demonstrates hypometabolism 
in the bilateral parietal lobes including the bilateral precuneus with preserved metabolism of the PCC (cingulate island sign, oval in a). Also 
present is hypometabolism of the bilateral lateral occipital lobes with preserved medial occipital lobe activity (occipital tunnel sign, asterisk in b). 
Single-subject statistical parametric mapping (c) demonstrates parietal-occipital hypometabolism reiterating the occipital tunnel (arrow bottom left 
panel) and posterior cingulate island (arrow bottom right panel), with areas of blue progressing to purple representing further negative deviation 
from the mean uptake values of controls
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Molecular imaging has a developing role in the evalu-
ation of VaD. Hypometabolism in VaD is pronounced 
in structures spared in early AD including the anterior 
cingulate cortex, deep gray nuclei, primary cortices, and 
middle temporal gyrus, with Kerrouche et  al. reporting 
100% accuracy in separating VaD from AD [143, 144]. 
Amyloid imaging is less helpful in discriminating between 
VaD and AD, with at least a quarter of VaD patients dem-
onstrating amyloid uptake and those that are PiB posi-
tive have similar distribution to AD [145–147]. Positive 

amyloid imaging, however, may predict worse cognitive 
function in VaD [146, 148]. While it is known tau deposi-
tion occurs following cerebral ischemia (Fig. 10), reports 
of tau tracers in the evaluation of VaD are lacking [149].

Frontotemporal dementia
Frontotemporal dementia (FTD) or frontotemporal 
lobar degeneration (FTLD) is the second most common 
NDD in patients under 65 years of age, only behind AD 
[150]. The estimated prevalence is approximately 1–5 in 

Fig. 10 A 76-year-old female with symptomatic left carotid stenosis (70% by North American Symptomatic Carotid Endarterectomy Trial criteria) 
who presented with right homonymous hemianopia compatible with a left posterior cerebral artery stroke. Arterial spin labeling demonstrates 
hypoperfusion throughout the left cerebral hemisphere (a) and CTA demonstrates a fetal left posterior cerebral artery supplied by the left internal 
carotid artery (b). Florbetaben PET/CT demonstrates no to sparse amyloid plaque (c). Flortaucipir PET/CT prior to the event demonstrates no areas 
of cortical tau retention (d). Flortaucipir PET/CT following the event (e) demonstrates focal tau retention in the left posterior cerebral artery territory 
(arrows), likely as a response to cerebral ischemia
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100,000 people [151, 152]. There is an equal predilec-
tion of the disease between men and women, most com-
monly diagnosed between the ages of 45 and 65; however, 
patients can be diagnosed as early as the second to third 
decade [150]. The most common subtype is the behavio-
ral variant (bvFTD), characterized by social disinhibition, 
obsessive behaviors, and hyperorality, as well as the aptly 
named semantic (svPPA) and nonfluent/agrammatic 
primary progressive aphasias (nfPPA). Three distinct 
pathologic subtypes are described; first Pick reported 
argyrophilic cytoplasmic inclusions (of predominantly 3R 
tau) within cortical neurons leading to ballooning of the 
cells and eventually gliosis, later TAR DNA-binding pro-
tein 43 (TDP-43) and fused-in-sarcoma (FUS) pathologic 
variants were described [153, 154]. Heritable forms make 
up at least 10% of cases, including those with microtu-
bule-associated protein tau (MAPT), Chromosome 9 
Open Reading Frame 72 (C9ORF72), and Progranulin 
mutations [150, 155].

As with the other neurodegenerative syndromes, volu-
metric T1-weighted imaging to assess for patterns of 
atrophy is commonly applied in FTD. Behavioral variant 
FTD tends to demonstrate marked atrophy involving the 
ventromedial prefrontal and insular cortices and ante-
rior temporal lobes (Fig.  11), svPPA in the left inferior 
temporal lobe including the insular gyrus, and nfPPA in 
the posterior frontal, temporal, and parietal lobes [156]. 
Resting-state functional MRI has most consistently 
reported disruption of the salience network and fronto-
insular and executive connections [157–159]. One study 
showed patients with FTD exhibit hypoperfusion on ASL 
in the frontal lobes and anterior cingulate cortex, with 
the hypoperfusion within the anterior cingulate cortex 
helping to differentiate FTD from AD [160]. Decreased 
stiffness by MRE in the temporal lobes has been reported 
[30].

Molecular imaging plays a crucial and ever-growing 
role in the evaluation of FTD. Unsurprisingly, hypome-
tabolism corresponding to regions of atrophy in the fron-
tal lobes, including the ventromedial region and anterior 
temporal lobes has been frequently reported in FTD 
(Fig.  12) [161, 162]. Fluorodeoxyglucose PET is also an 
important tool in distinguishing the PPA variants with ss-
SPM demonstrating hypometabolism in the left or bilat-
eral temporal poles, middle and inferior temporal gyri, 
and insula in svPPA and a more heterogeneous pattern of 
decreases in the inferior temporal gyrus, anterior cingu-
late cortex, and insula with sparing of the amygdala and 
hippocampi in nfPPA (Fig. 13) [40, 163]. Initial work on 
tau-labeled tracers in FTD has primarily been in patients 
harboring the MAPT mutation as they are known to have 
tau-related pathology; however, TDP-43-related syn-
dromes have also demonstrated uptake with the basal 
and medial frontal lobes, inferior and lateral temporal 
lobes and temporal poles, and anterior cingulate cortex 
with the most involved regions varying by disease sub-
type [164, 165]. One study demonstrated co-localization 
between tau binding and microglial activation [166]. Lack 
of uptake of amyloid labeled radiotracers can differenti-
ate FTD from AD [167]. Table 2 describes  the common 
imaging features of Typical AD, DLB, VaD, and FTD.

Parkinson’s disease and parkinsonian syndromes
Parkinsonian disorders are a heterogeneous group of 
syndromes sharing the clinical features of extrapyrami-
dal symptoms and bradykinesia and common pathology 
related to alpha-synuclein and tau with degeneration of 
the nigrostriatal pathway. These conditions afflict at least 
1% of the worldwide population greater than 70 years of 
age [168]. The differences between Parkinson’s disease 
and DLB have been previously discussed in the DLB sec-
tion. Three of the most relevant parkinsonian syndromes 

Fig. 11 A 69-year-old female with odd behaviors including riding a children’s tricycle and impulsivity. Coronal volumetric T1-weighted images with 
proprietary automated segmentation software demonstrate volume loss in the frontal and temporal lobes (a). Volumetric quantitation identifies 
multiple regions in the frontal lobes in less than the fifth percentile of volume for age, including the medial orbital frontal lobes, typical of bvFTD (b)
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will be reviewed; multisystem atrophy (MSA), progres-
sive supranuclear palsy (PSP), and corticobasal degenera-
tion (CBD).

Multisystem atrophy is a neurodegenerative disor-
der with multiple subtypes characterized clinically by 
parkinsonism with varying cerebellar, autonomic, and 
pyramidal dysfunction sharing common alpha-synucle-
inopathy pathology [169]. Two main subtypes exist, one 
with dominant parkinsonian features (MSA-P), and one 
with dominant cerebellar dysfunction (MSA-C) [170]. 
On structural 1.5  T MRI, MSA-P has been reported to 
have a characteristic appearance of a lateral rim of T2/
proton density-weighted hyperintensity adjacent to the 

putamen and T2 hypointense signal involving the dor-
solateral putamen, although the value of this finding has 
been questioned at higher field strengths (Fig.  14) [171, 
172]. The hallmark imaging feature seen in up to 80% of 
patients with MSA-C is cruciform T2 hyperintense signal 
within the basis pontis, the so-called hot cross bun sign, 
although this imaging finding can also be present in spi-
nocerebellar ataxia syndromes (Fig. 15) [173]. Additional 
structural imaging features of MSA-C include atrophy 
and T2 hyperintense signal within the pons, medulla, 
middle cerebellar peduncles, and cerebellar hemispheres 
[174, 175]. Diffusion tensor imaging exhibits widespread 
microstructural alterations when compared to controls 

Fig. 12 A 68-year-old man who presented to the memory care clinic with progressive personality changes and behavioral disturbances including 
violent outbursts and memory loss. Fluorodeoxyglucose PET/CT demonstrates marked frontal (a) and temporal (b) hypometabolism with relatively 
preserved parietal and occipital lobe activity including relative sparing of the PCC and precuneus. Single-subject statistical parametric mapping (c) 
from a similar patient demonstrates a similar pattern, with anterior greater than posterior cingulate hypometabolism, a hallmark of FTD, again with 
areas of blue progressing to purple representing further negative deviation from the mean uptake values of controls
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including increased MD and reduced FA in the supe-
rior, middle, and inferior cerebellar peduncles and in the 
corona radiata and commissural fibers [176]. Patterns 
of reduced MTR have been shown to help differentiate 
MSA from PD and PSP [177]. Hypoconnectivity in the 
DMN, sensorimotor network, visual association corti-
ces, and cerebellum has been reported in MSA-C [178]. 
Within the same study hypoperfusion of the cerebel-
lum was exhibited on ASL imaging [178]. On FDG-PET 
MSA is distinguished by hypometabolism involving the 

bilateral putamina and cerebellar hemispheres, with the 
cerebellar hypometabolism reported in both MSA-C and 
MSA-P, with a sensitivity of 76% and specificity of 98% 
for the diagnosis by visual interpretation (Fig. 14) [179]. 
While MSA shows reduced uptake within the putamina 
on I-123-FP-CIT SPECT scans, this was not shown to 
correlate with disease severity [180].

Progressive supranuclear palsy is clinically defined by 
parkinsonism with vertical supranuclear gaze palsy and 
prominent postural instability with falls within the first 

Fig. 13 A 58-year-old man with notable agrammatism, impaired comprehension and repetition of syntactically complex sentences, and spared 
single word comprehension, Montreal Cognitive Assessment (MoCA) 16/30. T1-weighted volumetric image (a) demonstrates asymmetric 
atrophy of the left perisylvian and insular cortices (arrow). Fluorodeoxyglucose PET/MRI demonstrates hypometabolism in this region (arrow in 
b). Single-subject statistical parametric mapping of the FDG-PET/MRI (c) demonstrates the asymmetric left greater than right hypometabolism 
involving the frontal and temporal operculum and parietal lobes with sparing of the PCC and precuneus (as before, areas of blue progressing to 
purple represent further negative deviation from the mean uptake values of controls). Combining the clinical and imaging data, a diagnosis of 
nfPPA was rendered
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year of onset and pathologically by 4R tau isoform NFTs 
in the basal ganglia, diencephalon, and brainstem [181, 
182]. As with MSA, characteristic patterns of brainstem 
atrophy are present including reduced anterior–pos-
terior dimension of the midbrain and widening of the 
interpeduncular cistern leading to the “mickey mouse 
sign” on axial and the “hummingbird sign” on sagittal 

images (Fig. 16) [183, 184]. Reduced FA in the posterior 
frontal lobes and cerebellar peduncles was reported to 
have a specificity of 91–96% and sensitivity of 85–95% 
in differentiating PSP from DLB [185]. Hypoconnectiv-
ity on rsfMRI has been documented of the lateral visual, 
auditory, cerebellar, and insular networks [186]. Typical 
findings of FDG-PET include hypometabolism of the 

Fig. 14 A 76-year-old man with a history of memory impairment and parkinsonism including gait and proprioceptive dysfunction. 
Fluorodeoxyglucose PET/CT demonstrates hypometabolism in the right greater than left cerebellar hemispheres (a) and bilateral striatum (b), 
best appreciated on ss-SPM (areas of blue and purple representing negative deviation in uptake from controls, d). Iodine-123-FP-CIT scan shows 
left greater than right primarily putaminal presynaptic neuronal degeneration (c). Findings are compatible with MSA-P. Axial T2 FLAIR image of a 
separate patient demonstrates the lateral putaminal rim sign of hyperintensity (arrows in e)
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brainstem and midline frontal cortex with a reported sen-
sitivity of 60% and specificity of 96% by visual interpre-
tation with significant augmentation of sensitivity when 
ss-SPM is added [179]. 18-Fluorine-PI-2620, which selec-
tively binds to the 4R tau isoform, has shown promise 
as a biomarker in PSP, though further evaluation is war-
ranted [187]. Single-photon emission computed tomog-
raphy imaging of pre- and postsynaptic striatal neuronal 

degeneration shows similar patterns to and is not able to 
reliably differentiate PD from PSP [188].

Corticobasal degeneration is a specific form of the 
corticobasal syndrome (CBS) defined by extrapyrami-
dal symptoms which are often asymmetric including an 
“alien limb” phenomenon with later onset loss of multi-
domain cognitive functioning with preserved episodic 
memory and poor response to levodopa therapy [189, 

Fig. 15 Axial T2-weighted image demonstrates cruciform hyperintense signal in the pons, the so-called hot cross bun sign of MSA-C (a). Coronal 
T2-weighted image at the level of the brainstem demonstrates hyperintense signal in the bilateral brachis pontis, another common finding in the 
disease (b)

Fig. 16 Sagittal T1-weighted image in the midline coned to the brainstem demonstrates midbrain atrophy creating the so-called hummingbird 
sign of PSP (a). Axial T1-weighted image at the level of the midbrain demonstrates decrease in the AP dimension of the midbrain and widening of 
the interpeduncular cistern; the so-called morning glory sign (b)
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190]. Pathologically CBD is primarily a 4R tauopathy 
which demonstrates ballooned neurons in many areas of 
brain including the primary cortices as well as the cin-
gulate gyrus, amygdala, insular cortex, and claustrum 
[191]. Typical structural MRI findings include asym-
metric atrophy of the posterior frontal and parietal lobes 
contralateral to the patient’s symptoms with associated 
atrophy of the contralateral cerebral peduncle and sub-
cortical T2 FLAIR hyperintensity with relative preserva-
tion of basal ganglia volume and signal [174, 175, 192]. 
Reduced FA has been reported in the pre- and post-cen-
tral gyri, cingulum, and supplementary motor area [193]. 
Resting-state functional MRI has documented hypocon-
nectivity of the lateral visual and auditory networks and 
hyperconnectivity of the salience and executive control 
networks [186]. Fluorodeoxyglucose PET shows simi-
lar findings with hypometabolism involving the primary 
cortices and additionally basal ganglia contralateral to the 
affected side [179, 194, 195]. Early research on Tau trac-
ers for CBD has shown mixed results with 18-F-AV-1451, 

18-F-PI-2620 may be a more appropriate tracer given its 
affinity for the 4R tau isoform [196–198]. The role of amy-
loid labeled tracers is uncertain given the overlap of CBS 
secondary to other dementias and imperfect tau isoform 
selectivity of current radiotracers (Fig. 17) [198]. Iodine-
123-FP-CIT SPECT demonstrates asymmetric decreased 
striatal uptake with less disproportionate involvement of 
the putamen when compared to other Parkinsonian syn-
dromes [199, 200]. Table 3 describes the common imag-
ing features of parkinsonian syndromes.

Miscellaneous syndromes
Cerebral amyloid angiopathy
Cerebral amyloid angiopathy (CAA) is a disease of Aβ 
deposition in the walls of primarily the small cortical 
and leptomeningeal arteries and arterioles favoring the 
posterior regions [201, 202]. Approximately 10–20% of 
intracerebral hemorrhage at autopsy may be attributed to 
CAA with up to 80% of patients with CAA demonstrat-
ing concurrent AD pathology [203]. The updated Boston 

Fig. 17 A 60-year-old female with cognitive decline (MoCA 19/30) and limb apraxia. Flortaucipir PET/CT (a) demonstrates tau retention in the 
bilateral perirolandic regions (arrow indicating left precentral gyrus). Florbetapir PET/CT (b) demonstrates radiotracer activity in the bilateral 
perirolandic regions (arrow indicating left precentral gyrus). Final diagnosis was CBS secondary to underlying AD, given the abnormal amyloid 
binding

(See figure on next page.)
Fig. 18 A 81-year-old female with a gradual decline in short term memory and depression. Susceptibility-weighted image demonstrates numerous 
subcortical microhemorrhages (a). Fluorodeoxyglucose PET/MRI (b) demonstrates relatively normal cerebral metabolism. Later she presented 
with an acute worsening of symptoms including new right-side weakness and dysphasia. Magnetic resonance imaging demonstrated T2 FLAIR 
hyperintensity within the left frontal lobe (c) without restricted diffusion (d). Final diagnosis was amyloid beta-related angiitis. Cognitive function 
improved following administration of steroids. Fluorodeoxyglucose PET/MRI suggested against concurrent AD. Images from a separate patient 
demonstrate occipito-temporal subcortical microhemorrhages (e) with diffuse amyloid uptake on florbetapir PET/CT, a pattern suggesting 
concurrent CAA with AD (f)
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Fig. 18 (See legend on previous page.)
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criteria 2.0, which includes findings on structural MRI 
of at least two either lobar or subcortical hemorrhagic 
lesions or scattered superficial siderosis or one of the 
aforementioned hemorrhagic lesions with greater than 
20 perivascular spaces or white matter hyperintensities in 
one hemisphere without evidence of deep hemorrhagic 
lesions or evidence of other cause, was reported to have 
64.5% sensitivity and 95% specificity for the diagnosis 
of typical CAA [204]. There are two rarer subtypes of 
CAA, inflammatory CAA, characterized by lobar edema 
with overlying leptomeningeal enhancement and sub-
cortical microhemorrhages without diffusion restriction 
and amyloidoma, characterized by a solitary enhanc-
ing mass with surrounding edema (Fig.  18) [205]. One 
study demonstrated amyloid PET has good sensitivity 

to discriminate CAA from controls, however, with mod-
est specificity (sensitivity of 91% and specificity of 55%) 
[206]. The poor specificity of amyloid PET for the diag-
nosis of CAA is attributed to the overlap with AD pathol-
ogy; the posterior predominance of CAA has led to 
reports of the occipital-to-posterior cingulate or global 
ratio as a possible means of discrimination from AD [207, 
208]. Fluorodeoxyglucose PET has demonstrated similar 
findings with decrease in SUVr ratio of the occipital lobe 
relative to the PCC in patients with CAA compared to 
AD [209]. As with AD, early reports of tau agents in CAA 
have demonstrated increased binding correlated with 
worsening cognition, which was not demonstrated with 
amyloid agents [210].

Fig. 19 A 70-year-old man with history of military combat and traumatic brain injury with MCI, MoCA 26/30. Flortaucipir PET/CT demonstrates 
regions of tau retention in the sulcal depths of the parasagittal frontal cortices (arrows in a and b). Tau retention is also noted in the bilateral mesial 
temporal lobes (arrows in c). Florbetapir PET/CT (d) demonstrates no significant cortical amyloid uptake involving the parietal lobes. Given the 
findings on PET/CT memory impairment was diagnosed as related to CTE
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Chronic traumatic encephalopathy
Chronic traumatic encephalopathy (CTE) is a tauopathy 
secondary to repetitive mild traumatic brain injury more 
recently described in the literature with clinical features 
of decreased attention and memory, affective distur-
bances, psychosis, and gait and speech difficulties [211, 
212]. Four progressive pathologic stages of the disease are 
defined with perivascular hyperphosphorylated tau NFTs 
beginning in the dorsolateral frontal cortices and spread-
ing to the temporal and parietal lobes and deep nuclei 
with sparing of the calcarine cortex except in severe cases 
[213]. Amyloid plaques are not considered a feature of the 
disease [211]. Structural imaging shows an exceedingly 
higher than expected number of patients with a cavum 
septum pellucidum, felt to be related to shear forces due 
to a CSF fluid wave from trauma [213, 214]. Addition-
ally, generalized cerebral white and gray matter volume 
loss has been reported [214, 215]. Reduced FA in white 
matter tracts including the superior and inferior longitu-
dinal fasciculus, corona radiata, cerebral peduncle, unci-
nate fasciculus, and anterior thalamic radiations as well 
as the ventral striatum has been described [216–218]. 
Tau radiotracers are reported to have increased uptake 
in the frontotemporal lobes including the medial tem-
poral lobes with frontal-lobe predominant involvement 
of the sulcal depths (Fig.  19) [219, 220]. Areas of hypo-
metabolism on FDG-PET generally mirror the regions of 
tau retention [215, 220]. Variable positivity has been seen 
with amyloid tracers [219].

Amyotrophic lateral sclerosis
Amyotrophic lateral sclerosis (ALS) is a progressive 
neurodegenerative disorder characterized primarily by 
upper and lower motor neuron degeneration leading to 
clinical signs of progressive weakness, muscle atrophy, 
and fasciculations starting in the limbs [221]. The path-
ologic hallmark of the disease is ubiquitinated TDP-43 
inclusions [222]. T2 hyperintensity involving the corti-
cospinal tracts (CSTs) was one of the earliest reported 
imaging features of ALS; however, studies have demon-
strated inconsistency in this finding [223–225]. Reduced 
FA on DTI and NAA on MR spectroscopy in the CSTs 
has been consistently reported [226, 227]. Increased iron 
deposition quantified by T2* imaging has been shown 
in the motor cortex of patients with ALS [228]. Resting-
state functional MRI shows decreased connectivity in the 
motor network [229]. Fluorodeoxyglucose PET imag-
ing has demonstrated hypometabolism in the motor/
perirolandic and frontal cortices as well as the occipital 
lobes with a sensitivity of 94.8–95.4% and specificity of 
80–82.5% for the diagnosis [230, 231]. Binding in the 
CSTs of 2-([1E,3E]-4-[6-([11C]methylamino)pyridinyl]
buta-1,3-dienyl)benzo[d]thiazol-6-ol ([11C]PBB3), a tau 
radiotracer, was shown to correlate with upper motor 
neuron signs in a patient with ALS/parkinsonian demen-
tia complex overlap; however, extensive reports of tau 
agents are lacking at the current time, although an attrac-
tive target given the pathologic findings of TDP-43 in 
ALS [222, 232].

Huntington’s disease
Huntington’s disease is an autosomal dominant neuro-
degenerative disorder characterized clinically by chorea, 
dementia, and psychosis, genetically by CAG trinucleo-
tide repeat expansion on chromosome 4, and patho-
logically by atrophy in the striatum with involvement of 
other subcortical and cortical regions at higher stages 
[233]. Structural imaging shows striking atrophy of the 
striatum with ex vacuo dilation of the frontal horns of the 
lateral ventricles (so-called box-shaped ventricles), which 
is predictive of symptom onset (Fig.  20) [234]. Studies 
have overall demonstrated increased FA, felt to be related 
to selective neuronal degeneration (i.e. as selected tracts 
are damaged the remaining fibers demonstrate more 
organization), and increased MD in the basal ganglia 
[235]. Additional regions with reduced FA and increased 
MD include the CSTs and corpus callosum [235]. Hypo-
metabolism in the striatum as well as the frontal and 
temporal lobes has been reported, with striatal hypome-
tabolism a potential marker of time to symptom onset 
[236]. Decreased striatal dopamine receptor binding, 

Fig. 20 Coronal T1-weighted image demonstrates atrophy of the 
bilateral caudate heads with “box-shaped” ventricles
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most commonly utilizing [11C]raclopride-PET, has been 
exhibited in HD patients [237]. Other research targets 
have included adenosine, cannabinoid, and gamma-
aminobutyric acid (GABA) receptors (diminished in 
HD), microglial activation (increased), phosphodiester-
ase 10A enzymatic activity (decreased), and synaptic ves-
icle protein 2A expression (decreased), all of which are 
not yet utilized clinically [238]. To date, a radiotracer tar-
geting the Huntington protein is not available; however, 
this would obviously be an attractive target.

Creutzfeldt–Jakob disease
Creutzfeldt–Jakob disease (CJD) is a rapidly progressive 
uniformly fatal prion-driven NDD afflicting approximately 
1–2 persons per million worldwide, with three subtypes, 

the sporadic subtype representing the majority of cases 
[239]. Characteristic MRI features include hyperintensity 
on T2 or diffusion-weighted imaging (DWI) involving the 
cortex (cortical ribboning) and basal ganglia with involve-
ment of the thalamus (“hockey stick sign”) less commonly 
reported in the sporadic subtype and more common in 
variant CJD (Fig.  21) [240]. T1 hyperintensity in the glo-
bus pallidus, thought to be related to accumulation of mis-
folded proteins, may also be observed, even without DWI 
changes [241]. Decreased NAA on MR spectroscopy has 
been reported and is likely related to neuronal death [242]. 
Asymmetric hypometabolism in the frontal and parietal 
cortices with or without decreased activity in the basal 
ganglia has been demonstrated with FDG-PET (Fig.  21) 
[243, 244]. Sporadic case reports have shown no significant 

Fig. 21 A 64-year-old female with three months of progressive functional decline, failure to thrive, and weakness. Diffusion-weighted imaging (a) 
demonstrates hyperintensity in the right caudate head and lentiform nucleus (arrow) and the bilateral thalami with an L-shaped or “hockey stick” 
configuration (asterisks). Fluorodeoxyglucose PET/MRI (b) demonstrates corresponding asymmetric hypometabolism in the right lentiform nucleus 
(arrow) and bilateral thalami (asterisks). Cerebrospinal fluid 14-3-3 protein was positive and pathological examination of the brain was consistent 
with CJD



Page 27 of 35Loftus et al. Insights into Imaging            (2023) 14:8  

amyloid and F-18 flortaucipir retention with one case dem-
onstrating uptake of 18F-THK5351, felt to be related to 
off-target binding of MAO-B activation in astrocytosis and 
correlating to the areas of signal abnormality [245–248].

Pseudodementia
Technically a non-NDD, pseudodementia was first 
described in 1961 by Kiloh as a condition of apparent 
dementia most commonly to a secondary mental illness 
such as depression leading to memory loss of recent and 
remote events and inattention [249, 250]. Often a geri-
atric depression scale is performed with initial memory 
care clinic consultation to exclude concomitant men-
tal illness driving dementia symptoms [251]. Molecular 
imaging provides an excellent method to discriminate 

non-NDDs/pseudodementia from NDDs (Fig.  22) [252, 
253]. Table 4 describes the common imaging features of 
miscellaneous NDDs.

Conclusion
A wide variety of advanced multiparametric MRI and 
molecular imaging techniques are now available to 
increase diagnostic confidence of neurodegenerative syn-
dromes, with ongoing research to thrust more of these 
techniques into a wider clinical role. Combined PET/MRI 
is an attractive imaging modality to provide a comprehen-
sive workup of NDDs in a single imaging session. Ulti-
mately, these techniques may be of use in selecting for and 
following up patients on monoclonal antibody therapy.

Fig. 22 A 65-year-old female with reported gradual decline in short term memory and depressive symptoms, initial MoCA 25/30. Florbetapir PET/
CT demonstrates normal white matter distribution with no regions of abnormal cortical uptake, compatible with no to sparse amyloid plaque (a). 
Flortaucipir PET/CT demonstrates no cortical tau retention with off-target binding in the bilateral choroid plexuses and basal ganglia (b). Score on 
MoCA improved to 29/30 on antidepressant therapy. Final diagnosis was pseudodementia related to major depressive disorder
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Abbreviations
11C-DED   11C-deuterium-l-deprenyl
3R   Three repeat
4R   Four repeat
AD   Alzheimer’s disease
ARIAs   Amyloid-related imaging abnormalities
ASL   Arterial spin labeling
Aβ   Amyloid-beta
C-11   Carbon-11
C9ORF72   Chromosome 9 open reading frame 72
CAA    Cerebral amyloid angiopathy
CBD    Corticobasal degeneration
CBS   Corticobasal syndrome
CJD   Creutzfeldt–Jakob disease
CMRgluc   Cerebral metabolic rate of glucose
CTE   Chronic traumatic encephalopathy
CTSs   Corticospinal tracts
DAT   Dopamine transporter
DLB   Dementia with Lewy bodies
DMN   Default mode network
DTI   Diffusion tensor imaging
DWI   Diffusion-weighted imaging
F-18   Fluorine-18
FA   Fractional anisotropy
FDG-PET   2-[18F]fluoro-2-deoxy-d-glucose positron emission 

tomography
FTD   Frontotemporal dementia
FTLD   Frontotemporal lobar degeneration
FUS   Fused-in-sarcoma
I-123-FP-CIT, DaTSCAN  Iodine-123 N-ω-fluoropropyl-2β-carbomethoxy-3β-[4-

iodophenyl] nortropane
LC   Locus coeruleus
lvPPA   Logopenic variant primary progressive aphasia
MAO   Monoamine oxidase
MAPT   Microtubule-associated protein tau
MCI   Mild cognitive impairment
MD   Mean diffusivity
MMSE   Mini-mental state examination
MoCA   Montreal cognitive assessment
MRE   Magnetic resonance elastography
MRI   Magnetic resonance imaging
MSA   Multisystem atrophy
MSA-C   Multisystem atrophy with dominant cerebellar 

dysfunction
MSA-P   Multisystem atrophy with parkinsonian features
MTI   Magnetization transfer imaging
MTR   Magnetization transfer ratio
NAA   N-acetylaspartate
NDD   Neurodegenerative diseases
nfPPA   Nonfluent/agrammatic primary progressive aphasia
NFTs   Neurofibrillary tangles
PCA   Posterior cortical atrophy
PCC   Posterior cingulate cortex
PD   Parkinson’s disease
PDD   PD-related dementia
PiB   Pittsburgh compound B
PSEN1   Presenilin 1
PSEN2   Presenilin 2
PSP   Progressive supranuclear palsy
ROI   Region of interest
rsfMRI   Resting-state functional MRI
SPECT   Single-photon emission computed tomography
ss-SPM   Single-subject statistical parametric mapping
SUVgluc   Standard uptake value of glucose
SUVr   Standardized uptake value ratio
svPPA   Semantic primary progressive aphasia
TDP-43   TAR DNA-binding protein 43
VaD   Vascular dementia
WMHs   White matter abnormalities/hyperintensities
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