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A systematic review of radiomics 
in pancreatitis: applying the evidence level 
rating tool for promoting clinical transferability
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Abstract 

Background:  Multiple tools have been applied to radiomics evaluation, while evidence rating tools for this field 
are still lacking. This study aims to assess the quality of pancreatitis radiomics research and test the feasibility of the 
evidence level rating tool.

Results:  Thirty studies were included after a systematic search of pancreatitis radiomics studies until February 28, 
2022, via five databases. Twenty-four studies employed radiomics for diagnostic purposes. The mean ± standard 
deviation of the adherence rate was 38.3 ± 13.3%, 61.3 ± 11.9%, and 37.1 ± 27.2% for the Radiomics Quality Score 
(RQS), the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 
checklist, and the Image Biomarker Standardization Initiative (IBSI) guideline for preprocessing steps, respectively. 
The median (range) of RQS was 7.0 (− 3.0 to 18.0). The risk of bias and application concerns were mainly related to 
the index test according to the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. The 
meta-analysis on differential diagnosis of autoimmune pancreatitis versus pancreatic cancer by CT and mass-forming 
pancreatitis versus pancreatic cancer by MRI showed diagnostic odds ratios (95% confidence intervals) of, respectively, 
189.63 (79.65–451.48) and 135.70 (36.17–509.13), both rated as weak evidence mainly due to the insufficient sample 
size.

Conclusions:  More research on prognosis of acute pancreatitis is encouraged. The current pancreatitis radiomics 
studies have insufficient quality and share common scientific disadvantages. The evidence level rating is feasible and 
necessary for bringing the field of radiomics from preclinical research area to clinical stage.
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Key points

•	 More high-quality research on prognosis of acute 
pancreatitis is encouraged, since it has great influ-

ence on clinical decision-making but cannot be easily 
predicted by radiologists’ assessment.

•	 The overall RQS rating could detect common meth-
odological issues across radiomics research, but the 
biological correlation and comparison to “gold stand-
ard” item needs further modification for non-onco-
logical radiomics studies.

•	 The RQS rating, TRIPOD checklist, and IBSI for 
preprocessing steps can serve as tools for radiomics 
quality evaluation in non-oncological field, while the 
development of a single comprehensive tool is more 
favorable for future evaluation.
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•	 An evidence level rating tool has been confirmed to 
be feasible for the determination of the existing gap 
between preclinical and clinical use of radiomics 
research and is necessary for the overall assessment 
of specific clinical problems.

Background
Acute pancreatitis is a frequent pancreatic disease that 
is characterized by a local and systemic inflammatory 
response with the varying clinical course from self-lim-
iting mild acute pancreatitis to moderate or severe acute 
pancreatitis which has a substantial mortality rate [1]. 
A plethora of studies attempted to predict the severity 
of acute pancreatitis to guide clinical treatment, such 
as the Acute Physiology and Chronic Health Evalua-
tion (APACHE) II [2], the bedside index for severity in 
acute pancreatitis (BISAP) [3], and the CT severity index 
(CTSI) [4]. However, complexity in evaluation may hin-
der their clinical application, and they are not useful 
for predicting recurrence or local complications [2–4]. 
Approximately 20% of acute pancreatitis patients endure 
recurrent attacks and progress to chronic pancreatitis, 
a fibroinflammatory syndrome of the exocrine pancreas 
[5]. Chronic pancreatitis may present mass-like or cyst-
like appearance, mimicking mass-forming pancreatitis, 
autoimmune pancreatitis, pancreatic cancer, and other 
pancreatic tumors [6]. The differential diagnosis and 
determination of malignancy of these lesions are hard, 
but it is necessary to achieve an accurate diagnosis to 
avoid unnecessary surgery in inflammatory conditions.

Radiomics represents the process of extracting quan-
titative features to transform images into high-dimen-
sional data for capturing deeper information to support 
decision-making [7–11]. Current studies have shown its 
potential for pancreatic precision medicine, especially 
in diagnosis and management of pancreatic tumors [12–
14]. Although the main use of radiomics lies in oncology, 
the radiomics approach is suitable for non-oncological 
research based on its nature [15–17]. However, only 5.6% 
of pancreatic radiomics studies investigated the role of 
radiomics in acute pancreatitis [18]. Most radiomics 
studies on chronic, mass-forming, or autoimmune pan-
creatitis were aimed to differentiate these inflammatory 
conditions from malignancy lesions [19–22]. Implanting 
radiomics in acute pancreatitis could provide predictive 
information to identify patients with worse prognosis 
and therefore promote personalized medical treatment. 
It is also important to identify patients with a high risk 
of chronic pancreatitis to allow for closer follow-up 
and early intervention. Further, the current radiomics 
reviews applied multiple tools for quality assessment, 
while the study quality and clinical value of radiomics in 

pancreatitis are unknown. A high level of evidence is an 
essential prerequisite for translating radiomics into clin-
ical use. To the best of our knowledge, the level of evi-
dence supporting radiomics models for clinical practice 
has not been fully investigated.

Hence, our review is aimed to systematically evaluate 
the methodology quality, reporting transparency, and 
risk of bias of current radiomics studies on pancreatitis, 
and determine their level of evidence according to the 
results of meta-analyses.

Methods
Protocol and registration
The protocol of the current systematic review has been 
drafted and registered (Additional file  1: Note S1). This 
systematic review followed the Preferred Reporting Items 
for Systematic Reviews and Meta-analysis (PRISMA) 
statement [23], and the relevant checklists are available as 
Additional file 2.

Literature search and study selection
A systematic search of articles on radiomics in pancreati-
tis was performed via PubMed, Embase, Web of Science, 
China National Knowledge Infrastructure, and Wan-
fang Data until February 28, 2022, with a search string 
combining “radiomics” and “pancreatitis.” There was no 
limitation of publish period, but only articles written in 
English, Chinese, Japanese, German or French were eli-
gible. The reference lists of included articles and relevant 
reviews were screened to identify additional eligible arti-
cles. We included primary radiomics articles whose pur-
poses were diagnostic, prognostic, or predictive. Two 
reviewers each with 4 years of experience in radiom-
ics and systematic review searched and selected articles 
independently. In case of disagreements, a third reviewer 
with 30 years of experience in abdominal radiology and 
experience in radiomics research would be consulted. 
The detailed search strategy and eligibility criteria are 
available in Additional file 1: Note S2.

Data extraction and quality assessment
We modified a data extraction sheet for the current 
review, which includes literature information, study char-
acteristics, radiomics considerations, and model metrics 
(Additional file 1: Table S1) [24]. One reviewer extracted 
the data independently and then the other reviewer 
cross-checked the results. The disagreements were 
resolved by a third reviewer.

The Radiomics Quality Score (RQS) [10], the Trans-
parent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis (TRIPOD) check-
list [25], the Image Biomarker Standardization Ini-
tiative (IBSI) guideline [11], and the modified Quality 
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Assessment of Diagnostic Accuracy Studies (QUA-
DAS-2) tool [26] were employed to assess the study qual-
ity (Additional file 1: Tables S2 to S5). These tools were 
modified to current review topic. Briefly, the RQS with 
16 items was used to assess the methodological quality 
of radiomics according to six key domains [27]. The TRI-
POD was partially modified into a 35-item checklist for 
application in radiomics, excluding the Additional file 1 
and funding items [28]. Due to the overlapping with the 
RQS and the TRIPOD, only seven items relevant to pre-
processing steps were selected from the IBSI guideline 
[29]. The QUADAS-2 tool was tailored to the current 
research question through signaling questions for risk of 
bias and application concerns [24]. Two reviewers rated 
the articles independently, and the disagreements were 
resolved by discussion with a third reviewer. The con-
sensus reached during data extraction and quality assess-
ment is described in Additional file 1: Note S3.

Data synthesis and analysis
The characteristics of included studies were descrip-
tively summarized. The RQS score and the percentage 
of the ideal score were described as the mean score and 
the percentage of mean score to ideal score for each item, 
respectively. The adherence rates of the RQS rating, the 
TRIPOD checklist and the IBSI guideline were calculated 
as the ratio of the number of articles with basic adher-
ence to the number of all available articles. In case a score 
of at least one point for each item was obtained without 
minus points, it was considered to have basic adherence, 
as those which have been reported [27–29]. During the 
calculation of TRIPOD, the “if done” or “if relevant” 
items (5c, 11, and 14b) and validation items (10c, 10e, 12, 
13, 17, and 19a) were excluded from both the denomi-
nator and numerator [28, 29]. The result of QUADAS-2 
assessment was summarized as proportions of high risk, 
low risk and unclear.

Subgroup analysis was performed to determine 
whether a factor influenced on the ideal percentage of 
RQS, the TRIPOD adherence rate, and the IBSI adher-
ence rate, including the journal type, first authorship, 
biomarker, and imaging modality. According to the data 
distribution, Student’s t test or Mann–Whitney’s U test 
was used for intergroup differences, and one-way analy-
sis of variance or Kruskal–Wallis H test was applied for 
multiple comparisons. The Spearman correlation test was 
used for the correlation analysis between the study qual-
ity (the ideal percentage of RQS, the TRIPOD adherence 
rate, and the IBSI adherence rate) and characteristics (the 
sample size and the impact factor). The SPSS software 
version 26.0 was used for statistical analysis. A two-tailed 
p value < 0.05 was recognized as statistical significance, 
unless otherwise specified.

In the current review, the value of radiomics in differen-
tial diagnosis of autoimmune pancreatitis versus pancre-
atic cancer by CT and mass-forming pancreatitis versus 
pancreatic cancer by MRI were repeatedly addressed. 
Therefore, these two clinical questions were included in 
the meta-analysis. We performed meta-analysis accord-
ing to imaging modalities, to present the clinically prac-
ticable estimation. One reviewer directly extracted or 
reconstructed the two-by-two tables based on avail-
able data, and then the other reviewer cross-checked the 
results. The diagnostic odds ratio (DOR) with its 95% 
confidence interval (CI) and the corresponding p value 
were calculated using random effect model. The sensitiv-
ity, specificity, positive and negative likelihood ratio and 
their 95% CIs were also quantitatively synthesized. The 
hierarchical summary receiver operating characteristic 
(HSROC) curve was drawn for visual evaluation of diag-
nostic performance and heterogeneity. The Cochran’s Q 
test and the Higgins I2 test were conducted for heteroge-
neity assessment. The Deeks funnel plot was constructed 
for publication bias. The Deeks funnel asymmetry test, 
Egger’s test, and Begg’s test were performed. A two-tailed 
p value > 0.10 indicated a low publication bias. The trim 
and fill method was employed to evaluate the robustness 
of meta-analyses. The Stata software version 15.1 with 
metan, midas, and metandi packages was employed for 
meta-analysis.

The model type and phase of image mining studies 
of the studies were classified according to the TRIPOD 
statement (Additional file  1: Table  S6) [25] and a previ-
ous review (Additional file 1: Table S7) [30]. The levels of 
evidence supporting clinical values were rated based on 
the results of meta-analyses (Additional file 1: Table S8) 
[31, 32]. The detailed analysis methods are described in 
Additional file 1: Note S4.

Results
Literature search
The search identified 587 records in total, 257 of which 
were excluded due to duplication. After screening the 
remaining 330 records, 73 full texts were retrieved and 
reviewed. Finally, 30 studies were included (Fig. 1) [33–
62]. No additional eligible study was found through hand 
search of their reference lists or relevant reviews.

Study characteristics
The characteristics of the 30 included studies are sum-
marized in Table  1. Figure  2 shows the topics of the 33 
models included in the 30 studies. 69.7% (23/33) models 
focused on the role of radiomics in differential diagno-
sis of pancreatitis from pancreatic tumors, while 12.1% 
(4/33) models employed radiomics to distinguish chronic 
pancreatitis from normal pancreas tissue, functional 
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abdominal pain, and acute pancreatitis. The remaining 
18.1% (6/33) models investigated the predictive potential 
of radiomics in prognosis of acute pancreatitis. The liter-
ature information, model characteristics, and radiomics 
information of each study are present in Additional file 1: 
Tables S9 to S11.

Study quality
The overall mean ± standard deviation (median, range) 
of the RQS rating was 7.0 ± 5.0 (7.0, − 3.0 to 18.0), with 
an overall adherence rate of 38.3% (184/480), and an ideal 
percentage of RQS of 20.3% (7.3/36) (Table  2; Fig.  3). 
Although more than nine-tenths of the studies per-
formed feature reduction steps and reported discrimina-
tion statistics, none of the studies conducted test–retest 
analysis, phantom study, cutoff analysis, or cost-effective-
ness analysis. All six key domains of RQS were subopti-
mal, among which the model performance index domain 
showed the highest ideal percentage of 42.7% (2.1/5).

The overall adherence rate of the TRIPOD checklist 
was 61.3% (478/780), excluding “if relevant,” “if done,” and 
“validation” items (5c, 11, 14b, 10c, 10e, 12, 13, 17, and 
19a) (Table  3; Fig.  3). None of the studies reported the 
blinded method during the outcome assessment (item 
6b), sample size calculation (item 8), and handling of 

missing data (item 9). The discussion section reached the 
highest adherence rate of 90.0% (81/90), while the adher-
ence rate of the validation section was only 17.3% (9/52).

The overall adherence rate of IBSI preprocessing steps 
was 37.1% (78/210) (Fig.  4). The software for feature 
extraction varied among studies, including MATLAB 
(7/30), Pyradiomics (6/30), IBEX (5/30), and others. 
Three studies did not report the software used. Among 
these, Pyradiomics and IBEX were with IBSI compliance. 
The studies used manual (23/30) and automatic (1/30) 
methods for segmentation. However, one study did not 
report the segmentation method. The robustness assess-
ment was performed in 40.0% (12/30) of the studies, 
all concerning the inter- and intra-reader agreements. 
Other preprocessing steps were sometimes conducted.

The results of the QUADAS-2 assessment are pre-
sented in Fig.  3. The risk of bias and application con-
cerns relating to index testing were most frequently 
observed mainly due to the lack of external validation. 
The risk of bias in patient selection was rated as high in 
two studies due to the case–control design. Most of the 
studies did not provide the timing of scanning; there-
fore, the corresponding risk of bias was unclear. Indi-
vidual assessment per study per element is present in 
Additional file 1: Tables S12 to S15.

Fig. 1  Flow diagram of study inclusion
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Meta‑analysis
The datasets for meta-analyses are present in Addi-
tional file  1: Table  S16. The pooled analysis showed 
that the DOR (95% CI) of radiomics for distinguishing 
autoimmune pancreatitis versus pancreatic cancer by 
CT and mass-forming pancreatitis versus pancreatic 
cancer by MRI were 189.63 (79.65–451.48) and 135.70 
(36.17–509.13), respectively (Fig. 5 and Table 4). How-
ever, their levels of evidence were both weak mainly 
due to the insufficient sample size. There was signifi-
cant heterogeneity among studies, but the likelihood 
of publication bias was low. The trim and fill analysis 
demonstrated that there were missing datasets, but the 
adjusted diagnostic performance was still of statistical 
significance. The results of meta-analyses regardless of 
imaging modalities presented dramatic statistical sig-
nificance (Additional file 1: Table S17). The correspond-
ing plots of meta-analyses are present in Additional 
file 1: Figures S1 to S9.

Correlations between study characteristics and quality
Figure  6 shows the potential correlation between study 
characteristics and its quality. The studies before and 
after the publication of the RQS, the TRIPOD check-
list, or the IBSI guideline did not show obvious differ-
ence. Only the ideal percentage of RQS was considered 
to be related to the sample size (r = 0.456, p = 0.011). 
The results of subgroup analysis and correlation tests 
are present in Additional file 1: Tables S18 and S19. No 
difference of the ideal percentage of RQS, the TRIPOD 
adherence rate, and the IBSI adherence rate among sub-
groups has been found (all p > 0.05).

Discussion
In our review, radiomics showed promising performance 
of diagnostic and prognostic models for multiple pur-
poses in pancreatitis, but their levels of evidence were 
weak. The overall adherence rates of the RQS rating, 
the TRIPOD checklist, and the IBSI preprocessing steps 

Table 1  Study characteristics

Study characteristics Data

Sample size, mean ± standard deviation, median (range) 137.5 ± 85.0, 
111 (41–389)

Journal type, n (%) N = 30

 Imaging 16 (53)

 Non-imaging 14 (47)

First authorship, n (%) N = 30

 Radiologist 24 (80)

 Non-radiologist 6 (20)

Biomarker, n (%) N = 30

 Diagnostic 24 (80)

 Prognostic 6 (20)

Imaging modality, n (%) N = 30

 CT 13 (43)

 EUS 4 (13)

 MRI 9 (30)

 PET 4 (13)

Model type, n (%) N = 30

 Type 1a: Developed model validated with exactly the same data 7 (23)

 Type 1b: Developed model validated with resampling data 10 (33)

 Type 2a: Developed model validated with randomly splitting data 12 (40)

 Type 2b: Developed model validated with non-randomly splitting data 1 (3)

 Type 3: Developed model validated with separate data 0 (0)

 Type 4: Validation only 0 (0)

Phase classification, n (%) N = 30

 Phase 0: < 100 patients; retrospective; internal validation 16 (53)

 Phase I: < 100 patients; retrospective; external validation 2 (7)

 Phase II: > 100 patients; retrospective; external validation 12 (40)

 Phase III: > 100 patients; prospective; external validation 0 (0)

 Phase IV: real-world 0 (0)



Page 6 of 15Zhong et al. Insights into Imaging          (2022) 13:139 

were 38.3%, 61.3%, and 37.1%, respectively. The ideal per-
centage of RQS was positively related to the sample size. 
Our results implied that the level of evidence support-
ing clinical application and the overall study quality were 
suboptimal in pancreatitis radiomics research, requiring 
significant improvement.

Several reviews have summarized the use of radi-
omics in multiple pancreatic diseases from pancreatic 
cystic lesions to pancreatic tumors [15–22]. A com-
prehensive review reported that most of the pancreatic 
radiomics studies investigated focal pancreatic lesions, 
but only four studies discussed the pancreatitis [12]. 
In our review, radiomics has been most frequently 
applied to differential diagnosis of pancreatic cancer 
from autoimmune pancreatitis, chronic pancreatitis, 
or mass-forming pancreatitis. The misdiagnosis causes 
pancreatic cancer patients to miss the surgical oppor-
tunity, while the patients with inflammatory condition 
may receive unnecessary treatment. The accurate diag-
nosis of these lesions is hindered by mimicking imaging 
features [6]. Radiomics showed comparable and even 

better performance than radiologists’ assessment [38, 
42, 46, 52, 56, 58], but their level of evidence supporting 
clinical translation is still weak. Therefore, more valida-
tion for the establishment of a sound evidence basis is 
the main issue for diagnostic. The prognosis prediction 
for acute pancreatitis is another topic of clinical signifi-
cance. Although the CT severity index has been estab-
lished for prognosis prediction of acute pancreatitis [4], 
the pancreatic parenchyma injury and extra-pancreatic 
inflammation are not visible enough in early pancrea-
titis. The conventional imaging features usually lag 
behind disease progression, which cannot help clini-
cal decision-making. Current studies demonstrated the 
usefulness of radiomics in predicting severity, recur-
rence, progression, and extra-pancreatic necrosis [33, 
35, 40, 41, 45, 59]. However, the studies were conducted 
by varying imaging modalities concerning separate 
outcomes, which do not allow further meta-analysis to 
establish any evidence. Besides, as a continuous disease 
progress, acute pancreatitis needs comprehensive pre-
diction for multiple clinical outcomes. Corresponding 

Fig. 2  Study topics and number of studies. Three studies investigated two topics, respectively, and had been treated as two different studies in the 
term of topic. Therefore, there were thirty studies according to article, but thirty-three models according to topic. The bolded number with modality 
indicates the studies included in the meta-analysis
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models have not been developed yet. Thus, it is more 
urgent to encourage more investigation into prognosis.

The inadequate quality of radiomics studies has been 
addressed repeatedly [15–24, 27–29]. In accordance 
with previous reviews, several items were always lack-
ing including test–retest analysis, phantom study, cut-
off analysis, and cost-effectiveness analysis in RQS, the 
blinded method during outcome assessment, sample size 
calculation, and handling of missing data in TRIPOD, 
and details of image preprocessing in selected IBSI items. 
In spite of these common issues across radiomics stud-
ies, there are some non-oncology specific issues. Con-
trary to the oncological field, the concept of biological 
correlate did not clearly fit the current topic [17], since 
the inflammatory diseases do not always relate to genom-
ics. In prognostic studies, comparison to “gold standard” 
is not suitable for non-oncological diseases without a 
widely accepted “gold standard,” while the tumor stag-
ing is usually employed as the “gold standard” of survival 
prediction. The TRIPOD items and IBSI preprocessing 
items were suitable for non-oncological studies, since 
they were not specified for oncological field. We found 
that the ideal percentage of RQS was positively related 
with the sample size. We suspected that the larger sample 

size might allow more sufficient validation, evaluation of 
calibration statics, and clinical utility assessment, which 
could gain a higher RQS rating.

Most of the radiomics studies were oncological, but 
radiomics has potential clinical application in the non-
oncological field [30]. Several reviews have summa-
rized the role of radiomics in non-oncological diseases, 
including mild cognitive impairment and Alzheimer’s 
disease [15], COVID-19 and viral pneumonia [16], and 
cardiac diseases [17]. The study quality evaluated by 
RQS was the main concern of these reviews. Their ideal 
percentage of RQS were 9.9%, 34.1%, and 19.4%, respec-
tively. We suspected that the COVID-19 and viral 
pneumonia review reached a better RQS rating since 
the included studies were published recently with a rel-
atively larger sample size, which allow adequate feature 
reduction and external validation. Actually, none of the 
studies in this review lacked the feature reduction, and 
all the studies performed validation [16]. In contrast, a 
significant number of previous studies did not perform 
feature reduction and validation. As a result, the other 
non-oncological radiomics reviews showed lower RQS 
ratings [15, 17]. Our review is in line with these non-
oncological radiomics reviews with a comparable ideal 

Table 2  RQS rating of included studies

RQS Radiomics Quality Score

16 items according to 6 key domains Range Median (range) Percentage of ideal 
score, n (%)

Adherence 
rate, n (%)

Total 16 items − 8 to 36 7 (− 3 to 18) 7.3 (20.2) 184 (38)

Domain 1: protocol quality and stability in image and segmen-
tation

0–5 2 (0–2) 1.6 (31.3) 47 (15)

 Protocol quality 0–2 1 (0–1) 0.9 (46.7) 28 (93)

 Multiple segmentations 0–1 1 (0–1) 0.6 (63.3) 19 (63)

 Test–retest 0–1 0 (0–0) 0 (0) 0 (0)

 Phantom study 0–1 0 (0–0) 0 (0) 0 (0)

Domain 2: feature selection and validation − 8 to 8 − 2 (− 8 to 6) 0.9 (10.8) 42 (70)

 Feature reduction or adjustment of multiple testing − 3 to 3 3 (− 3 to 3) 2.8 (93.3) 29 (97)

 Validation − 5 to 5 − 5 (− 5 to 3) − 1.9 (0) 13 (43)

Domain 3: biologic/clinical validation and utility 0–6 1.5 (0–6) 2.0 (33.9) 47 (39)

 Non-radiomics features 0–1 0.5 (0–1) 0.5 (50.0) 15 (60)

 Biologic correlations 0–1 1 (0–1) 0.6 (60.0) 18 (60)

 Comparison with “gold standard” 0–2 0 (0–2) 0.8 (40.0) 12 (40)

 Potential clinical utility 0–2 0 (0–2) 0.1 (6.7) 2 (7)

Domain 4: model performance index 0–5 2 (1–4) 2.1 (42.7) 34 (38)

 Cutoff analysis 0–1 0 (0–0) 0 (0) 0 (0)

 Discrimination statistics 0–2 2 (1–2) 1.9 (95.0) 30 (100)

 Calibration statistics 0–2 0 (0–2) 0.2 (11.7) 4 (13)

Domain 5: high level of evidence 0–8 0 (0–7) 0.2 (2.9) 1 (2)

 Prospective study 0–7 0 (0–7) 0.2 (3.3) 1 (3)

 Cost-effectiveness analysis 0–1 0 (0–0) 0 (0) 0 (0)

Domain 6: open science and data 0–4 0 (0–1) 0.4 (10.8) 13 (43)
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percentage of RQS of 20.3%. Nevertheless, the feasi-
bility of the TRIPOD checklist [28] and the IBSI pre-
processing steps [29] have only been assessed in the 
oncological field. Our study initially tested and con-
firmed that they were useful in non-oncological field, 
but further validation is needed.

An evidence level rating tool has been tested in our 
review [31, 32]. The evidence level rating process is fea-
sible to show the gap between academic research and 
clinical application in radiomics studies. It is necessary to 
employ this tool, since the dramatic model performance 
did not naturally guarantee a strong level of evidence 
supporting the clinical translation. However, this tool did 
not mention on which dataset a predictive model should 
be assessed, because this tool is originally developed for 
reviewing epidemic studies and clinical trials [31, 32]. It 
is recommended to perform the assessment of radiomics 
models on an external validation dataset [10, 11, 25]. We 
consider that future studies should determine the level of 
evidence based on results of meta-analyses of validation 
datasets.

We believed that the whole radiomics research commu-
nity should participate in the improvement in methodo-
logical and reporting quality for a higher level of evidence 
to support the translation of radiomics. They need to get 
involved into this process, to critically appraise the study 
design, conduct and analyze the model, and report the 
study. Indeed, the IBSI guideline used in our review is 
an achievement gained by an independent international 
collaboration which works towards standardization of 
the radiomics methodology and reporting [11]. There 
are many other guidelines developed or under develop-
ment by the radiomics and artificial intelligence commu-
nity with the purpose to improve study quality, including 
Transparent Reporting of a multivariable prediction 
model for Individual Prognosis Or Diagnosis based on 
Artificial Intelligence (TRIPOD-AI) [63], Prediction 
model Risk Of Bias ASsessment Tool based on Artificial 
Intelligence (PROBAST-AI) [63], Quality Assessment of 
Diagnostic Accuracy Studies centered on Artificial Intel-
ligence (QUADAS-AI) [64], Developmental and Explora-
tory Clinical Investigations of DEcision support systems 

Fig. 3  Quality assessment of included studies. a Ideal percentage of RQS; b TRIPOD adherence rate; c QUADAS-2 assessment result
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Table 3  TRIPOD adherence of included studies

TRIPOD Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis

35 Selected Items in 20 Criteria According to 6 Sections (N = 30) Study, n (%)

Overall (excluding 5c, 11, 14b, 10c, 10e, 12, 13, 17, and 19a) 478 (61)

Section 1: Title and Abstract 14 (23)

 1. Title—identify developing/validating a model, target population, and the outcome 2 (7)

 2. Abstract—provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, 
results, and conclusions

12 (40)

Section 2: Introduction 37 (62)

 3a. Background—Explain the medical context and rationale for developing/validating the model 30 (100)

 3b. Objective—Specify the objectives, including whether the study describes the development/validation of the model or both 7 (23)

Section 3: Methods 252 (65)

 4a. Source of data—describe the study design or source of data (randomized trial, cohort, or registry data) 30 (100)

 4b. Source of data—specify the key dates 26 (87)

 5a. Participants—specify key elements of the study setting including number and location of centers 30 (100)

 5b. Participants—describe eligibility criteria for participants (inclusion and exclusion criteria) 21 (70)

 5c. Participants—give details of treatment received, if relevant (N = 6) 0 (0)

 6a. Outcome—clearly define the outcome, including how and when assessed 30 (100)

 6b. Outcome—report any actions to blind assessment of the outcome 0 (0)

 7a. Predictors—clearly define all predictors, including how and when assessed 23 (77)

 7b. Predictors—report any actions to blind assessment of predictors for the outcome and other predictors 15 (50)

 8. Sample size—explain how the study size was arrived at 0 (0)

 9. Missing data—describe how missing data were handled with details of any imputation method 0 (0)

 10a. Statistical analysis methods—describe how predictors were handled 24 (80)

 10b. Statistical analysis methods—specify type of model, all model-building procedures (any predictor selection), and method for 
internal validation

23 (77)

 10d. Statistical analysis methods—specify all measures used to assess model performance and if relevant, to compare multiple mod-
els (discrimination and calibration)

30 (100)

 11. Risk groups—provide details on how risk groups were created, if done (N = 0) 0 (0)

Section 4: Results 94 (52)

 13a. Participants—describe the flow of participants, including the number of participants with and without the outcome. A diagram 
may be helpful

16 (53)

 13b. Participants—describe the characteristics of the participants, including the number of participants with missing data for predic-
tors and outcome

24 (80)

 14a. Model development—specify the number of participants and outcome events in each analysis 25 (83)

 14b. Model development—report the unadjusted association between each candidate predictor and outcome, if done (N = 5) 1 (20)

 15a. Model specification—present the full prediction model to allow predictions for individuals (regression coefficients, intercept) 5 (17)

 15b. Model specification—explain how to the use the prediction model (nomogram, calculator, etc.) 2 (7)

 16. Model performance—report performance measures (with confidence intervals) for the prediction model 22 (73)

Section 5: Discussion 81 (90)

 18. Limitations—Discuss any limitations of the study 30 (100)

 19b. Interpretation—Give an overall interpretation of the results 30 (100)

 20. Implications—Discuss the potential clinical use of the model and implications for future research 21 (70)

Section 6: Validation for Model type 2a, 2b, 3, and 4 (N = 13) 9 (17)

 10c. Statistical analysis methods—describe how the predictions were calculated 0 (0)

 10e. Statistical analysis methods—describe any model updating (recalibration), if done (N = 0) 0 (0)

 12. Development versus validation—Identify any differences from the development data in setting, eligibility criteria, outcome, and 
predictors

5 (38)

 13c. Participants (for validation)—show a comparison with the development data of the distribution of important variables 4 (31)

 17. Model updating—report the results from any model updating, if done (N = 0) 0 (0)

 19a. Interpretation (for validation)—discuss the results with reference to performance in the development data and any other valida-
tion data

0 (0)
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Fig. 4  IBSI preprocessing steps performed in included studies. a Adherence rate of IBSI preprocessing steps; b segmentation method; c software for 
radiomics feature extraction. The other software included Omni-Kinetics, Artificial Intelligent Kit, AnalysisKit, Image J, FireVoxel, and MaZda

Fig. 5  Forest plots of diagnostic odds ratio for differentiation diagnosis. a Autoimmune pancreatitis versus pancreatic cancer by CT; b mass-forming 
focal pancreatitis versus pancreatic cancer by MRI
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driven by Artificial Intelligence (DECIDE-AI) [65], Stand-
ard Protocol Items: Recommendations for Interventional 
Trials–Artificial Intelligence (SPRIIT-AI) [66], Consoli-
dated Standards of Reporting Trials–Artificial Intelligence 
(CONSORT-AI) [67], Standards for Reporting of Diag-
nostic Accuracy Study centered on Artificial Intelligence 
(STARD-AI) [68], Checklist for Artificial Intelligence in 
Medical Imaging (CLAIM) [69], etc. Their project teams 
and steering committees usually consisted of a broad 
range of experts to provide balanced and diverse views 
involving various stakeholder groups.

However, the importance of the participants varies 
with the stage from early scientific validation to later 
regulatory assessment. For offline preclinical valida-
tions, reporting guidelines and risk of bias assessment 
tools for radiomics model studies are used, emphasizing 
the methodological and reporting quality [63, 64]. Dur-
ing this stage, the researchers, authors, reviewers, and 
editors of radiomics studies play an important role to 
improve the methodological and reporting quality, and 
make sure only studies with adequate innovation are 

being published. Next, at the stage of safety and utility, 
the small-scale early live clinical evaluations are used to 
inform regulatory decisions and are part of the clinical 
evidence generation process [65]. With improvements of 
study quality, the radiomics research community could 
for the first time provide more robust scientific evidence 
for the translation of radiomics. Before clinical applica-
tion, it is necessary to test the radiomics for safety and 
effectiveness in large-scale, comparative, and prospective 
trails [66–68]. Similar to the random clinical trials which 
are considered as the gold standard for drug therapies, 
the aim of these studies should be to provide stronger 
evidence for translation of radiomics from research 
application into a clinically relevant tool. Nevertheless, 
given the somewhat different focuses of scientific evalu-
ation and regulatory assessment, as well as differences 
between regulatory jurisdictions, the health policy mak-
ers and legal experts may have a greater say in this stage.

The quality assessment results should be seen as a qual-
ity seal of the published results more than a way of under-
lining the possible weaknesses of the proposed model 
[70]. At present, the researchers are reticent in publishing 
the quality assessment results for their radiomics stud-
ies, and journals do not demand particular checklists 
for radiomics studies. Nevertheless, in this early stage of 
radiomics, the authors, editors, reviewers, and readers 
should be able to ascertain whether a radiomic study is 
compliant with good practice or whether the study has 
justified any noncompliance.

There are several limitations in our study. First, the 
RQS was far from perfect. Some of TRIPOD items may 
be not suitable for radiomics studies. We did not exhaust 
the IBSI checklist, but focused on preprocessing steps. 
Nevertheless, the current review served as an example for 
the application of these tools in the non-oncological field. 
Second, radiomics is considered as a subset of artificial 
intelligence, but we did not apply Checklist for Artificial 
Intelligence in Medical Imaging for our review [69]. This 
tool allows assessments on not only artificial intelligence 
in medical imaging that includes classification, image 
reconstruction, text analysis, and workflow optimization, 
but also general manuscript review criteria. However, 
many items in this tool are too general [71], and there-
fore hard to apply in radiomics. The tools we used could 
cover almost all the CLAIM items with more specific 
instructions. It would be interesting to assess the feasi-
bility of CLAIM in radiomics, but it falls out of our study 
scope. Third, studies included in the current review focus 
on very different topics. It may not be fair to run meta-
analyses of heterogenous studies, and this process gives 
insights into clinical questions with a limited number of 
studies [24, 72]. Indeed, only two selected clinical ques-
tions with similar settings were included in meta-analyses 

Table 4  Diagnostic performance of meta-analyzed clinical 
questions

AIP autoimmune pancreatitis, AUC​ area under curve, CI confidential interval, DOR 
diagnostic odds ratio, MFP mass-forming pancreatitis, NLR negative likelihood 
ratio, n/a not applicable, PC pancreatic cancer, PLR positive likelihood ratio

Clinical question AIP versus PC by CT MFP versus PC by MRI

Number of studies 6 4

Number of available 
datasets

5/8 5/6

Events/sample size 191/421 101/320

Pooled analysis

DOR (95% CI) 189.63 (79.65–451.48) 135.70 (36.17–509.13)

p value for DOR < 0.001 < 0.001

Sensitivity (95% CI) 0.90 (0.84–0.94) 0.90 (0.81–0.95)

Specificity (95% CI) 0.95 (0.92–0.97) 0.94 (0.86–0.98)

PLR (95% CI) 19.01 (10.51–34.40) 15.00 (5.94–37.92)

NLR (95% CI) 0.10 (0.06–0.17) 0.11 (0.06–0.56)

AUC (95% CI) 0.97 (0.95–0.98) 0.95 (0.93–0.96)

Heterogeneity

Higgins I2 test (%) 83.26% 97.28%

Cochran’s Q test (p 
value)

< 0.01 < 0.01

Publication bias

Egger’s test (p value) 0.060 0.050

Begg’s test (p value) 0.221 0.221

Deeks test (p value) 0.226 0.538

Trim and fill method

Number of missing 
datasets

2 2

Adjusted DOR (95%CI) 135.11 (64.40–283.74) 53.89 (15.95–182.00)

Level of evidence Weak Weak
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for evidence level rating. The increasing number of stud-
ies would allow more robust scientific data aggregation in 
the future. Still, this is a timely attempt to test the feasibil-
ity of the evidence level rating tool for radiomics.

In conclusion, more high-quality studies on prognosis 
of acute pancreatitis are encouraged, since it has great 
influence on clinical decision-making but could not be 
easily predicted by radiologists’ assessment. Although 
meta-analysis of studies showed fascinating potential in 
differentiating pancreatitis from pancreatic cancer, the 
level of evidence was weak. The current methodological 
and reporting quality of radiomics studies on pancrea-
titis is insufficient. Moreover, evidence rating is needed 
before radiomics can be translated into clinical practice.
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