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Abstract 

The performance of artificial intelligence (AI) for brain MRI can improve if enough data are made available. Generative 
adversarial networks (GANs) showed a lot of potential to generate synthetic MRI data that can capture the distribution 
of real MRI. Besides, GANs are also popular for segmentation, noise removal, and super-resolution of brain MRI images. 
This scoping review aims to explore how GANs methods are being used on brain MRI data, as reported in the litera-
ture. The review describes the different applications of GANs for brain MRI, presents the most commonly used GANs 
architectures, and summarizes the publicly available brain MRI datasets for advancing the research and development 
of GANs-based approaches. This review followed the guidelines of PRISMA-ScR to perform the study search and selec-
tion. The search was conducted on five popular scientific databases. The screening and selection of studies were per-
formed by two independent reviewers, followed by validation by a third reviewer. Finally, the data were synthesized 
using a narrative approach. This review included 139 studies out of 789 search results. The most common use case of 
GANs was the synthesis of brain MRI images for data augmentation. GANs were also used to segment brain tumors 
and translate healthy images to diseased images or CT to MRI and vice versa. The included studies showed that GANs 
could enhance the performance of AI methods used on brain MRI imaging data. However, more efforts are needed to 
transform the GANs-based methods in clinical applications.
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Key points

• This article aims to provide a comprehensive review 
on the applications of generative adversarial net-
works (GANs) in brain MRI.

• The specific focus of this education review is on brain 
MRI.

• It covers a large number of studies on GANs in brain 
MRI and the most recently published studies on 
brain MRI.

Introduction
Magnetic resonance imaging (MRI) is a widely used 
medical imaging technology. MRI is non-intrusive and 
considered safe for humans. MRI can generate different 
modalities of an image and can provide valuable insights 
into a specific disease. The frequent sequences of MRI 
are T1-weighted and T2-weighted scans [1, 2]. The major 
difference between MRI and other medical imaging tech-
nologies is that MRI is free from using X-ray radiogra-
phy. The radiologists use MRI to analyze brain tissue and 
diagnose brain-related diseases such as brain tumors (i.e., 
the abnormal and uncontrolled growth of brain cells). 
This process requires trained radiologists, and the accu-
racy is heavily dependent on the expertise of the radiolo-
gists and the quality of MRI data acquisition [1, 2].

Computer-aided diagnosis (CAD) can aid in the 
process of MRI analysis. Recently, there has been a 
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significant increase in interest in developing artificial 
intelligence and deep learning-based methods for CAD. 
However, deep learning methods rely on training using 
large medical imaging data. Generative adversarial 
networks (GANs) have the potential to generate new 
samples of the data and represent the distribution of 
the real data. GANs are particular types of deep learn-
ing models formed of two neural networks, namely the 
generator and the discriminator. The generator gener-
ates new samples, while the discriminator attempts to 
classify the images as real or synthetic. The adversarial 
training effectively improves the overall training of the 
model. While GANs methods were initially popular 
for generating synthetic data in the medical imaging 
domain, they have also been used for other applications 
such as super-resolution, segmentation, and diagnosis.

This study performed a scoping review to find out 
the role of GANs-based methods in brain MRI. While 
many reviews have been performed on the use of GANs 
in medical imaging and GANs in MRI [1–3], their 
scope is too broad. For example, the review in [1] cov-
ers a broad range of MRI and does not focus on brain 
MRI only. Similarly, the review in [2] covers many dif-
ferent deep learning techniques and does not limit the 
discussion to GANs-based methods only. The review 
in [3] covers the discussion on GANs for all types of 
medical imaging data. Table 1 provides a comparison of 
our work with previous reviews.  The growing number 
of studies on the use of GANs in brain MRI demands 
a dedicated review. In this regard, this review presents 
a review of how GANs-based methods were used to 
address many challenges in advancing the performance 
of AI for brain MRI data. More specifically, it summa-
rizes the applications of GANs-based methods in brain 
MRI such as synthesis of brain MRI, segmentation of 
brain tumor, and super-resolution of brain MRI. Fur-
thermore, it also highlights the different evaluation 
metrics such as structural similarity index measure 
(SSIM) and the peak signal-to-noise ratio (PSNR) used 
in the literature for evaluation of the performance of 
GANs. The following research questions related to the 
role of GANs-based method in brain MRI were consid-
ered for this review.

1. What were the typical applications of GANs pro-
posed for brain MRI?

2. Which architectures of GANs are most commonly 
applied for brain MRI?

3. What was the purpose of using GAN in brain MRI?
4. What were the most commonly used datasets for 

brain MRI?
5. How many datasets were publicly accessible?

6. What evaluation matrices were used for the valida-
tion of the model?

The study will be helpful for researchers and profes-
sionals in the medical imaging and healthcare domain 
who are considering using GANs methods to diagnose 
and predict the brain tumors from the MRI images. The 
review also lists publicly available brain MRI datasets that 
will be helpful for AI researchers to develop advanced 
research methods.

Methods
We performed a literature search in famous databases 
and conducted a scoping review as per the guidelines 
of the PRISMA-ScR (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses Extension for Scop-
ing Reviews) [4]. Additional file 1: Table S1 provides the 
adherence to the PRISMA-ScR checklist. The following 
methods were used for the search and the study selection.

Search strategy
Search sources
This review searched five different databases for relevant 
literature, namely PubMed, Scopus, IEEE Xplore, ACM 
Digital Library, and Google Scholar. We note here that 
MEDLINE is covered in PubMed. The search was per-
formed between September 20 and 22, 2021. For the 
search outcomes of Google Scholar, only the first 100 
results were considered, as, beyond the first 100 entries, 
the search results were quickly losing match and rele-
vancy to the topic of the review. In addition to the search 
on the five databases, we also screened the reference lists 
of the included studies to find additional relevant studies.

Search terms
We defined the search terms from the available literature 
and by referring to the experts in the fields. The search 
terms were selected based on the intervention (e.g., deep 
learning, generative adversarial networks (GANs)), the 
target anatomy (brain), and the target data modality (e.g., 
MRI, fMRI, sMRI). The search strings used in this study 
are provided in Additional file 1: Table S2.

Search eligibility criteria
We focused on GANs-based approaches used for brain 
MRI data. We considered studies published in English 
from January 2015 to September 2021. Studies for all 
applications of GANs were included, such as segmenta-
tion, synthesis, noise removal, and super-resolution of 
brain MRI. We included studies that used GANs for brain 
MRI data and excluded studies that used other deep 
learning methods (such as convolutional neural networks 
or recurrent neural networks) but did not use GANs. 
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Similarly, we excluded studies that used GANs for non-
image data or image data of modalities other than MRI 
(such as ultrasound, X-ray, or computed tomography 
(CT)). We also excluded studies that used GANs for MRI 
data other than the brain.

We included peer-reviewed articles and conference 
proceedings and excluded preprints, commentaries, 
short reviews, editorials, and abstracts. Similarly, we 
excluded studies that presented a survey of GANs meth-
ods. No restrictions were imposed on the country of 
publication, comparators, and outcomes of the GANs 
methods.

Study selection
Two reviewers, namely authors AJ and OT, indepen-
dently reviewed the titles and abstracts of the stud-
ies identified in the search and made initial flagging for 
inclusion and exclusion. The flagging was then verified 
by a third reviewer (HA). The studies that passed the title 
and abstract screening were shortlisted for the full-text 
reading phase to perform study selection. Any disagree-
ment between the reviewers (AJ and OT) was investi-
gated and resolved through discussion and consensus. 
The Cohen’s kappa score [5] was calculated to measure 
the agreement between the two reviewers.

Data extraction
We prepared a purpose-built form for data extraction. 
Additional file 1: Table S4 shows the data extraction form. 
The entries for the form were pilot-tested using ten rele-
vant studies to extract the data accurately. Two reviewers 
(MB and FA) independently performed the data extrac-
tion according to the data extraction form. The data were 
extracted for the applications of the studies, the purpose 
of using GAN, the type of GAN, features of the dataset, 
and the evaluation mechanism of the GANs-based meth-
ods. Any disagreement between the two reviewers was 
resolved through discussion and consensus.

Data synthesis
After the extraction of the data from the included studies, 
we synthesized the data using a narrative approach. First, 
we classified the included studies in terms of their appli-
cations, such as synthesis (data augmentation), diagnosis 
(e.g., tumor detection), prognosis, and super-resolution. 
We also classified the studies based on the purpose of 
using GANs, such as synthesis, noise removal, and trans-
lation. Based on dataset types, we organized the data into 
two broad categories: studies that used publicly avail-
able datasets and studies that used privately collected 
MRI data. We also summarized the studies based on the 

size of the dataset, the evaluation mechanisms, and the 
reporting of external validation. We performed and man-
aged the data synthesis using MS Excel.

Results
Search and study selection results
We retrieved 789 studies as a search result. We 
removed 185 duplicates. We then did the screening of 
the titles and abstracts of the remaining studies. As a 
result of title and abstract screening, we excluded 446 
studies following the criteria defined in the protocol. 
We then performed the full-text reading of the remain-
ing 158 studies. Among these, we removed 19 studies 
that did not fulfill the criteria of inclusion. Finally, we 
were left with 139 studies for inclusion in this survey. 
See Fig. 1 for the flowchart of the study selection pro-
cess. No additional studies were identified by forward-
and-backward reference checking. The Cohen’s kappa 
score was 86.3% for the title and abstract screening, 
which shows a good agreement between the review-
ers. The Cohen’s kappa score was 84.7% for the full-text 
reading phase, which shows a good agreement between 
the reviewers. Additional file  1: Table  S3 shows the 
matrix for the calculation of the Cohen’s kappa score.

Demographics of the included studies
Among the included studies, 87 were peer-reviewed 
journal articles and 52 were conference publications. 
More than two-thirds of the studies (n = 104) were 
published in the last 2 years, i.e., 2020 and 2021. In 
comparison, only five studies were published in 2018 
and only one study was published in 2017. A total of 
27 countries contributed to the studies. Around one-
third of the studies (n = 53) were published in China. 
The only two other countries that published more than 
ten studies were the USA (n = 21) and Japan (n = 12). 
Table 2 summarizes the demographics of the included 
studies. Figure 2 shows a visualization of the year-wise 
and country-wise distribution of the included studies.

Applications of GANs in brain MRI
GANs have been used for many applications of brain 
MRI data. The included studies used GAN-based meth-
ods as a sub-module of their deep learning frame-
works for different applications, as shown in Table  2. 
The majority of the included studies targeted applica-
tions, namely the generation of synthetic data (n = 43), 
the segmentation of area of interest in brain MRI 
(n = 32), and the diagnosis of neurological diseases 
(n = 22). Other common applications of the studies 
were super-resolution to improve the quality of the 
images as reported in ten studies and reconstruction 
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Fig. 1 The PRISMA-ScR flowchart for the selection of the included studies
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of high-quality images (which can be considered a sub-
category of super-resolution) reported in 13 studies. 
Few studies also reported applications such as noise 
removal (n = 5), prognosis (n = 4), and image registra-
tion (n = 2). Only one study reported the generation of 
3D synthetic volumes of MRI data (see Fig. 3).

The included studies used GANs for many different 
applications, namely synthesis (generation of synthetic 
data), segmentation (generation of the segmentation 
mask), diagnosis, and translation of data from one modal-
ity to another (e.g., translation from CT to MRI and vice 
versa, or translation form normal MRI to infected MRI). 
Almost one-third of the studies (n = 45) reported the use 
of GANs for the synthesis of data. Around one-sixth of 
the studies (n = 26) reported GANs to perform segmen-
tation. Other popular use cases of GANs were diagno-
sis reported in 16 studies, reconstruction reported in 
15 studies, and translation reported in 12 studies. The 
reconstruction may also be regarded as a particular case 
of image synthesis. Only a few studies reported use cases 
of GANs for other applications, such as super-resolution 
reported in seven studies, noise removal reported in five 
studies, prediction reported in five studies, and prognosis 
reported in four studies. Table 3 provides a summary of 
the use cases of GANs.

Types of GANs methods
While there are many different types of GANs usually 
named based on their architectures, there is a tendency 
to assign a new name to every GAN even if the funda-
mental changes in the architecture are not significant. 
This review found that the most common types of GANs 
used were the cycleGAN used by 12 studies [15, 17, 48, 
51, 55–57, 65, 66, 79, 84, 110, 133] followed by condi-
tional GAN used by 8 studies [53, 54, 71, 72, 101, 112, 
118, 119], and Wasserstein GAN used by 7 studies [13, 
14, 19, 39, 116, 131, 132]. Other types of GANs reported 
in more than one study were deep convolutional GAN, 
reported in three studies [20, 93, 140], unified GAN [21, 
49] reported in two studies, and Pix2Pix GAN, reported 
in two studies [32, 133].

Types of datasets
Most of the studies (n = 97) reported the use of public 
datasets for brain MRI for the training of GAN models. 
Thirty-five studies reported the use of privately collected 
data. A few studies (n = 7) reported using both public and 
privately collected data. This review identified many dif-
ferent datasets used in the included studies. Table 4 pro-
vides a list of publicly available datasets and the access 
link. In the included studies, the most commonly used 
dataset was the Alzheimer’s Disease Neuroimaging Initia-
tive dataset reported in 16 studies (also see Table 4). The 
BRaTs 2018 dataset was reported in eight studies, while 
the use of the IXI dataset of MR images from three dif-
ferent hospitals in London was reported in seven studies. 
The accumulative number of studies using the various 
versions of the BRaTs dataset was 20.

Table 2 Demographics of the included studies

Number 
of 
studies

Year

Year

 2022 1

 2021 44

 2020 60

 2019 28

 2018 5

 2017 1

Countries

Country

 China 53

 USA 22

 Japan 11

 Germany 7

 India 7

 South Korea 6

 France 4

 Sweden 3

 Israel 3

 Canada 3

 Australia 2

 UK 2

 Singapore 2

 The Netherlands 2

 Italy 2

 United Arab Emirates 1

 Turkey 1

 Switzerland 1

 Spain 1

 Russia 1

 Malaysia 1

 Jordan 1

 Ireland 1

 Iran 1

 Malaysia 1

Type of publication

Venue

 Conference 52

 Journal 87



Page 7 of 15Ali et al. Insights into Imaging           (2022) 13:98  

Evaluation procedure
The number of patients was reported in some studies, 
while other studies reported the number of images. The 
maximum number of patients for whom the data were 
used was 2175 [92]. Two studies reported the use of more 
than 100,000 thousand images [23, 106], and one study 
reported the use of more than 10,000 images. In 25 stud-
ies, the number of images used was between 1000 and 
10,000. In 33 studies, the number of images used was 
between 100 and 1000. Other studies either used less 
than 100 images or did not include information on the 
number of images. In the included studies, 38 reported 

Fig. 2 Year-wise and country-wise distribution of the included studies. The numbers at the terminal node show the number of publications in each 
country

Fig. 3 Venn diagram for the number of studies using public vs. 
privately collected datasets. Some of the studies (n = 7) reported 
using both public and private datasets
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splitting the data into independent training and test sets, 
while 17 reported splitting the data into training, valida-
tion, and test sets. Many other studies used the k-fold 
cross-validation method for evaluation; for example, two-
fold cross-validation was reported in three studies and 
sevenfold cross-validation was reported in two studies 
(see Table 5). External evaluation by human experts was 
reported in seven studies only.

The different metrics used for the evaluation of the 
quality of the generated images using GANs were SSIM 
(n = 53 studies), PSNR (n = 49 studies), and FID (n = 8 
studies). Other metrics for evaluation of performance for 
diagnosis, segmentation, or classification were Dice score 
used in 31 studies, mean absolute error used in 16 stud-
ies, and mean square error used in 16 studies. Table  6 
summarizes the different evaluation metrics used in the 
studies.

Focal diseases in the studies
We also identify the diseases that were the focus of the 
included studies. In the included studies, 44 studies 

reported their methods for addressing challenges related 
to brain tumors, such as tumor segmentation, tumor 
classification, or tumor growth prediction. Similarly, 20 
studies reported the use of their methods for diagnosis, 
prognosis, or analysis of neurodegenerative disorders, for 
example, Alzheimer’s disease, autism spectrum disorder 
(ASD), multiple sclerosis, and Parkinson’s disease. The 
remaining 75 studies did not focus on a particular dis-
ease. A summary of the disease-based categorization of 
the studies is given in Table 7.

Discussion
Principal results
In this study, we conducted a scoping review of the use 
of GANs in brain MRI data. We found that most of the 
studies were published in the years 2020 and 2021, while 
very few (only six) were published in 2016 and 2017 
combined. This is not surprising as the interest in using 
GANs for medical imaging in general and brain MRI, in 
particular, gained momentum only recently. More than 
one-third of the studies were published in China (n = 53). 
The second-largest number of studies were published in 
the USA (n = 21), although less than half of those pub-
lished in China. In comparison, only seven studies were 
published in India and Germany each. The rest of the 
countries published less than five studies each.

In almost one-third of the studies, the main applica-
tion of using GANs was the synthesis/generation of data 
to achieve data augmentation. However, many studies 
also used GANs for the segmentation of tissues of inter-
est, for example, the segmentation of tumors in brain 
MRI. Another popular use case of GAN was translating 
images from one modality to another or translating from 
normal to cancerous images. Furthermore, GANs can 
enhance the quality of images and hence were used for 
super-resolution of images as reported in seven studies 
and noise removal as reported in five studies. Less com-
mon use cases of GANs on brain MRI data were progno-
sis and image registration reported only in 4 studies and 
1 study, respectively. While GANs are more popular for 
data synthesis, addressing a particular clinical disease is 
usually not the focus of using GANs. Nevertheless, some 
studies have demonstrated the effectiveness of GANs by 
demonstrating the use of the generated data to improve 
the diagnosis or prognosis of different diseases.

The term synthesis in this review is used in a broader 
sense and covers the synthesis of brain MRI sequences 
as well as the synthesis of missing sequences from exist-
ing sequences. The synthesized data were then used to 
enhance the diagnosis, such as detecting Alzheimer’s dis-
ease or segmentation of brain tumors.

The cycleGAN architecture that uses two GANs for 
generating synthetic data was the most popular choice 

Table 3 Applications of the use of GANs in brain MRI

Applications of studies No. of studies Reference of the study

Applications of studies

Synthesis 43 [6–37, 39–49]

Segmentation 32 [50–81]

Diagnosis 22 [82–103]

Reconstruction 13 [119–131]

Super-resolution 10 [104–112, 118]

Prediction 7 [132–138]

Noise removal 5 [113–117]

Prognosis 4 [139–142]

Image registration 2 [143, 144]

3D synthesis 1 [38]

Purpose of using GANs

Synthesis 45 [6–35, 53–59, 96–100, 120, 
132, 133]

Segmentation 26 [60–81, 101, 102, 104, 104]

Diagnosis 16 [50–52, 82–93, 106]

Reconstruction 15 [12–123, 125–131]

Translation 12 [37, 41–49, 95, 118, 143]

Super-resolution 7 [38, 107–112]

Noise removal 5 [113–117]

Prediction 5 [134–138]

Prognosis 4 [139–142]

Features extraction 1 [39]

Translation 1 [37, 41–45, 47–49, 95, 118, 
143]

Anomaly detection 1 [94]

Image registration 1 [144]
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of architecture in the included studies. Other popu-
lar choices were the Wasserstein GAN and the deep 
convolutional GAN. For many studies, the fundamen-
tal changes in the architecture were only minor, or the 

details on the changes introduced were insufficient; 
it is beyond the scope of this review to analyze all the 
architectures.

Table 4 Publicly available datasets used in the included studies. Sorting is done on the basis of the number of studies using the 
dataset

The names of the dataset are assigned only for identification purposes and do not follow any specific convention

Dataset name URL No. of studies IDs of studies

Alzheimer’s Disease 
Neuroimaging Initiative 
(ADNI)

http:// adni. loni. usc. edu/ 16 [19, 27, 42, 51, 65, 69, 73, 
84, 85, 87, 92, 95, 96, 139, 
140, 143]

BRATS2018 https:// www. med. upenn. edu/ sbia/ brats 2018/ data. html 8 [8, 10, 11, 22, 55, 56, 58, 78]

IXI dataset http:// brain- devel opment. org/ ixi- datas et/ 7 [9, 13, 86, 106, 108, 110, 116]

BRATS2016 https:// sites. google. com/ site/ brain tumor segme ntati on/ home/ brats_ 2016 4 [6, 7, 14, 50]

Connectome https:// sites. google. com/ view/ calga ry- campi nas- datas et/ home 3 [36, 123, 128]

BrainWeb https:// brain web. bic. mni. mcgill. ca/ 3 [47, 113, 116]

Decathlon http:// medic aldec athlon. com/ 3 [52, 63, 77]

Figshare https:// figsh are. com/ artic les/ datas et/ brain_ tumor_ datas et/ 15124 27 3 [35, 90, 103]

http:// www. devel oping conne ctome. org 3 [104, 105, 107]

BRATS 2013 https:// www. smir. ch/ BRATS/ Start 2013 2 [21, 91]

BraTS 2015 https:// sites. google. com/ site/ brain tumor segme ntati on/ home/ brats 2015 2 [16, 53]

BraTS 2017 https:// www. med. upenn. edu/ sbia/ brats 2017/ data. html 2 [71, 98]

HCP https:// www. human conne ctome. org/ study/ hcp- young- adult 2 [12, 110]

Cancer Imaging https:// wiki. cance rimag ingar chive. net/ pages/ viewp age. action? pageId= 
24282 666

2 [37, 83]

PPMI www. ppmi- info. org/ data 2 [39, 97]

http:// epipa ge2. inserm. fr 2 [105, 107]

Brats 2014 https:// www. virtu alske leton. ch/ BRATS/ Start 2014 1 [142]

Brats 2019 https:// www. med. upenn. edu/ cbica/ brats 2019/ data. html 1 [76]

ISLES http:// www. isles- chall enge. org/ ISLES 2015/ 1 [8]

NAMIC dataset http:// hdl. handle. net/ 1926/ 1687 1 [9]

MIT http:// twins etfus ion. csail. mit. edu/ 1 [23]

MRIdata http:// mrida ta. org/ 1 [36]

Harvard http:// www. med. harva rd. edu/ aanlib 1 [82]

VIM http:// crcns. org/ data- sets/ vc/ vim-1 1 [40]

BIT China https:// isip. bit. edu. cn/ 1 [60]

CIND https:// cind. ucsf. edu/ 1 [80]

IBSR https:// www. nitrc. org/ proje cts/ ibsr 1 [113]

Hisub http:// www. nitrc. org/ proje cts/ mni- hisub 25 1 [25]

ATAG https:// www. nitrc. org/ proje cts/ atag_ mri_ scans/ 1 [115]

Cabal https:// github. com/ cabal- cmu/ Feedb ack- Disco very 1 [135]

John Hopkins University http:// iacl. ece. jhu. edu/ index. php/ MSCha llenge 1 [125]

CSIRO https:// aibl. csiro. au/ 1 [132]

NIFD http:// memory. ucsf. edu/ resea rch/ studi es/ nifd 1 [6]

GDC https:// portal. gdc. cancer. gov/ 1 [98]

UK Data Service https:// resha re. ukdat aserv ice. ac. uk/ 851861/ 1 [102]

NFB http:// prepr ocess ed- conne ctomes- proje ct. org/ NFB_ skull strip ped/ 1 [102]

ISEG2017 https:// iseg2 017. web. unc. edu/ 1 [113]

OpenNeuro https:// openn euro. org/ datas ets/ ds001 506 1 [127]

ATLAS dataset http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html 1 [54]

OpenNeuro2 https:// openn euro. org/ datas ets/ ds001 246/ 1 [122]

http://adni.loni.usc.edu/
https://www.med.upenn.edu/sbia/brats2018/data.html
http://brain-development.org/ixi-dataset/
https://sites.google.com/site/braintumorsegmentation/home/brats_2016
https://sites.google.com/view/calgary-campinas-dataset/home
https://brainweb.bic.mni.mcgill.ca/
http://medicaldecathlon.com/
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
http://www.developingconnectome.org
https://www.smir.ch/BRATS/Start2013
https://sites.google.com/site/braintumorsegmentation/home/brats2015
https://www.med.upenn.edu/sbia/brats2017/data.html
https://www.humanconnectome.org/study/hcp-young-adult
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=24282666
http://www.ppmi-info.org/data
http://epipage2.inserm.fr
https://www.virtualskeleton.ch/BRATS/Start2014
https://www.med.upenn.edu/cbica/brats2019/data.html
http://www.isles-challenge.org/ISLES2015/
http://hdl.handle.net/1926/1687
http://twinsetfusion.csail.mit.edu/
http://mridata.org/
http://www.med.harvard.edu/aanlib
http://crcns.org/data-sets/vc/vim-1
https://isip.bit.edu.cn/
https://cind.ucsf.edu/
https://www.nitrc.org/projects/ibsr
http://www.nitrc.org/projects/mni-hisub25
https://www.nitrc.org/projects/atag_mri_scans/
https://github.com/cabal-cmu/Feedback-Discovery
http://iacl.ece.jhu.edu/index.php/MSChallenge
https://aibl.csiro.au/
http://memory.ucsf.edu/research/studies/nifd
https://portal.gdc.cancer.gov/
https://reshare.ukdataservice.ac.uk/851861/
http://preprocessed-connectomes-project.org/NFB_skullstripped/
https://iseg2017.web.unc.edu/
https://openneuro.org/datasets/ds001506
https://openneuro.org/datasets/ds001246/
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While testing the models on individual test sets or 
using k-fold cross-validation methods was reported in 
most of the studies, external validation of the perfor-
mance is still limited and should be encouraged in future 
work.

Research and practical implications
The majority of the included studies reported results 
on publicly available datasets. Among these, the BRaTS 
dataset and the Alzheimer’s Disease Neuroimaging Ini-
tiative dataset were the most popular datasets among the 
researchers. Since these datasets can be accessed pub-
licly, it would be of great help to provide the associated 

Table 5 Evaluation mechanisms used in different studies

Evaluation mechanism Number of studies IDs of studies

Train, validate, test split 17 [6, 16, 17, 22, 37, 58, 59, 65, 76, 81, 89, 97–99, 106, 121, 126]

Training, test split 38 [10, 11, 13, 14, 20, 24, 33, 35, 36, 40, 45, 47, 50, 52, 53, 57, 66, 68, 69, 77, 87, 
92, 98, 100, 103, 104, 107, 108, 110, 112, 115–117, 122, 125, 127, 128, 130]

Twofold cross-validation 3 [9, 75, 114]

Threefold cross-validation 2 [134, 137]

Fourfold cross-validation 2 [56, 70]

Fivefold cross-validation method 12 [7, 8, 21, 25, 29, 41, 46, 62, 90, 113, 120, 129]

Sevenfold cross-validation 2 [79, 139]

Tenfold cross-validation 6 [42, 80, 84, 95, 96, 101]

External 7 [31, 32, 43, 45, 48, 118, 135]

Table 6 Most popular evaluation metrics used in different studies

The numbers do not sum up as many studies used more than one evaluation metric, while some studies lack details on evaluation metrics

SSIM structural similarity index measure, PSNR peak signal-to-noise ratio, DSC Dice similarity coefficient, MAE mean absolute error, MSE mean square error, FID Frechet 
inception distance

Evaluation metric Number of studies IDs of studies

SSIM 53 [7–12, 15, 16, 18, 21, 25, 27, 36, 40, 42, 43, 45, 47, 48, 55, 56, 58, 62, 66, 69, 72, 85, 
86, 103–110, 112, 113, 115–117, 120–123, 125–131]

PSNR 49 [7–11, 15–17, 21, 25, 36, 38, 42, 43, 45–48, 53, 55, 56, 58, 62, 66, 72, 85, 86, 97, 
104–110, 112, 113, 115–118, 120, 121, 123, 124, 128, 129, 131]

DSC 31 [9, 20, 29, 45, 50–56, 59–61, 68, 72–77, 79–81, 102, 105, 114, 125, 136, 142–144]

Accuracy 22 [6, 13, 14, 19, 34, 35, 37, 39, 64, 83, 84, 89, 90, 92, 93, 95, 96, 98, 122, 132, 135, 139]

MAE 16 [7, 17, 21, 23, 29, 42, 46, 53, 58, 69, 85, 100, 115, 120, 129, 134]

MSE 16 [11, 16, 40, 45, 48, 58, 72, 117, 118, 122, 123, 128, 130, 131, 142]

Sensitivity 11 [75, 76, 81, 84, 92, 95, 96, 98, 99, 142]

Precision 9 [19, 26, 54, 64, 75, 132, 135, 138, 139]

Recall 9 [19, 26, 39, 54, 64, 132, 135, 138, 139]

F1 score 8 [19, 24, 64, 92, 93, 135, 138, 139]

FID 8 [21, 22, 42, 59, 109, 130]

Specificity 8 [68, 76, 84, 92, 95, 98, 142]

Table 7 Focal diseases in the studies

Focal disease Number of 
studies (n)

IDs of studies

Brain tumor 44 [5, 10, 20], [22], [25, 32, 35, 37, 44, 50–58, 61–64, 66–69, 71, 74–78, 83, 89, 90, 93, 98–101, 107, 133, 136, 142]

Neurodegenerative 
disorders

20 [19, 26, 31, 33, 39, 45, 84, 85, 87, 88, 91, 92, 94–97, 132, 137, 139, 140]

None 75 [7–9, 11–18, 21, 23, 24, 27–29, 31, 34, 36, 38, 40–43, 46–49, 59, 60, 65, 70, 72, 73, 79–82, 86, 102–106, 
108–131, 134, 135, 138, 141, 143, 144]
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computer code/software for the results reported in the 
included studies. This would encourage other research-
ers to reproduce the results and build upon the existing 
models/methods. However, some studies reported results 
on privately collected data. Hence, the opportunity for 
external validation of the claims made in the research 
studies or building upon those results is limited.

We did not find any framework implemented on 
mobile devices in the included studies. The computa-
tional requirements of GANs and the memory resources 
for MRI data can be the possible reasons for the limited 
transformation of these models to mobile devices. It is 
only hoped that future research might enable the imple-
mentation of these methods on mobile devices.

No studies were found on the transformation of these 
methods into clinical applications, which shows that their 
acceptance for clinical use is still limited. Many stud-
ies claim the value of their methods for use in clinical 
tasks; however, they lack reporting of testing for clinical 
purposes.

GANs were initially popular for generating synthetic 
image data similar to the original data. However, the 
perception of realistic-looking is subjective. Further-
more, though some quantitative measures such as peak 
signal-to-noise ratio (PSNR) and structural similarity 
index measure (SSIM) are reported in many included 
studies, these metrics are principally borrowed from the 
computer vision literature. Hence, how efficiently these 
metrics quantify the complex physiological information 
within the MRI images data is not well understood. Thus, 
there is a dire need to develop uniform methods to evalu-
ate the performance of GANs on how well they capture 
complex features within MRI image data.

As used in many of the studies, the publicly available 
data for MRI are primarily from developed economies. 
However, there is a lack of medical imaging data from 
developing economies. Hence, computer models for 
diagnosis trained on such data may not necessarily gen-
eralize well for a population of different geoeconomics 
characteristics due to a lack of representation in the data. 
Including MRI data from diverse locations is needed and 
will help develop better AI methods for clinical applica-
tions such as diagnosis, prognosis, and tumor detection 
in brain MRI.

Strengths and limitations
Strengths
While many reviews have been published on the appli-
cations of GANs in medical imaging, to the best of our 
knowledge, this is the first review on the applications of 
GANs in brain MRI images. This review includes all the 
studies that used GANs for brain MRI; hence, this is the 
most comprehensive review on the topic. This review 

helps the readers to know the potential of the GANs 
for the synthesis of brain MRI data and the potential to 
improve the diagnosis and segmentation of brain tumors 
within brain MRI. Unlike reviews as [1–3] that covered 
a broad scope of different deep learning methods, this 
review focuses specifically on the applications of GANs 
in brain MRI.

In this review, we followed the scientific review guide-
lines of the PRISMA-ScR [4]. In addition, we covered 
the major databases in health sciences, engineering, and 
technology fields to identify as many as possible pub-
lished studies. Hence, the number of studies included in 
this review is high. We devised a strategy to avoid bias 
in study selection by employing two independent review-
ers for study selection and data extraction and a third 
reviewer to validate the screening and the data extrac-
tion. This review provides a comprehensive list of the 
publicly accessible datasets for brain MRI. Hence, it can 
be considered a rich resource for the readers to identify 
valuable datasets of brain MRI.

Limitations
In this review, we included studies from five major data-
bases. So, some studies might have been left out if they 
were not covered in the included databases. In addition, 
due to practical limitations, the review only consists of 
studies published in English. Hence, relevant studies pub-
lished in other languages might have been left out. This 
review lists the studies into major applications such as 
synthesis, segmentation, diagnosis, super-resolution, and 
noise removal. The definition of some applications may 
overlap partly with others; for example, super-resolution 
may be considered as a sub-category of synthesis, and the 
categorization of super-resolution studies as synthesis 
studies will then increase the number of the studies in the 
synthesis category. However, we believe that the catego-
rization in this review will better reflect the notion of the 
applications. We did not perform validation and assess-
ment of the claims on the diagnosis of a brain tumor 
or the quality of the synthesized MRI data, as this was 
beyond the scope of this review.

Conclusion
In this scoping review, we included 139 studies that 
reported the use of GANs for brain MRI data. We iden-
tified the most common applications of GANs. We also 
identified the most commonly used datasets publicly 
available for brain MRI. We also summarized the most 
common architectures of GANs and the evaluation met-
rics that are widely adopted to evaluate the performance 
of GANs in brain MRI. It will be most rewarding if these 
studies find their way into clinical transformations. To 
achieve this, we remark that encouraging the availability 
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of the software and codes for these studies will facili-
tate the reproducibility of the results. Eventually, more 
research progress will be possible. In addition, the need 
to bridge the gap between the computer scientists and 
clinicians is widely felt as the input and feedback of clini-
cians and radiologists is vital for the research outcomes 
to find their way into clinical uses. Similarly, there is a 
need to follow standardized comparison protocols for the 
different architectures of GANs used for brain MRI.
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