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Abstract

Background: Molecular characterization plays a crucial role in glioma classification which impacts treatment strategy
and patient outcome. Dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) perfusion imaging
have been suggested as methods to help characterize glioma in a non-invasive fashion. This study set out to review
and meta-analyze the evidence on the accuracy of DSC and/or DCE perfusion MR in predicting IDH genotype and
1p/19q integrity status.

Methods: After systematic literature search on Medline, EMBASE, Web of Science and the Cochrane Library, a qualita-
tive meta-synthesis and quantitative meta-analysis were conducted. Meta-analysis was carried out on aggregated
AUC data for different perfusion metrics.

Results: Of 680 papers, twelve were included for the qualitative meta-synthesis, totaling 1384 patients. It was
observed that CBV, ktrans, Ve and Vp values were, in general, significantly higher in IDH wildtype compared to IDH
mutated glioma. Meta-analysis comprising of five papers (totaling 316 patients) showed that the AUC of CBV, ktrans,
Ve and Vp were 0.85 (95%-Cl 0.75-0.93), 0.81 (95%-Cl 0.74-0.89), 0.84 (95%-Cl 0.71-0.97) and 0.76 (95%-Cl 0.61-0.90),
respectively. No conclusive data on the prediction of 1p/19q integrity was available from these studies.

Conclusions: Future research should aim to predict 1p/19q integrity based on perfusion MRI data. Additionally,
correlations with other clinically relevant outcomes should be further investigated, including patient stratification for
treatment and overall survival.

Keywords: Dynamic contrast enhancement magnetic resonance perfusion imaging, Dynamic susceptibility contrast
magnetic resonance perfusion imaging, Glioma, Molecular classification

Key points

+ Perfusion MR imaging shows a promising method to
characterize glioma non-invasively.

+ Significant higher perfusion metrics are observed in
IDH-wildtype glioma.

+ The effects of 1p/19q mutations on perfusion metrics
are understudied and remain unelucidated.
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Introduction

Following the 2016 World Health Organization (WHO)
classification system of tumors of the central nervous sys-
tem, the high-grade glioma group can be divided in two
subgroups. One subgroup comprises the anaplastic oli-
godendroglioma IDH mutant and 1p/19q codeleted, and
the anaplastic oligodendroglioma not otherwise speci-
fied. The second subgroup comprises the IDH mutant
glioblastoma, the IDH wildtype glioblastoma, and the
glioblastoma not otherwise specified [1]. Knowledge on
the exact mutational status of glioma is not only impor-
tant for classification, it also has significant impact on
prognosis [2] and treatment strategy [3—5]. With regard
to low grade gliomas, two groups of gliomas can be dis-
tinguished. The first groups consist of oligodendroglial
tumors which are isocitrate dehydrogenase (IDH) mutant
and 1p/19q codeleted The second groups consist of astro-
cytic tumors. It is comprised of (1) IDH mutated, 1p/19q
non-codeleted diffuse astrocytoma, (2) the IDH wildtype
astrocytoma, and (3) the diffuse astrocytoma not other-
wise specified [1].

However, the recently published WHO 2021 classi-
fication system has placed even more emphasis on the
molecular characteristics of glioma subtypes. The group
of diffuse astrocytic and oligodendroglial gliomas can be
subdivided based on the IDH mutations. IDH wildtype
tumors are classified as high-grade gliomas, without
exception. In order to be classified as glioblastoma (IDH
wildtype; grade 4), nuclear ATRX loss has to be present.
Additionally, IDH wild-type diffuse astrocytic tumors in
adults without the histological features of glioblastoma,
but with one or more of three genetic parameters (tel-
omerase reverse transcriptase gene [TERT] promoter
mutation, epidermal growth factor receptor [EGFR] gene
amplification, or combined gain of entire chromosome 7
and loss of entire chromosome 10 [+7/—10]) are now
also classified as glioblastoma. In the 2021 classification,
all IDH-mutant diffuse astrocytic tumors with intact
1p/19q chromosomes are considered a single type called
astrocytoma, IDH-mutant with WHO grades ranging
from 2 to 4. Grading of these tumors takes into account
molecular findings such as the homozygous deletion
of CDKN2A/B, which is associated with a worse prog-
nosis. IDH-mutant astrocytomas with these molecular
alterations will be classified as WHO grade of 4, even
if microvascular proliferation or necrosis is absent [6].
Additionally, IDH mutant oligodendroglial gliomas with
codeleted 1p/19q chromosomes are considered oligoden-
drogliomas. While the establishment of the sophisticated
molecular markers to classify gliomas is an important
advance in glioma diagnosis, all of the literature which
is covered within this review is based on the 2016 WHO
classification of central nervous system tumors [6, 7].
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To this end, artificial intelligence applied to con-
ventional MRI sequences (i.e., pre- and post-contrast
T1-weighted, T2-weighted and T2-weighted FLAIR
images) to predict mutational status has provided prom-
ising results in recent years (for a review, see [8]). In addi-
tion, various signs have been identified which can help
the radiologist to predict the molecular status of glioma
in the daily clinical setting. For example, the T2-FLAIR
mismatch sign has been found to be a reliable non-inva-
sive marker for identification of IDH mutant astrocyto-
mas [9].

Bearing in mind the pathophysiological differences
between various glioma subtypes and the related changes
in the gliomas vasculature, perfusion-based imaging
could increase the diagnostic accuracy of non-invasive
characterization of glioma subtypes. For example, oligo-
dendroglial tumors are characterized by a branching pat-
tern of vascularization, whereas astrocytic glioma shows
a distinctively different vascularization [10]. Therefore,
perfusion based MR imaging (either dynamic suscepti-
bility contrast (DSC) or dynamic contrast enhancement
(DCE) perfusion MR imaging) has been the subject of
research to non-invasively identify molecular character-
istics [11, 12].

DSC-perfusion MR imaging relies on the susceptibility
induced signal loss on T2*-weighted sequences, resulting
from a bolus of gadolinium-based contrast agent pass-
ing through the capillaries. The most commonly used
DSC perfusion parameter is Cerebral Blood Volume
(CBV). CBV can be estimated by use of the area under
the curve (AUC) of the signal intensity-time curve [13,
14]. However, more recent studies compute CBV maps
by integrating the transverse relaxivity changes which
occur dynamically over a first-pass injection followed by
leakage correction due to the leaky blood—brain barrier
in most tumors (for a recent overview and recommenda-
tions, see [15]). DCE-perfusion MR imaging relies on the
evaluation of T1 shortening induced by a gadolinium-
based contrast agent bolus leaking from the blood vessels
into the tissue. Pharmacokinetic modeling can be used to
derive various values including, Ve and Vp. ktrans repre-
sents the capillary permeability; Ve represents the frac-
tional volume of the gadolinium-based contrast agent in
the extravascular-extracellular space; Vp represents the
fractional volume of the of the gadolinium-based con-
trast agent in the plasma space [13].

Although various studies with different methodologies
and outcomes have been published since the release of
the WHO 2016 classification system of glioma, a com-
prehensive overview of the accuracy of perfusion based
MR imaging to predict the molecular characteristics of
glioma is still lacking. In addition, a systematic overview
of the literature on this topic could help to shape future
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research and daily clinical practice to focus on the most
promising technique (either DSC- or DCE-perfusion
MRI). The aim of the current paper was therefore to pro-
vide an overview of the relevant literature with regard to
the use of DSC and DCE perfusion imaging used to dif-
ferentiate glioma grade and mutational status.

Materials and methods

Search strategy and inclusion/exclusion methodology

This systematic review and meta-analysis was conducted
following the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement
[16]. Databases searched for literature were: Medline
(accessed through PubMed), EMBASE, Web of Science,
and the Cochrane Library. The full search strategies for
each database are made available in the Additional file 1.
Cross-referencing was used to add relevant literature to
the database. Searches were conducted between May 1,
2020 and January 1, 2021. Inclusion criteria were: (1) the
use of either DSC or DCE perfusion MR (2) the inclu-
sion of patients suffering from glioma; (3) glioma grading
and classification by use of the WHO 2016 classification
system [1]; and (4) the aim of the study needed to com-
prise the non-invasive classification of histopathological
features and/or molecular characteristics (WHO grade,
IDH genotype and/or 1p/19q codeletion status). Besides,
papers needed to report results as quantitative measures
(e.g., sensitivity, specificity, mean accuracy and/or mean
area under the receiver operator curve (AUC)). Papers
were excluded if they were based on animals or non-
human samples or a pediatric population. Letters, pre-
prints, case reports, congress proceedings, and narrative
reviews were excluded as well.

All papers were independently assessed by two
researchers in three steps. First, screening on title and
abstract was carried out. Second, full-text analysis was
employed to assess whether the papers met the inclu-
sion- and/or exclusion criteria. Finally, information was
extracted from the included papers. Researchers met
periodically to discuss their findings and resolve dis-
crepancies. Standardized tables were used to acquire the
information of interest from the included articles by two
researchers (LvS and DH) independently. Data extracted
from each study were (a) first author and year of publi-
cation, (b) number of patients included, (c) mean age
of the included participants, (d) gender of the included
participants, (e) use of DSC and/or DCE, (f) which his-
topathological/molecular outcome was assessed, (g)
perfusion based MR imaging metrics and (h) accompa-
nying statistics (e.g., AUC value, standard deviation, 95%
confidence interval (CI) and/or standard error). Perfor-
mance was expressed in accuracy, AUC and/or sensi-
tivity and specificity for each outcome. Extracted data
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were cross-checked afterward, and discrepancies were
resolved in consensus.

Qualitative meta-synthesis and quantitative meta-analysis
Eligible literature was synthesized qualitatively follow-
ing the PICO-strategy as proposed by Eriksen et al.
[17]. Also, quality of primary diagnostic accuracy stud-
ies was assessed using the QUADAS-2. Meta-analysis
was conducted on the AUC and the 95% Confidence
Interval (95%-CI) using a random effects model. From
the included studies, perfusion metrics and the afore-
mentioned statistics were extracted. If one of these vari-
ables was missing, the researchers aimed to re-calculate
the value when possible [18]. In addition, corresponding
authors were contacted to provide missing details, with
up to two reminders send by e-mail. When not all neces-
sary data could be acquired, studies could not be meta-
analyzed. Meta-analyses were conducted on different
subgroups of target conditions. Meta-analysis was per-
formed with the use of OpenMetaAnalyst (MetaAnalyst,
Tufts Medical Center) [19] and/or SPSS (version 25; IBM
Corp., Armonk, NY) and results were displayed in forest
plots. The Higgins test was used to test for heterogene-
ity between included studies. Low heterogeneity between
groups is marked with an I* <40%, whereas considerable
heterogeneity is indicated by I?>75% [18].

Results

A total of 552 studies were identified after systematic
searching. Duplicates were removed and 379 papers were
systematically screened on title and abstract resulting in
the inclusion of 34 papers for full-text analysis. Reasons
for exclusion of the 345 papers are provided in Fig. 1.
After full-text analysis, the investigators met to discuss
the identified non-consensus papers to resolve disagree-
ments and to reach consensus. Of the 34 papers, 12 could
be included in the qualitative meta-synthesis. Twenty-
two papers were therefore excluded (details provided in
Fig. 1). No discrepancies between the judgement of the
two researchers remained after discussion, resulting in
the final inclusion of 12 papers for the qualitative meta-
synthesis [20-31] (Fig. 1). Five papers provided sufficient
data to be included in the quantitative meta-analysis [22,
24, 26, 27, 29] (Table 1).

Using the QUADAS2 (QUiality Assessment tool for
Diagnostic Accuracy Studies), the most current version
of the QUADAS tool of the QUADAS task force, the
risk of bias was considered low in all included studies
(Table 2).

Qualitative meta-synthesis
The twelve included studies [20-31] totaled 1384 patients
(792 males; 592 females) suffering from glioma. Gliomas
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Table 2 Combined effect size for the different DCE/DSC
parameters

Ktrans Ve Vp CBV
Effect size 0813 0.844 0.777 0.832
Standard error 0.02 0.03 0.03 0.03
95%-Cl lower limit 0.726 0.766 0.683 0.749
95%-Cl upper limit 0.900 0.921 0.871 0914

ktrans, volume transfer coefficient; rCBV, relative cerebral blood volume; Ve,
fractional volume of the extravascular extracellular space; Vp, fractional blood
plasma volume; 95%-Cl, 95%-confidence interval

could be subdivided into WHO grade II (n=326); WHO
grade III (n=410) and WHO grade IV (n=599). Regard-
ing the IDH genotype, 701 gliomas were IDH-mutated
and 603 tumors expressed an IDH wildtype genotype.
1p/19q codeletion (WHO 2021 Oligodendroglioma
WHO grade 2 or 3) was observed in 132 tumors; non-
codeletion of 1p/19q chromosome arms was observed in
429 tumors. All included papers used histopathological/
molecular assessment by a trained neuropathologist who
adhered to the WHO 2016 glioma classification as the
gold standard.

Eight papers used DSC perfusion MRI [20, 21, 24-28,
30]; three papers used both DCE and DSC perfusion MRI
[22, 23, 29]; one paper used DCE perfusion MRI only
[26]. Two papers used artificial intelligence methods to
assess different perfusion metrics between various sub-
types of gliomas [20, 25], whereas the other publications
used more traditional statistics.

As assessed by DSC perfusion MRI, IDHmut glioma
displayed significantly lower rCBV values as compared to
IDHwt glioma [21, 26—28, 30]. When using a retrospec-
tively determined rCBVmax threshold value of <2.35, the
authors described a sensitivity/specificity of 100%/61%
and AUC of 0.82 (95%-CI: 0.66—0.93) when differentiat-
ing IDHmut (either WHO 2021 Astroctytoma grade 2,
3 or 4 or WHO 2021 Oligodendroglioma grade 2 or 3)
and IDHwt gliomas [27]. By use of the skewness of nor-
malized CBV (nCBV) values (normalized by use of the
CBYV value of the normal-appearing contralateral cen-
trum semiovale), IDHmut, 1p/19q non-codeleted glioma
(WHO 2021 Astrocytoma grade 2, 3 or 4) could be dis-
tinguished from IDHwt glioma and IDHmut, 1p/19q
codeleted glioma (WHO 2021 Oligodendroglioma) with
a sensitivity/specificity of 84%/59% (AUC-value of 0.690
and 95%-CI 0.573-0.807). IDHmut, 1p/19q non-code-
leted gliomas (WHO 2021 Astrocytoma grade 2, 3 or 4)
showed significant lower nCBV values compared to the
IDHmut, 1p/19q codeleted gliomas (WHO 2021 Oligo-
dendroglioma grade 2 or 3) and the IDH wildtype glio-
mas [24].
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When using DCE perfusion imaging, IDHmut HGG
(either WHO 2021 Astroctytoma grade 3 or 4 or WHO
2021 Oligodendroglioma grade 3) showed significantly
lower ktrans values as compared to IDHwt HGG (WHO
2021 Astrocytoma grade 4) [22]. In oligodendroglial
tumors (WHO 2021 Oligodendroglioma, IDHmut,
1p/19q-codeleted; Grade 2 or 3), however, Lee et al.
found that ktrans, Kep and Ve showed tendencies toward
higher values as compared to astrocytic tumors [23]. Ve
and Vp values were found to be significantly lower in
IDHmut glioma (WHO 2021 Astrocytoma and WHO
2021 Oligodendroglioma) as compared to IDHwt glioma,
regardless of WHO II-IV grading [22, 29]. Based on Ve
and Kep values, a sensitivity/specificity of 84%/79% and
76%/78% was observed with regard to differentiate IDH
mutation status [29]. The study of Hilario et al. also sug-
gested that ktrans, Vp and Ve could be used to differenti-
ate between LGG and HGG non-invasively [22].

Studies using artificial intelligence showed promising
results with regard to prediction of IDH mutation sta-
tus. Choi et al. showed that a convolutional long short-
term memory model with an attention mechanism had
an accuracy, sensitivity, and specificity of 92.8%, 92.6%,
and 93.1%, respectively, in the validation set (AUC: 0.98;
95%-CI 0.969-0.991) with regard to IDH genotype pre-
diction by use of DSC perfusion MRI In the test set, an
accuracy, sensitivity, and specificity of 91.7%, 92.1%, and
91.5% were observed, respectively. The AUC value of the
IDH genotype prediction demonstrated to be 0.95 with
a 95% CI ranging between 0.898 and 0.982. Subsequent
analysis of the signal intensity curves of DSC imaging
elucidated high attention on the combination of the end
of the pre-contrast baseline, the up/downslopes of signal
drops, and/or post-bolus plateaus for the curves used to
predict IDH genotype [20]. Another study showed that
when using a random forest algorithm, shape, distribu-
tion and rCBV-extracted features elucidated significant
differences across mutation status. WHO grade II-1II dif-
ferentiation was mostly driven by shape features, while
texture and intensity feature were more relevant for the
distinguishing of III and IV. Based on this random forest
algorithm, gliomas were correctly stratified by mutation
status in 71% and by grade in 53% of the cases [25].

Meta-analysis

Meta-analysis of the data (n=237 patients) showed that
CBYV values have an accuracy of correctly predicting IDH
genotype with an AUC of 0.832 and a standard error of
0.03 (95%-CI 0.75-0.91). When using DCE parameters
(n=122), an AUC of 0.81, 0.84 and 0.78 is observed for
ktrans, Ve and Vp, respectively. Standard errors (and
95%-CI) for ktrans, Ve and Vp were found to be 0.02
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(95%-CI 0.73-0.90), 0.03 (95%-CI 0.77-0.92) and 0.03
(95%-CI 0.68-0.87), respectively (Table 2). The corre-
sponding Forest-Plots of the different perfusion metrics
are provided in Fig. 2. I* analysis showed that included
DCE-MRI studies were homogeneous (I><1%). In the
individual analyses of ktrans, Ve and Vp, studies were
found to be non-significantly heterogeneous (p=0.834;
p=0.548; p=0.519, respectively). The meta-analysis of
DSC-MRI studies showed to have moderate heterogene-
ity (> =35%; p=0.215). The role of perfusion MRI met-
rics in predicting the 1p/19q-codeletion status could not
be meta-analyzed using the acquired data.

Discussion

This systematic review and meta-analysis shows that
perfusion MRI can be used to effectively predict IDH
genotype non-invasively following the WHO 2016/2021
glioma classification. Different DSC or DCE perfusion
parameters were found to have an equal performance
regarding the non-invasive prediction of IDH genotype.
Prediction of the 1p/19q-codeletion status could not be
meta-analyzed using the acquired data.

The role of perfusion MRI in non-invasive glioma clas-
sification can be significant and can be explained by the
different glioma vasculature fingerprints which provide
a specialized microenvironment for glioma cells [32].
Within HGG, blood vessels are abnormal and display a
distinct gene expression signature which differs from the
genotype of blood vessels in normal brain tissue [33-35].
These genotypic differences result in high expression of
certain angiogenic factors, including vascular endothelial
growth factor, transforming growth factor 2, and pleio-
trophin [35-38]. In LGG, on the other hand, potential
molecular alterations regarding angiogenesis have been
investigated less extensively. In 2018, Zhang et al. dem-
onstrated that WHO grade II glioma expressed an inter-
mediate stage of vascular abnormality, less severe than
that of glioblastoma vessels but distinct from normal ves-
sels. Enhanced expression of laminin subunit alpha 4 and
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angiopoietin 2 in WHO grade II glioma was confirmed by
staining of human tumor tissue microarrays. More spe-
cifically, IDHwt gliomas displayed a specific angiogenic
gene expression signature (i.e., upregulation of Angiopoi-
etin 2 and serpin family H) which resulted in enhanced
endothelial cell migration and matrix remodeling. In
the same study, transcription factor analysis indicated
increased transforming growth factor beta and hypoxia
signaling in IDHwt gliomas [39]. Based on these studies,
we can conclude that gliomas with different IDH geno-
type have distinct molecular vascularization. In addition,
the blood vessels in LGG displayed alterations in gene
expression which partially overlapped with changes pre-
viously identified in HGG vessels [39]. As IDHwt glioma
vessels have a distinct vascular gene expression pattern
associated with vascular remodeling, these microstruc-
tural changes can be used to explain why IDHwt glioma
show significantly higher perfusion metrics compared
to IDHmut glioma. These insights in genotype and phe-
notype justify the use of perfusion MRI to predict IDH
genotype. The role of 1p/19q codeletion status on angio-
genesis and vascular growth, however, remains partially
elusive. Previous research demonstrated that 1p/19q
codeletion was associated with higher CBV values com-
pared with glioma with intact alleles [40]. Another paper
reported specific genotypic differences in oligodendro-
glioma by use of DSC perfusion MRI with significantly
higher rCBVmax values in LGG with 1p/19q codeletion
[41]. 1t is believed that 1p/19q codeleted LGG show an
increased metabolism and angiogenesis and have an
extensive internal vascular network. This is supported by
the study of Kapoor et al. in which a significantly higher
rCBVmax was observed in 1p/19q codeleted LGG (WHO
2021 Oligodendroglioma WHO grade 2). Additionally, an
increased vascular endothelial growth factor expression,
CD31, and CD105, was observed as compared with gli-
oma with intact alleles [42].

The clinical usability of MRI perfusion imaging to
predict IDH genotype remains partially elusive as the

Studies Estimate (95% C.I.)

Hilario et al. 2019 0.840 (0.711, 0.969)

Wang et al. 2020 0.770 (0.560, 0.980)

Zhang et al. 2020 0.800 (0.657, 0.943)

Overall (1*2=0 % , P=0.834) 0.813 (0.726, 0.900)

r
0.65

T T T T T 1
0.7 0.75 08 0.85 09 0.95

Fig. 2 Forest-plot of the area under the curve (AUC) of the receiver operator curve (ROC) of the different perfusion metrics in predicting IDH
mutation status. IDH, isocitrate dehydrogenase, ktrans, volume transfer coefficient; rCBV, relative cerebral blood volume; Ve, fractional volume of the
extravascular extracellular space; Vp, fractional blood plasma volume; 95%-Cl, 95%-confidence interval
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differences were based on aggregated results. Although
several papers provided specific threshold values [27,
28], no clinically useful threshold values are available.
The current review did not include studies arterial spin
labeling (ASL) as a perfusion MR imaging method as only
sparse literature with regard to ASL was found in explor-
atory literature searches. A recent paper by Wang et al.
(2019) reported that only a mild correlation was found
between the IDH1 genotypes and ASL derived glioma
perfusion parameters. There was no significant associa-
tion between 1p/19q codeletion and perfusion in grade II
and III gliomas [43].

Strength and limitations

By adhering to the 2016 WHO glioma classification to be
included, some valuable papers needed to be excluded,
though also resulted in rather homogeneous dataset to be
meta-analyzed. One of the strengths of this reviews con-
cerns the relative homogeneous imaging protocols which
were meta-analyzed. For example, all DSC-imaging pro-
tocols were imaged after administering a pre-bolus injec-
tion of a gadolinium-based contrast agent. Also, for the
included studies which investigated the diagnostic accuracy
of DCE-imaging, mean perfusion values (i.e, Ve, Vp and
ktrans). However, different studies used different values
of perfusion parameters (mean rCBV vs. mean rCBV max
values), which partially limits the generalizability of results
[15]. The homogeneity of the meta-analyzed patients and
histopathological outcomes (i.e., IDH genotype and 1p/19q
codeletion status) strengthen the here described find-
ings. Another limitation of the here applied methodology
concerns the fact that this systematic review was executed
without registration in an international database.

Conclusion

This review and meta-analysis showed that accuracy of
DSC parameters was not different from the accuracy of
DCE parameters to non-invasive predict the IDH geno-
type in glioma patients. The use of perfusion MRI with
regard to predicting 1p/19q codeletion status could not
be determined using these data.

Abbreviations

95%-Cl: 95%-Confidence interval; AUC: Area under the curve; DCE MRI:
Dynamic contrast enhancement magnetic resonance perfusion imaging; DSC
MRI: Dynamic susceptibility contrast magnetic resonance perfusion imaging;
HGG: High-grade glioma; IDH: Isocitrate dehydrogenase; IDHmut: Mutation of
the isocitrate dehydrogenase gene(s); IDHwt: Wild-type isocitrate dehydroge-
nase gene(s); Kep: Rate constant of gadolinium efflux between the extravas-
cular extracellular space and blood plasma; ktrans: Volume transfer constant;
LGG: Low grade glioma; MRI: Magnetic resonance imaging; nCBV: Normalized
cerebral blood volume; rCBV: Relative cerebral blood volume; rCBVmax-p:
Maximum relative cerebral blood volume in the peri-enhancing region;
rCBVmax-t: Maximum relative cerebral blood volume in the tumor-enhancing
region; Ve: Fractional volume of the extravascular extracellular space; Vp:
Fractional blood plasma volume; WHO: World Health Organization.
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