
Anan et al. Insights into Imaging           (2022) 13:22  
https://doi.org/10.1186/s13244-021-01153-9

CRITICAL REVIEW

A review on advances in 18F‑FDG PET/CT 
radiomics standardisation and application  
in lung disease management
Noushin Anan1, Rafidah Zainon1,2*   and Mahbubunnabi Tamal3 

Abstract 

Radiomics analysis quantifies the interpolation of multiple and invisible molecular features present in diagnostic and 
therapeutic images. Implementation of 18-fluorine-fluorodeoxyglucose positron emission tomography/computed 
tomography (18F-FDG PET/CT) radiomics captures various disorders in non-invasive and high-throughput manner. 
18F-FDG PET/CT accurately identifies the metabolic and anatomical changes during cancer progression. Therefore, 
the application of 18F-FDG PET/CT in the field of oncology is well established. Clinical application of 18F-FDG PET/CT 
radiomics in lung infection and inflammation is also an emerging field. Combination of bioinformatics approaches or 
textual analysis allows radiomics to extract additional information to predict cell biology at the micro-level. However, 
radiomics texture analysis is affected by several factors associated with image acquisition and processing. At present, 
researchers are working on mitigating these interrupters and developing standardised workflow for texture biomarker 
establishment. This review article focuses on the application of 18F-FDG PET/CT in detecting lung diseases specifically 
on cancer, infection and inflammation. An overview of different approaches and challenges encountered on stand-
ardisation of 18F-FDG PET/CT technique has also been highlighted. The review article provides insights about radiom-
ics standardisation and application of 18F-FDG PET/CT in lung disease management.
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Key points

•	 The micro-level changes in lung disease cannot be 
detected by CT alone.

•	 Employment of 18F-FDG PET/CT radiomics moves 
toward patient-specific of lung diseases management.

•	 However, numerous features and techniques of fea-
ture extraction have raised tremendous complexity.

•	 This complexity can only be removed by standardisa-
tion of radiomics analysis.

•	 The artificial intelligence and machine learning with 
radiomics analysis improve diagnosis and treatment.

Background
Molecular haracterisation of physiological abnormality 
is conventionally performed by biopsy or random sample 
collection of the suspected site for diagnosis and iden-
tification. However, biopsy is an invasive process, and 
it has risk of complication such as infection [1, 2]. Lung 
cancer is one of the leading causes of respiratory morbid-
ity and mortality among adults [3]. Thus, to avoid this 
risk, medical imaging techniques, for instance magnetic 
resonance imaging (MRI), computed tomography (CT) 
and positron emission tomography (PET), and hybrid 
imaging modalities such as PET/CT and PET/MRI are 
widely used to determine the tumour heterogeneity and 
morphological abnormalities in a non-invasive man-
ner [4, 5]. 18F-Fluorodeoxyglucose (18F-FDG) PET/CT is 
one of the prevailing diagnostic tools, especially in the 
field of oncology and other clinical disorders owing to its 
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higher accuracy in diagnosis, prognosis and therapeutic 
response assessment [6–11]. Lung cancer is one of the 
primary causes of death around the world [12]. The appli-
cation of 18F-FDG PET/CT is recognised to reduce the 
morbidity rate [13]. PET imaging has also gathered atten-
tion in the field of neuroimaging and cardiac imaging and 
vascular abnormality detection [14–16].

Medical images have the ability to capture cellular- 
and molecular-level tumour characteristics reflected in 
phenotype [17–20]. A study on CT image of anaplastic 
lymphoma kinase mutations in lung tumours captured 
substantial pulmonary fluid and no pulmonary tails [21]. 
In another study, CT images of complementary contrast 
demonstrated that the metamorphosis of von Hippel–
Lindau located in renal cell carcinoma is considerably 
correlated with the total intra-tumoral vasculariSation, 
sharp edges of the tumour and nodular advancement of 
the tumour [22]. Conventionally, CT scan is performed 
on different stages of cancer treatment to understand the 
drug efficacy [23]. Before surgery, the severity of lung 
cancer is assessed performing therapeutic techniques 
and invasive diagnosis. These are termed as conventional 
workup. Integration of 18F-FDG PET with therapeu-
tic techniques and invasive diagnosis leads to 51% con-
sequential decline of impractical thoracotomy such as 
eliminating one in five critical surgeries comprehensively 
when compared with conventional workup exclusively, in 
the PET in lung cancer staging multicentre randomised 
trial [24].

Rise of glucose metabolism is a well-recognised hall-
mark of cancer, and molecular PET imaging mainly cap-
tures these increased metabolism for diagnostic purpose 
[25]. Cell sites exposed to abnormal proliferation, infec-
tion and inflammation can be determined by identifying 
the high uptake and accumulation of the glucose ana-
logue, 18F-FDG [13, 26]. 18F-FDG combining with the 
glucose transporters present in cell and phosphorylated 
by hexokinase results in 18F-FDG-6-phosphate misses 
2-hydroxyl group needed for glycolysis [13, 27, 28]. This 
complex chemical component remains metabolically 
trapped in the cell and can be detected through PET 
imaging [13, 14, 29]. 18F-FDG uptake in PET imaging 
depends on the number of active cancer cells, histopa-
thology of tumour, and biological processes responsible 
for continuous oncogenesis [30–33]. Therefore, studies 
have shown that heterogeneity of tumour may be corre-
lated with the sparse distribution 18F-FDG distribution 
[17, 34, 35]. The 18F-FDG PET has been proven to have 
greater mediastinal staging capability than CT in accord-
ing to a meta-analysis study [36]. Furthermore, 18F-FDG 
PET/CT produces more precise image quantification 
information compared to either imaging modality indi-
vidually [37].

Radiomics analysis is an emerging field in the medical 
imaging sector, and it is recognised as a promising clas-
sification tool that holds the innate potential of revolu-
tionising disease diagnosis specially cancer [38–42]. 
Radiomics has been introduced in imaging field to 
strengthen the conventional and manual image com-
prehension by recognising features and patterns, which 
largely remains undetected to the human eye [43, 44]. 
Radiomics enables extraction, collection and evaluation 
of higher order and statistical datasets through radio-
graphic information conversion into large-scale and 
mineable entities [44–47]. Generally, radiomics analysis 
process is impartial to the disease under investigation, 
and it is performed in the order of data acquisition, data 
pre-filtration, region of interest (ROI) selection, feature 
derivation, post-filtration following data investigation 
[37]. The field of radiomics mainly targets improving 
patient management such as disease-type prediction, 
survival rate and efficacy of therapy [45, 48–55]. Detailed 
investigation of single nodule alongside more nodules 
within the region of interest in nearly real-time result 
production is some of the many technical advantages of 
radiomics [56]. Previous studies focused on the develop-
ment and validation of machine-learning-based clinical 
models to predict the patient outcome to ensure that it 
becomes feasible and practical [54]. However, these mul-
ticentric models consist of enormous amount of higher-
order and diverse functionality-based image features; as 
a result, interpreting and understanding these features 
become overwhelming even for the experts in the field 
[57, 58]. At present, researchers are working on upgrad-
ing the readability of quantitative information of the 
radiomics model so that radiologists and physicians can 
comprehend the data effortlessly [59]. To replace the cur-
rent diagnostic assessment of imaging technique (human 
eye interpretation), the features must be accurate, robust 
and reproducible. Dedicated research works are per-
formed to attain this goal, and some of the published 
works have very inspiring results [53, 59, 60].

Radiomics can serve as biomarkers, incorporated with 
artificial intelligence (AI), and it can be used to develop 
prediction models that may enable a far more detailed, 
precise and micro-level assessment, well beyond the pre-
dominantly methodological techniques used in medical 
image evaluation at present [42, 61]. The 18F-FDG PET as 
a potential biomarker for therapeutic response evaluation 
was acknowledged way back in 1999 [62]. The 18F-FDG 
PET/CT biomarkers facilitate immunotherapy response 
prediction in advanced stages of non-small cell lung can-
cer (NSCLC) [63]. However, ubiquitous establishment 
and recognition of 18F-FDG PET/CT as a computable 
biomarker are lacking due to the absence of standard-
ised imaging and data exploration techniques [64]. On a 
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brighter side, literature review confirms that researches 
are working on overcoming these challenges; thus, the 
18F-FDG PET/CT can be established as a quantitative 
biomarker in near future [56, 61].

Transition of radiomics finding into therapeutic prac-
tice is the ultimate goal of the field of radiomics and tex-
ture analysis. Figure 1 shows the overview of optimisation 
of radiomics feature for clinical practice translation. The 
process begins with feature extraction from the region of 
interest through a computerised method (Fig.  1a) [65]. 
Next, robustness and the reproducibility of the features 
are determined by evaluating Spearman’s correlation 
coefficient, Pearson correlation coefficient, concordance 
correlation coefficient or interclass correlation coefficient 
(Fig.  1b). Based on the robustness and reproducibility 
findings, the optimum features are selected and redun-
dant features are removed (Fig. 1c) [66]. For automisation 
of the clinical practice, artificial intelligence-based model 

is developed for lung disease prediction, prognosis and 
diagnosis (Fig.  1d) [65]. Finally, clinical outcomes such 
as survival prediction and prognosis prediction can be 
achieved by the application of radiomics (Fig. 1e) [67].

In this review paper, we discuss the significant aspects 
of 18F-FDG PET/CT radiomics in proper management of 
lung diseases (cancer, infection and inflammation) and 
standardisation initiatives, progress and challenges. This 
review article is written appreciating the importance of 
18F-FDG PET/CT so that it can be recognised as quan-
titative biomarker. The article has been divided into two 
parts: The first part addresses the application of radiom-
ics in assessing and diagnosing lung diseases and the fac-
tors affection radiomics analysis. The second part of this 
paper addresses the challenges face in standardisation of 
radiomics features and approaches involving standardisa-
tion of morphological, textural and statistical radiomics 
features.

Fig. 1  The overview of optimisation of radiomics feature for its translation in clinical practice
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Application of 18F‑FDG PET/CT radiomics
Lung cancer detection and assessment
Cancer is the uncontrolled cell proliferation that follows 
death without proper detection, assessment and treat-
ment during the earlier stages [68]. Application of PET 
in the field of oncology has been well recognised as PET 
imaging has the ability to extract phenotypic and func-
tional tumour heterogeneity information [61]. During 
cancer treatment, the metabolic transformation usu-
ally takes place before anatomical changes, and this can 
be spotted through 18F-FDG PET [69]. Commonly used 
18F-FDG PET/CT parameters such as standardised 
uptake value derivatives, metabolically active tumour 
volume and total lesion glycolysis have widespread 
application in oncological medicine [70, 71]. Tumours 
tend to have intricate topological arrangement termed 
as intra-tumour heterogeneity, and tumour phenotype 
assessment by intra-tumour heterogeneity quantifica-
tion is beyond the scope of these matrices [71]. Predic-
tion models have been established to distinguish benign, 
malignant and inflammatory pulmonary condition 
emphasising computable imaging features [42, 72–75]. 
Texture analysis of radiotracer uptake value significantly 
increased specificity compared to maximum standard-
ised uptake value alone [7, 76]. Texture analysis has been 
adopted for primary and metastatic lesions distinction on 
a considerably large patient cohort (n = 545) in a retro-
spective study [77].

In the field of oncology, researchers have acknowledged 
the exceptional tumour-to-background ratio and greater 
tumour examination capacity of 18F-FDG PET/CT com-
pared to CT imaging [16]. Investigation on medical 
application of 18F-FDG PET/CT in oncological patients 
showed that high concentration of 18F-FDG in pulmo-
nary nodules might represent malignancy of the investi-
gated lesion [78]. Among lung cancer variations, NSCLC 
holds major concern [79]. Adenocarcinoma, squamous 
cell carcinoma and large cell carcinoma are its primary 
subtypes [37]. Healthcare professionals, radiologists and 
scientists are working hand in hand to overcome its dan-
ger and trying to manage cancer risk by extracting and 
interpreting information from these associating histo-
logical subtypes, micro-level tumour characteristics and 
understanding the tumour stage using CT and PET radi-
omic signatures [37, 71, 80, 81]. 18F-FDG PET facilitates 
detailed apprehension and evaluation of carcinoma traits 
such as its metabolism and receptor recognition on the 
microscopic level and so its application in NSCLC patient 
management is clinically momentous [37]. 18F-FDG PET/
CT has received appreciation from the National Com-
prehensive Cancer Network for having NSCLC patient 
evaluation capability [82]. American College of Radiology 
Appropriateness Criteria and American College of Chest 

Physicians guidelines have also recommended 18F-FDG-
PET/CT for NSCLC staging due to its well-recognised 
effectiveness [83, 84]. Minuscule 18F-FDG uptake by 
subcentimetre pulmonary nodules was reported to be 
benign in 98% cases in a study performed on large cohort 
of population [71, 85]. Abatement of tumour size detec-
tion might be extremely slow or remain hidden in the 
targeted drugs; for example, thymidine kinase inhibi-
tors’ treatment period and evaluation of the competence 
these drugs can be done earlier by 18F-FDG PET/CT 
[86]. Computable 18F-FDG PET/CT investigation studies 
might promote observer-independent appraisal of tracer 
uptake, thus expanding its capacity of turning into image 
biomarker [87, 88]. Moreover, combination of CT and 
18F-FDG PET enhances the NSCLC patient management 
by combining anatomic and biologic information [89].

Texture analysis is a specialised branch of radiom-
ics concentrating on quantitative analysis and regional 
topology variation discretisation of the image voxel den-
sities [47, 90, 91]. Initially, researchers became enthusi-
astic about texture when they realised that phenotypic 
characteristics present in diagnostic images can be dis-
tinguished though higher-order statistical aspects remain 
unidentified by visual perception alone [91, 92].

Figure  2 shows the workflow of radiomics texture 
analysis. The workflow of texture analysis begins with 
image acquisition. Afterwards, the acquired image is 
reconstructed using different software platforms. During 
image reconstruction, filtering process includes sharpen-
ing and smoothing. Next, delineation of region of interest 
(ROI) also known as segmentation is performed where 
the location of tumour is defined. Textural features are 
extracted from the ROI and finally statistical model, or 
machine learning algorithm is developed. The 18F-FDG 
PET/CT-based texture traits correlated with regional 
reappearance and cause-specific survival of patients 
undergoing radiotherapy and forecasted disease-free sur-
vival in NSCLC patients after invasive surgery [6, 93, 94].

Lung infection and inflammation detection and diagnosis
There are a number of studies emphasised on the onco-
logical role of 18F-FDG PET/CT [44]. However, function 
of 18F-FDG PET/CT in analysing other medical condi-
tions is also worthy of attention [26, 27, 95]. Differentia-
tion of tuberculosis from lung cancer could be perplexing 
as both diseases share some similar phenotypic traits 
and consists of solid nodule [96, 97]. Critically malignant 
tumour such as lung cancer results in severe clinical con-
dition than solid active pulmonary tuberculosis without 
early diagnosis [98]. In  situation even worse, diagnos-
tic error due to unsuccessful detection of tuberculosis 
from lung cancer could result in inconvenient, expen-
sive let alone unnecessary invasive medical procedure. 
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Contrarily, diagnosis delay of lung cancer would over-
sight required treatment leading towards uncontrollable 
tumour progression and fatal consequences [99]. SUVmax, 
a metabolic PET parameter, might barely differentiate 
these two conditions as to vast aggregation of activated 
macrophages and lymphocytes promotes high 18F-FDG 
avidity in both conditions [100, 101]. Addressing these 
issue, a research team demonstrated that personalised 
and distinctive diagnosis of solid active pulmonary TB 
and solid LC might be performed using the radiomics 
nomogram [102].

Histoplasmosis a fungal infection frequently appears 
as pleural lesion on radiographic imaging as it resembles 
various lung cancer characteristics such as ring-shaped 
calcification layers on CT and higher avidity on 18F-FDG 
PET [103–105]. According to literature review, there are 
some limitation on identification of histoplasmosis nod-
ule [105]. Identification of histoplasmosis in apprehensive 
lung effusion might be possible using the documented 
radiological features [103, 106, 107]. Previous studies 
suggested that radiomics might perform a complex work 
of identifying histoplasmosis selectively from lung can-
cer [103]. The work was based on the hypothesis that 
the nodule and surrounding perinodular parenchyma-
based radiomic features might be able to differentiate 
suspicious histoplasmosis lung nodules and NSCLC 
precisely [103]. CT and MRI imaging were found to be 
incompetent for distinguishing post-surgical tumours 
from inflammatory sites [108–110]. In addition, glucose 
metabolism escalation due to soft tissue inflammation 
increases difficulty in distinction between these health 
conditions [111]. A limited number of investigation 
have addressed the potential of feature designation and 

framework design combination on radiomics analysis-
assisted medical assessment [54, 72, 112]. Furthermore, 
harmonised machine learning would require systematic 
evaluation as contrasting features highly influence learn-
ing algorithms application.

Recently, COVID-19 has drove researchers towards 
the assessment of the potential capacity of radiomics 
in differentiating corona virus infection (COVID) from 
non-COVID [113, 114]. Radiomics feature extracted 
from CT image of COVID-19 patients was found to bear 
noticeable similarities with pneumonia-identifying radi-
omic features [113]. Focusing on this issue, a prelimi-
nary investigation showed there is a distinction between 
COVID-19 pneumonia and other pneumonias such as 
flu, bacterial and mycoplasma-dependent pneumonias 
that might be achieved by radiomic feature-based models 
[113]. In another study, COVID-19 and non-COVID-19 
patients were classified using radiomics feature extracted 
from CT scan images of lung. They employed a dual 
machine learning technique to distinguish COVID-19 
from non-COVID-19 patients [115].

Evaluation of variables that affect radiomics 
features
Radiomics is the computable expression of the clinical 
imaging including PET, CT, PET/CT. Comprehensively, 
establishing quantitative feature-based classification and/
or regression model is the purpose of radiomics. Sophis-
ticated and subtle traces of diseases remain unnoticed 
when examining images in the conventional manner. 
Selection of reproducible and robust features is an ardu-
ous and prudent work, and radiomics has the potential to 
mine and detect those feature so that imaging modalities 

Fig. 2  Workflow of radiomics texture analysis
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can be utilised thoroughly [37, 44]. In general, there are 
several factors that affect radiomics feature analysis of 
lung diseases as shown in Fig. 3. 18F-FDG PET/CT imag-
ing protocol, post-processing techniques, image recon-
struction, image quality, segmentation technique and the 
information analysis affect the radiomic feature analysis. 
The primary factor that affects radiomics is the 18F-FDG 
PET/CT imaging, i.e. the image acquisition protocol, 
scanner type, scan time, presence of lung motion [13].

Variation of protocol, scanner type and difference in 
scan time generate different outcomes even for the same 
subject. Lung motion influences image data collected 
from PET scan resulting artifact in texture features analy-
sis as PET acquisitions take place typically for a few min-
utes in every bed position [61, 116–118]. The presence 
of lung motion induces noise (blur image) as a result the 
radiomics analysis becomes challenging. Respiratory gat-
ing is introduced to minimise the effect of lung motion. 
Accuracy of imaging increases by respiratory gating as 
blurring caused by breathing motion becomes negligible, 
but the application of respiratory gating in medical set-
tings is not well established yet [119–121]. The 4D PET 
imaging might remove the effect of respiratory motion 
causing textural feature distortion present on 3D PET 
image [122].

However, the assumption of advanced textures might 
be interpreted from 4D-PET that requires future assess-
ment and investigation [122]. Factors affecting CT 
acquisition such as metal artefacts [123], X-ray tube 
peak voltage and current [124], matrix size, and attenu-
ation correction factor also impact PET radiomic feature 
quantification. Regardless of the apparent influence of 
these factors, robust analytical indications of the features 
could be perceived [122, 123, 125–127]. Reconstruction 
is one of the key factors that impacts radiomics analy-
sis of the 18F-FDG PET/CT image [128]. There are two 
iterative reconstruction algorithms commonly used in 
clinical settings, and these are Ordered Subset Expecta-
tion Maximization (OSEM) and Block Sequential Regu-
larised Expectation Maximization (BSREM). The BSREM 
has been proven to be more sensitive towards recon-
struction [71, 192]. A study recently examined the role 
of deep learning for lung nodule detection in PET/CT as 
in almost 80% of cases higher 18F-FDG uptake by pulmo-
nary nodule turns to become malignant. They suggested 

that deep learning may pose potential in this field and 
artificial intelligence performed better on BSREM than 
OSEM in detecting lesion, thus resulting in greater sensi-
tivity [71]. Studies conducted by Yan et al. demonstrated 
that PET image reconstruction configuration variation 
does not alter some features such as normalised grey-
level co-occurrence matrix, run-length matrix and size 
zone matrix [129, 130]. However, further elaboration is 
needed to determine the cause behind sensitivity vari-
ation of radiomic features [129, 130]. PET images have 
larger voxels than MRI and CT.

Thus, quantification of heterogeneity becomes biased 
[119, 131, 132] and it results in coarser tumour sampling. 
A large number of radiological features are sensitive to 
voxel dimension and so steady and equal voxel spacing 
is important for reproducing distinct image feature [45]. 
A study with the view of omitting the bias of voxel size 
in PET imaging concluded that the lower limit of volume 
for unbiased tumour sampling is 45 cm3 with the com-
promise of sensitivity of second-order entropy [132]. 
Contrast, resolution and noise are integral parts of any 
digital imaging technique. Image matrices such as signal-
to-noise ratio (SNR) and contrast-to-noise ratio (CNR) 
are used to understand image quality. Radiomics analysis 
is affected by the low SNR and CNR of PET scan. In the 
case of PET imaging, CNR could be optimised by select-
ing the best possible segmentation method. In the case of 
SNR, PET images inherent high noise; therefore, achiev-
ing high SNR is always challenging. However, optimisa-
tion of scanner sensitivity, administered dose and scan 
time may lead towards high SNR. Application of time of 
flight (TOF) and point spread function (PSF) modelling 
play a vital role in optimising SNR and contrast. How-
ever, a limited number of studies have incorporated these 
two techniques as shown in Table 1.

Higher SNR can be attained by TOF resulting in het-
erogeneity generated by noise and improving image 
quality. On the other hand, higher resolution is obtained 
by PSF modelling as it models the matrix physical pro-
cesses, producing detailed structures within lesion. The 
post-processing techniques involve smoothing by averag-
ing the pixels, application of Gaussian filters to improve 
the scan image quality, image noise regulation and 
image enhancement by the virtue of histogram equalisa-
tion, deblurring and resampling [55, 133]. Quantisation 

Fig. 3  List of factors that affect radiomics feature analysis of lung diseases
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performed for image-acquired noise-suppression is an 
important step of tomographic modification for traceable 
calculation of texture features, which also impacts radi-
omics feature analysis [45].

Conventionally, fixed number of bins and fixed bin 
width are the two approaches of quantisation, and both 
techniques come with their specific characteristics 
accommodating their use per requirement [45, 134]. The 
effect of segmentation is well recognised as the selection 
of segmentation method determines the balance between 
accuracy and reproducibility. In the case of manual seg-
mentation, inter- and intra-observer variability is always 
present without question [135–139]. Feature nomen-
clature and feature extraction guideline are yet to be 
established. Therefore, variation is present in extracted 
features causing variation of radiomics analysis. Three 
types of features are mainly extracted from the ROI. 
These are texture, morphological features and statisti-
cal features. Texture provides information in the spatial 
arrangement of intensities in an image. Texture feature 
computation involves dataset comparison and rotation-
ally even voxel spacing distribution [45].

Common set of textural features are those derived 
from the grey-level co-occurrence matrix (GLCM) and 
grey-level run-length matrix (GLRLM). Morphological 
features describe the shape of the delineated ROI and 
properties including its volume, maximum diameter, 
maximum surface, tumour compactness and spheric-
ity. Statistical features include mean, median, skewness, 
kurtosis, uniformity and entropy. Another key factor that 
influences radiomics study is statistical calculation [13]. 
Correction for multiple testing is one of the important 
steps of accuracy of feature while working with large 
dataset [119, 140]. Surprisingly, a retrospective systemic 
review by Alic et al. showed that a significant number of 
radiomics trait become statistically inconsequential when 
the correction factor is applied [141].

Validation and standardisation of radiomics features 
pose significant challenge [142–144]. Some studies com-
prise validation-level limitations such as inadequate sta-
tistical study such as asynchronous p-value for multiple 
tests, insufficient independent validation dataset result-
ing in biased discovery rates [7, 145]. Validation of radi-
omics approaches requires ample multicentre datasets 
[7]. Overstatement of positive results against negative 
ones is also another crucial factor [146, 147]. Quantifi-
cation of radiomic feature with identical names might 
have different implementation due to the lack of stand-
ard definition in radiomic studies. For example, calcula-
tion of GLCM could be done by averaging matrix values 
of 13 distinct directions or a single matrix encompassing 
tumour co-occurrence values in all 13 directions [131]. 
Indistinct feature terminology and feature definition 

variation caused by different operating systems (MaZda1, 
CGITA2, IBEX3, LIFEx4, MITK Phenotyping5, RaCaT6, 
CERR radiomic extension7 and Pyradiomics8) also affect 
the radiomics analysis [148]. These issues have been 
addressed by the IBSI initiative [148].

Importance of 18F‑FDG PET/CT image biomarker 
standardisation
Radiomics has received much attention and interest in 
the field of medical science. Nonetheless, reproducibility 
and validation of the published work are still a big chal-
lenge [44, 149–152]. The absence of unanimously rec-
ognised reference values and definitions has hampered 
clinical use of 18F-FDG PET/CT image biomarker. Fur-
thermore, there is lack of uniformity of the image pro-
cessing platforms required to analyse features [153–155]. 
Manipulation and assessment of a single image set in two 
different software platforms result in dissimilar feature 
values [156]. Variation of imaging procedure, 18F-FDG 
activity, image reconstruction, data comprehension and 
uptake time are significant [128, 157, 158]. Reproduc-
ibly has been challenged frequently as there is a lack 
of detailed report of the reproducibility of the experi-
ments. There are various factors including the absence 
of open-source data and standardised protocol that limit 
the reproducibility studies of the radiomics features 
[159–161]. The situation can be solved by standardisa-
tion of the radiomics features definition with supportable 
references and coherent execution of image assessment 
strategies for feature quantification [103, 154, 156, 162]. 
The mainstream quantification of 18F-FDG PET/CT 
is accomplished using the quantitative index of tracer 
uptake called SUV.

Quantification by SUV is well recognised despite hav-
ing variance of factor [64]. In the interest of strength-
ening, the application of 18F-FDG PET/CT as imaging 
biomarkers guidelines on tumour imaging using 18F-FDG 
PET/CT has been published and revised [163, 164]. Cur-
rently, it is well understood that harmonisation of imag-
ing modalities is vital alongside standardising imaging 
performance for standardising computation of 18F-FDG 
PET/CT as biomarker [64]. Reproducibility and valida-
tion of radiomic features are hard to achieve without 
standardising the software platforms used across dif-
ferent research facilities. A study on the level of agree-
ment between IBSI guideline and the Image Biomarker 
Explorer (IBEX) that is an open-source radiomic software 
was performed alongside development and validation of 
S-IBEX [165, 166]. The software platform achieved vali-
dation by employing the five different pre-processing 
configurations proposed by IBSI [143, 166].

From the literature, it is well understood that applica-
tion of radiomics in lung disease management has been 
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able to attract great interests for the past few years. For 
example, a study was performed on feature selection to 
identify adenocarcinoma histologic subtype present in 
non-small cell lung cancer (NSCLC) [167]. Figure 4 illus-
trates the detail procedure of feature selection. In this 
study, the initial PET/CT data were collected from The 
Cancer Imaging Achieve [168]. Semi-automated seg-
mentation was applied on the images to delineate the 
region of interest. Chang-Gung image texture analysis 
(CGITA), an open-source platform, was then used for 
extraction of textural features form the segmented ROI. 
Principal component analysis (PCA) was performed in 
MATLAB before feature selection, to minimise the fea-
ture space and maximise the relevant information. The 
feature selection criteria were set to select features hav-
ing a coefficient with one principal component with the 
major variance and the normalised value retaining 99% of 
the variability.

In another study, a prediction outcome of locally 
advanced NSCLC was investigated [169]. The detail 
workflow is illustrated in Fig.  5. This study highlighted 
the importance of PET acquisition standardisation. They 
emphasised the role of preselection in the case of deter-
mining robust radiomic features. The method started by 
extracting 1404 radiomic features. The dataset included 
either pre-treatment 18F-FDG PET scans of stage IIIA/N2 
or IIIB NSCLC patients. In this prospective study, robust-
ness was determined against tumour motion, delineation 
variation and attenuation correction. Finally, the training 
of regression models was performed using standardised 
imaging. Validation was done in two ways. It includes 
separate single-centre dataset and fivefold cross-valida-
tion. The performance of the model was denoted by area 
under the receiver operating characteristic curve (AUC).

Another study proposed a computer-aided diagnostic 
(CAD) method for identifying the benign and malignant 
lung cancer utilising radiomics from CT images [170]. 
The method attained 82.7% accuracy in distinguishing 
between benign and malignant primary lung nodules. 
The intensity, heterogeneity information and shape of the 
suspected nodules were quantified using 583 features, 
at multi-frequencies. Random forest method was then 
applied to identify benign or malignant nodules by ana-
lysing all these features. The step-by-step flow chart is 
shown in Fig. 6.

In addition, Fig.  7 illustrates another robust fea-
ture selection method for NSCLC diagnosis [171]. The 
method is free of false-positive findings and overfitting. 
In this method, a semi-automated segmentation method 
was applied before extracting radiomics features. The fea-
tures were then analysed using an open-source platform, 
RaCaT which follows the IBSI [166]. Finally, data analysis 
was performed using Python.

Challenges to overcome in 18F‑FDG PET/CT image 
biomarker standardisation
Standardisation is the prime solution of any challenges 
faced in enhancing quality and safety of clinical care. 
In this era of technological advancement, when new 
findings meet reality and new information gets stacked 
with every passing second, standardisation of 18F-FDG 
PET/CT is far from being easy. Optimisation of feature 
calculation is a significant step towards reproducible 
radiomics. In radiomics analysis, image acquisition, 
reconstruction and segmentation present consider-
able influences for heterogeneity [16]. Characteristics 
that can be replicated using optimised radiomics tools 
from the same image can still lack reproducibility in 
multicentric or multi-scanner configuration unless the 
parameters associated with image acquisition, recon-
struction and segmentation attain standardisation and 
harmonisation [159, 172]. Key factors impacting 18F-
FDG PET/CT feature standardisation are illustrated in 
Fig. 8.

As the figure shows, standardisation of features can 
be achieved using well-defined combination of image 
characteristics (resolution, noise) and data analy-
sis method. Change of any of these factors results in 
change of feature calculation. During the initial stage 
of lung disease, the change in the molecular level takes 
place before anatomical changes happen. This change 
at molecular level is responsible for the heterogene-
ity. When 18F-FDG PET/CT scan is performed for 
detecting the biological heterogeneity, mechanical het-
erogeneity is introduced by the scanner. Image resolu-
tion, noise and the data analysis technique induce the 
mechanical heterogeneity. By optimising resolution and 
noise during 18F-FDG PET/CT imaging and harmonis-
ing, the data analysis technique will eventually result in 
standardisation of 18F-FDG PET/CT.

Accuracy, feasibility and precision are the must meet 
criteria for establishing biomarker and moving towards 
standardisation. In 2001, the biomarkers definition 
working group defined the biomarker as objectively 
measured and evaluated characteristic as an indicator 
of homeostatic biologic, pathogenic processes, or drug 
responses duding treatment [173]. Thus, biomarker is 
the assertive diagnostic and treatment standard which 
characterises biological and functional activities [64]. 
It shows that image feature can be acknowledged as 
biomarker when it is standardised. Accuracy is defined 
by the correctness of a measurement and determined 
by comparing the measurement against the true or 
accepted value. From the view point of medical science, 
accuracy is the ratio of true positive and true negative 
in all calculated cases under a specific investigation 
[174].
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Accuracy in the case of radiomics can be assured by 
comparison between computed values and mathemati-
cally or theoretically correct value, which requires con-
sistent and focused effort. Feasibility denotes that the 
image feature contains logical, analytical and extrapola-
tive value. Radiomics being a computational analysis, 
overwhelming number of features are obtained by image 
processing and so selecting feasible features from data 
large cohort of data is of highly challenging. Precision 
in achieved by meeting the criteria of acceptable fidel-
ity, repeatability and reproducibility. The systemic review 
conducted by Traverso et  al. confirmed that the repeat-
ability and reproducibility of radiomic features depend 
on acquisition, reconstruction algorithm, preprocessing 
and software platform employed for computing the fea-
tures [159]. Reproducibility is one of the big challenges 
in 18F-FDG PET/CT radiomics studies. Factors affecting 
the reproducibility of biomarkers have been unanimously 
agreed [154, 159, 163, 172, 175]. In multicentre clinical 
trials, incorporation of 18F-FDG PET biomarkers and 
treatment response would be impossible without calibra-
tion and optimisation of the quantitative 18F-FDG PET 
parameters. A study conducted with the aim of 18F-FDG 
PET/CT uptake test–retest reproducibility in cancer 
patients based on multicentre qualification processing 
found that 18F-FDG PET/CT scanner quality and set-
tings may result in significantly reproducible test–retest 
tumour SUV measurements [176]. However, kinetic 
behaviour of the tracer uptake is not considered in SUVs 
[177].

Standardisation of radiomics analysis depends on the 
optimisation of the PET image quality parameters such 
as contrast-to-noise ratio (CNR) and signal-to-noise 
ratio (SNR) [178]. However, the PET scan inherently has 
low SNR and CNR compared to other diagnostic imag-
ing modalities [179]. Reconstruction algorithm types and 
parameters also impact the radiomics features. Likeli-
hood expectation maximization (MLEM) or ordered sub-
set expectation maximization (OSEM)-type algorithm 

are highly affected by the minute changes of initial data. 
Consequently, the resulted outputs become noisy as the 
iteration converges. To minimise this effect, the iteration 
is typically stopped before it reaches full convergence, 
which may introduce bias in the reconstructed images 
[180]. Block sequential regularised expectation maxi-
mization (BSREM), which includes an edge-preserving 
penalty term, can be used to obviate all these problems. 
BSREM algorithm achieves optimal SNR by using the 
penalty term as it employs low smoothing in higher activ-
ity areas (such as tumour) as well as in neighbourhood 
with the high-intensity edges and high smoothing in 
lower activity regions (such as background) [180].

In addition, a study was performed by Gabriel Reynés-
Llompart et al., to prove the promising role of a radiomics 
approach to assess image quality of abdominal PET imag-
ing by using new reconstruction algorithms with BSRM 
methods and testing the utility of a radiomics approach. 
This study found for the OSEM + PSF and especially for 
the BSRM reconstructions; the image quality parameters 
presented only at best moderated correlations with the 
subjective image quality. None of the studied parameters 
presented a good predictive power for image quality, 
while a simple radiomics model increased the perfor-
mance of the image quality prediction [192].

Statistical method application could narrow down 
the influence of cohort size on radiomics features [181], 
and artificial intelligence would improve conversion 
between reconstruction kernels in CT imaging [182]. 
Incorporating AI into the image analysis field comes 
with its challenges. Computer-aided detection system 

Fig. 4  Adenocarcinoma in non-small cell lung cancer (NSCLC) detection using radiomics [167]

Fig. 5  Workflow PET radiomics model for prediction of event-free 
survival in locally advanced NSCLC using multicentre datasets [169]



Page 14 of 22Anan et al. Insights into Imaging           (2022) 13:22 

Fig. 6  Workflow of automatic lung nodule classification with radiomics approach [170]

Fig. 7  Workflow of feature selection procedure for reproducible textural feature identification describing relevant texture and independent of 
conventional PET metrics [191]
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always generates false-positive results, which increases 
the workload of false finding elimination for radiologists 
and physician. The task is also time-consuming though it 
does not affect the patient care to a great extent. Medi-
cal imaging has still to collect ample amount of data so 
that AI algorithm can be trained rigorously. This chal-
lenge can be dealt by introducing neural network-based 
transfer learning. Successful implementation of neural 
network relies on unbiased and large training set and 
assimilation of different settings [183, 184].

Overview of standardisation methods of PET 
image biomarkers
The advancement of 18F-FDG PET/CT standardisation in 
oncologic imaging is noteworthy [10, 148, 149, 185, 186]. 
Research works dedicated towards developing novel 
imaging biomarkers have been proposed [4, 187, 188]. 
Standardisation methods have been employed during 
the scan time (image reconstruction modification, scan 
framework reformation), patient level (blood glucose 
level regulation and amelioration, supervising tolerable 
delay time of radiotracer dose and uptake) and image 
post-processing level (z-score, transformation method) 
[10, 186]. Alleviation from the undesired nonetheless 
unavoidable image acquisition interrupters, namely body 
weight, radiotracer uptake interval, partial volume [4], is 
the goal of the studies focusing diagnostic and prognostic 
image standardisation.

In recent times, specific guidance for addressing the 
limitations faced in application of radiomics analysis has 
also been published [154]. Study on steadiness of nearly 
100 radiomic features and inter-observer variability in 
lung tumour identification [123] showed that the PET-
based stable features were also robust to interobserver 
variability. From their observation, they suggested that 

poorly reproduced features might also be sensitive to 
other factors as well [122]. Scientists have also confirmed 
the invariability of some features, regardless of the recon-
struction configuration applied [61, 121]. Standardisation 
is required for image acquisition, reconstruction, seg-
mentation and feature calculation. In this present work, 
we focused on standardisation initiative by the interna-
tional collaboration such as Image Biomarker Stand-
ardisation Initiative (IBSI) alongside post-acquisition 
standardisation method and histology standardisation 
techniques.

Figure  9 shows a flowchart of standardisation pro-
cess applied on the collaborative investigation by the 
researchers of Tokushima university and the university of 
Tokyo hospital jointly [186]. They were able to success-
fully upgrade the accuracy of histology extrapolation. The 
study was performed on CT image sets (training set and 
test set) of patient having confirmed adenocarcinoma, 
squamous cell carcinoma and NSCLC [186]. They con-
sidered the inter-observer variation by considering four 
segmentations of a tumour. In the first step, CT images 
were transformed into three-dimensional wavelets. Then, 
476 features were generated from the raw and the trans-
formed images. Next, using univariate assessment of 
a fixed threshold, feature selection was performed. To 
eliminate the effect of imaging condition the team per-
formed normalisation of features. Random forest model 
was used to build the histology prediction model, and 
its performance was verified by test cohort specificity, 
sensitivity, accuracy and receiver observed characteris-
tic curve. However, the standardisation technique built, 
should be performed on large cohort of patients for fur-
ther validation.

In 2007, Radiological Society of Northern America 
organised the Quantitative Imaging Biomarkers Alliance 
for systematic validation and standardisation of a num-
ber of radiological biomarkers [4]. The achievement of 
standardising 169 radiomics feature and standardising 
image processing framework by this researcher alliance 
is definitely a breakthrough towards automation of dis-
ease diagnosis. They accomplished the enormous work 
of defining 174 radiomic features and efficaciously repro-
ducing thus standardising 169 features. Figure 10 demon-
strates the workflow of the study.

The study was performed in three stages. Digital phan-
tom with specific ROI mask (74 voxel) was used as the 
dataset during the first phase. In the next phase, the 
dataset was taken from open-source CT images where 
the ROI was defined by the segmented gross tumour 
volume. Research groups calculated feature values from 
the ROI directly and applied predefined image process-
ing pathway as per requirement. Standardisation of 

Standardization 
of 18F-FDG 

PET/CT

Contrast 
during 

scanning

Data 
analysis

Noise 
during 

scanning

Fig. 8  Factors impacting 18F-FDG PET/CT feature standardisation
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the computed values was achieved by comparing the 
degree of concurrence and stability of the concurrence. 
In the first two stages, the feature reference values were 
achieved through iterative filtering level of concurrence. 
The features calculated in these two phases was recog-
nised as standard only when the degree of concurrence 
was high enough. In the third stage, dataset of patients 
diagnosed with soft-tissue sarcoma was selected from 
Cancer imaging Archive consisting of multimodality 
imaging (T1-weighted MRI and 18F-FDG PET/CT). Simi-
lar to the previous phase, the images were accompanied 
by segmentation of the gross tumour volume. In this 
stage, the standardised features (achieved from the first 
two phases) were validated by reproducing the features 
using predefined image processing configuration on the 
dataset. Finally, IBSI achieved the standardisation of 169 
features out of 174 features examined in this research 
study. However, the study excluded uncommon features 
and traits such as fractals and image filters for feasibility 
purpose.

A research team recently presented a post-acquisition 
standardisation workflow. Their proposed principle is 
based on the modified MRI standardisation method rec-
ommended by Nyul et  al. [189, 190]. The workflow fol-
lowed during this study is illustrated in Fig. 11. Two sets 
of 18F-FDG PET/CT scan data were utilised in this study 
as the training set and validation set. First, a standard-
ised intensity scale was defined for the image set. This 
was achieved by initially computing the low percentile, 
50th percentile and high percentile intensities and mean 
values of these intensities from the training image data-
set. Then, the intensity of images from test dataset was 
mapped nonlinearly in the mean value interval obtained 
from the training dataset.

Performance of the standardisation process was deter-
mined by implementing the coefficient of variation of 
mean metabolic activity and coefficient of variation of 
mean activity computed from the training dataset. One 
of the utilities of this technique is that it is free from the 
effect of patient and image acquisition parameters. The 
study result showed significant decrease of the mean 
metabolic activity coefficient variation was achieved by 
standardised PET (sPET). Additionally, sPET was proven 
to be superior to conventional standardisation methods 
such as SUV and z-score normalisation [10]. However, 
the validation data set adopted in the study was healthy 
cohort of patient. The developed sPET scheme should 
also be applied on diseased patients in clinical trial to fur-
ther investigate its feasibility.

Conclusion
The micro-level changes in lung disease such as tumour, 
infection or inflammation progresses cannot be detected 
by CT scan alone. 18F-FDG PET/CT diagnosis care-
fully examines detailed and diverse cell anomalies in 
the field of biology. Nevertheless, low-grade resolution 
and irregular noise of PET images upholds added meth-
odological boundary. In the field of tumour treatment 
response assessment, the use of 18F-FDG PET/CT is not 
as common as CT. This is because the globally approved 
PET equivalent of CT-Based Response Evaluation Crite-
ria in Solid Tumours guideline is yet to be established. 
Application of radiomics might enhance the diagnos-
tic capability of the imaging techniques as it extracts a 
large number of quantitative features from the images 
which otherwise remains unattended. Biologic changes 
at the molecular lever can be traced back by intelligent 

3D wavelet transformation in each 
CT image of the training set 

476 features including size-shape, 
histogram texture-based features 

extraction

Feature selection by a univariate 
analysis implementing specific 

threshold (p value) and correlation 

Normalization of the selected 
features 

Development of the histology 
prediction model by applying 

machine learning

Evaluation of the model by the test 
set 

Fig. 9  Flowchart of feature extraction study based on CT images 
performed by Haga, Akihiro et al. [173]
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assessment of the computed features. Employment of 
18F-FDG PET/CT radiomics, especially texture analysis 
in lung abnormalities management, directs its gradual 
steps towards a patient-specific approach of lung dis-
eases management.

Recently, application of 18F-FDG PET/CT radiomics 
is also being applied for lung infection and inflamma-
tion diagnosis. However, numerous numbers of features 
and various techniques of feature extraction have raised 
tremendous complexity. This complexity can only be 
removed by standardisation of radiomics analysis. 
Hence, introduction of radiomics in the medical prac-
tice is impossible without standardisation and harmo-
nisation through sufficient and convincing scientific 
evidence. Importance of standardisation, reproducibility, 
and validation of radiomics in clinical trials cannot be 
overlooked.

To achieve the ultimate goal to employ radiomics 
analysis as an integral part of the routine medical diag-
nosis and prognosis, validation of its robustness across 
reconstruction algorithm and parameters is crucial. 
However, the absence of appropriate cross-validation 
of the radiomics studies till date raises the concern of 
false-positive results. Radiomics textural features are 
a set of numeric and their interpretation by human, 

which are often difficult. Elucidation of these feature 
statistics is not beyond mistakes, e.g. assumption of 
correlation implies the causation, misinterpretation 
of correlation, over generalisation [161]. Acceptance 
of appropriate radiomic features will only be achieved 
once these challenges are properly addressed. For the 
time being, comparison of the findings across differ-
ent studies is unattainable due to different protocols 
and practices. Only the establishment of a uniform 
prognostic and predictive factors of feature analysis 
can promote the transition of radiomics into the field 
of clinical practice. Basically, the available studies on 
radiomics are mainly retrospective and hence demon-
strate the perception of radiomics. Adaptation of pro-
spective research is essential to establish radiomics into 
the medical support system. Acceptance of radiomics 
can only be achieved upon proper addressing of these 
challenges.

The standardisation and quantification of 18F-FDG 
PET/CT radiomics will increase its potential field of 
application even more. The combination of artificial 
intelligence and machine-learning techniques with radi-
omics research will hold the ground of disease diagnosis 
and treatment evaluation robustly and speed up medical 
translation.

Fig. 10  Flowchart of validation study by Zwanenburg, Alex et al., overview [145]
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