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EDUCATIONAL REVIEW

Quantitative ultrasound imaging of soft 
biological tissues: a primer for radiologists 
and medical physicists
Guy Cloutier1,2,3*  , François Destrempes1, François Yu2,3,4 and An Tang2,5,6 

Abstract 

Quantitative ultrasound (QUS) aims at quantifying interactions between ultrasound and biological tissues. QUS tech-
niques extract fundamental physical properties of tissues based on interactions between ultrasound waves and tissue 
microstructure. These techniques provide quantitative information on sub-resolution properties that are not visible on 
grayscale (B-mode) imaging. Quantitative data may be represented either as a global measurement or as parametric 
maps overlaid on B-mode images. Recently, major ultrasound manufacturers have released speed of sound, attenua-
tion, and backscatter packages for tissue characterization and imaging. Established and emerging clinical applications 
are currently limited and include liver fibrosis staging, liver steatosis grading, and breast cancer characterization. On 
the other hand, most biological tissues have been studied using experimental QUS methods, and quantitative data-
sets are available in the literature. This educational review addresses the general topic of biological soft tissue charac-
terization using QUS, with a focus on disseminating technical concepts for clinicians and specialized QUS materials for 
medical physicists. Advanced but simplified technical descriptions are also provided in separate subsections identified 
as such. To understand QUS methods, this article reviews types of ultrasound waves, basic concepts of ultrasound 
wave propagation, ultrasound image formation, point spread function, constructive and destructive wave interfer-
ences, radiofrequency data processing, and a summary of different imaging modes. For each major QUS technique, 
topics include: concept, illustrations, clinical examples, pitfalls, and future directions.

Keywords:  Quantitative ultrasound imaging, Speed of sound imaging, Ultrasound attenuation imaging, Backscatter 
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Key points

•	 Quantitative ultrasound (QUS) provides images on 
interactions between ultrasound waves and biologi-
cal tissues. •	Tissue-specific speed of sound images 
can be produced for QUS tissue characterization.

•	 Acoustic attenuation is used in QUS as biomarkers 
to produce images independent of ultrasound system 
characteristics and settings.

•	 Backscatter coefficient is independent of ultrasound 
system characteristics and settings for tissue charac-
terization.

Introduction
The field of quantitative ultrasound (QUS) imaging has 
been active for more than 50 years and it is only recently 
that ultrasound manufacturers have started implement-
ing some of these biomarkers on clinical scanners. Sev-
eral technical textbooks have described state-of-the-art 
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innovations [1–4]. Interested readers may refer to a 
recent contribution for a thorough introduction to the 
field of QUS imaging [4]. Technical constraints such as 
the need to perform an additional acquisition on a refer-
ence phantom and measurement variability have delayed 
clinical adoption [5]. However, the development of dedi-
cated instruments using QUS methods for the assess-
ment of bone structures [6] and liver steatosis [7] has 
led to a resurgence of the field of QUS. Recently, major 
ultrasound radiology manufacturers have released speed 
of sound, attenuation, and backscatter packages for tissue 
characterization and imaging.

In contrast to brightness (B-mode) grayscale ultra-
sound imaging that provides qualitative information on 
anatomy, QUS aims at quantifying physical phenomena 
associated with the propagation of ultrasound into bio-
logical tissues. More specifically, QUS extracts funda-
mental properties of a tissue based on the interactions 
of propagating ultrasound waves with the tissue micro-
structure. These ultrasound sub-resolution quantitative 

signatures of the tissue microstructure are then used to 
produce a measurement of a global physical quantity 
within a region of interest (ROI) or parametric images for 
diagnosis. As illustrated in Fig. 1, these images are com-
plementary to grayscale imaging, Doppler approaches 
measuring flow and tissue motion, and elastography 
(strain and shear wave based) assessing mechanical 
properties of tissues. While grayscale imaging, Doppler 
imaging, and elastography can also provide quantita-
tive measures, the use of the terminology “quantitative” 
in QUS refers to a specific field dedicated to biomarkers 
describing wave interactions with the insonified organ.

The field of QUS imaging was initially described as 
“ultrasound tissue characterization (UTC)” [8]. Follow-
ing the first international seminar on tissue characteriza-
tion by ultrasound held in 1975 at the National Bureau 
of Standards in Washington, UTC was enthusiastically 
identified “to be one of the next big developments in the 
clinical utilization of ultrasound” (see this Editorial state-
ment in [8]). After several decades of research marked 

Fig. 1  Classification of ultrasound techniques. From top to bottom, grayscale imaging modes provide information on organ anatomy. Doppler 
techniques assess flow and tissue motions (direction, velocity, and backscatter in power Doppler mode). Elastography methods provide information 
on mechanical properties of tissues. Quantitative ultrasound (QUS) detects sub-resolution acoustic properties to provide information on tissue 
microstructure. RF refers to radiofrequency data, I/Q to in-phase and quadrature data, whereas compression and shear waves refer to elastic waves 
used in ultrasound imaging
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by an unsuccessful translation of UTC technologies to 
ultrasound manufacturers and clinical practice, techni-
cal scientists strategically started introducing the concept 
of QUS, which in fact is in line with UTC initial devel-
opments aiming at providing biomarkers based on the 
interactions of ultrasound waves with the underlying tis-
sue. QUS was first defined as a specific research field to 
characterize bone structures using attenuation and speed 
of sound measurements [9, 10]. UTC imaging is still used 
today to define this field of research [11], but it is no 
longer specific to QUS technologies based on the physics 
of wave interactions with biological tissues [12]. Indeed, 
UTC also refers to image processing methods to extract 
tissue information.

In this article, we refer to QUS measurements or 
images with a focus on soft tissue characterization, and 
on examples of QUS methods applied to grade liver stea-
tosis and breast cancer (because those applications are 
the first ones using implementations of QUS on clini-
cal scanners). Basic concepts behind speed of sound, 
attenuation, and backscatter measurements to grade a 
normal or a pathological state of an organ are reviewed. 
We describe key QUS technical concepts and illustrate 
QUS methods by avoiding complex mathematical equa-
tions. We provide a glossary of key terms relevant to this 
field (Table 1). To understand QUS methods, this article 
reviews basic concepts on the type of acoustic waves, 
speed of sound of these waves, ultrasound wave propaga-
tion phenomena, image formation, point spread function, 
constructive and destructive wave interferences, and rad-
iofrequency data processing versus B-mode images. For 
each QUS method, topics include simplified concepts, 
units, range of values for soft biological tissues, measure-
ment methods, illustrations, clinical examples, pitfalls, 
and future directions. For a few technical descriptions, 
the label “advanced materials” is used and the text is in 
italic.

Background on ultrasound wave propagation 
and image processing
Types of acoustic waves
In fundamental acoustics, different types of mechani-
cal waves, called elastic waves, can propagate into soft 
biological tissues. Among those, compression and shear 
waves are currently used on clinical ultrasound scanners 
(Fig. 2). Compression waves, also known as longitudinal 
waves, consist in alternating compressions and dilations 
of the tissue, where the direction of wave propagation 
is parallel to the direction of the source. Compression 
waves are used in all imaging modes (grayscale, Dop-
pler, elastography, and QUS). Shear waves, also known 
as transverse waves, consist in alternating shearing of the 
tissue, where the oscillation motion is perpendicular to 

the direction of the wave propagation. Besides compres-
sion and shear waves, other types of elastic waves can 
travel into biological tissues as surface waves (i.e., Ray-
leigh and Love waves) [13, 14]. The latter types of waves 
are being investigated for ultrasound imaging research 
and developments [15, 16].

Speed of sound
The speed of sound of compression waves is fixed on 
most ultrasound scanners to 1,540 m/s, and this value is 
used to convert time to distance for producing an image. 
Indeed, ultrasound systems are measuring echo times 
between emission and reception, and a fixed speed of 
sound is assumed to map received echoes into spatial 
depth. In reality, the actual speed of sound varies depend-
ing on tissue structural characteristics. This assumption 
produces errors as the real speed of sound in soft tissues 
varies by ± 150 m/s or about 10% of the assumed speed 
of sound [17, 18]. In QUS, tissue-dependent variations 
in speed of sound are retrieved and used as a biomarker 
of a pathological state. Shear waves are much slower and 
travel at a speed of a few m/s in biological tissues (typi-
cally < 10  m/s). In shear wave elastography, the shear 
wave speed is used to infer on tissue elasticity. Rayleigh 
and Love waves, which will not be further discussed, are 
also moving at a speed of a few m/s in biological tissues 
(typically < 10 m/s).

Advanced materials: The speed of a compression wave is 
determined by the square root of the bulk elasticity mod-
ulus divided by the mass density of the tissue. The bulk 
modulus, or isostatic elasticity modulus, is the constant of 
proportionality relating the stress–strain linear behavior 
of a tissue deformed by a compressive movement or a com-
pression wave in the context of this review. We recall here 
that ultrasound systems are considering a constant bulk 
modulus and a constant mass density to produce depth 
information on images (i.e., a constant speed of sound). 
However, it is the change in speed of sound at interfaces 
that allows observing image boundaries and tissue con-
trast. In other words, a constant speed of sound is required 
to estimate distances on the image but without speed of 
sound heterogeneities, no image would be produced. 
Notice that the concept of adiabatic compressibility can 
be found in the technical ultrasound literature; it corre-
sponds to the reciprocal of the bulk modulus. It is also of 
value to define the concept of acoustic impedance that is 
the product of the speed of sound by the mass density of 
the tissue.

Ultrasound wave propagation
Elastic waves traveling into biological tissues experi-
ence different physical phenomena. A few concepts are 
relevant to explain these wave properties. Reflection, 
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refraction, absorption, and scattering phenomena illus-
trated in Fig.  3, and defining ultrasound image char-
acteristics, are determined by the speed of sound and 
tissue mass density, yielding the acoustic impedance. 
More specifically, these wave phenomena are influenced 
by changes in acoustic impedance along the ultrasound 
propagation path. All ultrasound imaging modes (Fig. 1) 
are affected by tissue mechanical properties (bulk or 

shear modulus), which are hence not specific to ultra-
sound elastography. Wave diffraction (Fig.  3e) charac-
terized by the spreading of a wave around obstacles or 
within “holes” created by a mismatch in acoustic imped-
ance is influenced by the relative dimension of the obsta-
cle or hole with respect to the ultrasound wavelength λ (λ 
is the reciprocal of the ultrasound wave frequency).

Table 1  Glossary of commonly used terms in quantitative ultrasound

Term Definition

Absorption Loss in energy of the propagating compression wave due to local tissue heating

Acoustic impedance Product of the speed of sound by the density of the tissue

Attenuation Decrease in amplitude of acoustic waves propagating through soft tissues; caused by loss of 
mechanical energy due to wave absorption, reflection, refraction, diffraction, and scattering

Attenuation coefficient Ratio of one radiofrequency echo magnitude to another at a different depth; expressed in decibel 
per centimeter per megahertz (dB/cm/MHz)

Attenuation coefficient slope Linear relation between the attenuation coefficient and frequency; expressed in dB/cm

Backscatter Analysis of echoes received by the transducer due to reflection and scattering of compression waves

Backscatter coefficient (BSC) Formal definition of the backscatter intensity returned by a tissue and defining its sub-resolution 
structure; expressed in cm/steradian

Brightness mode (B-mode) Ultrasound mode providing two-dimensional images in grayscale for assessment of anatomy

Compression wave Type of acoustic wave in which the oscillation motion is parallel to the direction of wave propaga-
tion; also known as a longitudinal wave

Diffraction Type of interaction between a wave and a physical medium in which the sound is dispersed when 
travelling through a hole smaller than the wavelength

Homodyned-K (HDK) statistical models Descriptive statistical model used to fit the histogram distribution of ultrasound speckle with 3 
parameters for tissue characterization

In-phase and quadrature (I/Q) demodulated data Low-frequency representation of the radiofrequency signal obtained by the quadrature demodula-
tion process

Nakagami statistical models Descriptive statistical model used to fit the histogram distribution of ultrasound speckle with 2 
parameters for tissue characterization

Point spread function (PSF) Response of an ultrasound system to a single reflector much smaller than the acoustic wavelength 
but with sufficient impedance to generate an echo

Quantitative ultrasound (QUS) Field of ultrasound imaging that aims to quantify the interactions between a compression acoustic 
wave and a biological tissue for its structural sub-resolution characterization

Radiofrequency (RF) Acoustic signals detected by the ultrasound transducer with a frequency bandwidth dictated by the 
ultrasound probe characteristics

Reflection Type of interaction between an acoustic wave and a physical medium in which the wave bounces 
back at the same angle but at a different direction; reflections generate an echo detected by the 
ultrasound transducer when transmitted and reflected angles are in the field of view of the probe

Refraction Type of interaction between an acoustic wave and a physical medium in which the wave is bent at 
an angle and travels at a different speed due to a mismatch in acoustic impedance of encountered 
tissue interfaces

Scattering Type of interaction between an acoustic wave and a physical medium in which the wave in bounces 
at angles of 360 degrees; scattering occurs when the tissue structure is much smaller than the 
acoustic wavelength

Shear wave Type of acoustic wave in which the oscillation motion is perpendicular to the direction of the wave 
propagation; also known as transverse waves

Speed of sound (SoS) Square root of the bulk elasticity modulus of the tissue divided by its density; expressed in m/s

Structure factor size estimator (SFSE) Spectral representation of the backscatter coefficient modeled with 2 fitting parameters obtained by 
considering wave interference phenomena with a structure factor term, from which is extracted the 
packing factor and the mean size of scatterers

Ultrasound tissue characterization (UTC) Historical term to describe the field of quantitative ultrasound; nowadays, the term QUS is preferred 
because UTC is also used to describe image processing strategies to extract image characteristics of 
a tissue
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Image formation and point spread function
As illustrated in Fig.  4, the speckle in B-mode images 
actually provide a signature of the tissue microstruc-
tural cellular content, but at a resolution determined 
by the system’s “point spread function” (PSF), which 
acts as a “blurring convolution filter.” The shape of the 
PSF is determined by the electrical signal transmitted 
to probe piezoelectric or capacitive elements, by the 
beam forming scheme, and by the acoustic lens charac-
teristics. The electrical signal transmitted to the probe 

oscillates according to the transducer geometry and fab-
rication characteristics. The oscillation duration defines 
the transducer frequency bandwidth and axial resolu-
tion (typically 1.5  mm at 1  MHz). Its shape (e.g., sinus, 
square, or wavelet characteristics) modifies the frequency 
content of the transmitted compression wave, and its 
dominant frequency defines the mid-bandwidth. Beam 
forming also affects PSF characteristics, which is used 
to improve the focus laterally. An acoustic lens defining 
the focus in elevation (i.e., out of plane of the image) also 
modulates the PSF behavior and speckle characteristics. 
Other ultrasound system settings can be used to improve 
the image quality, and intervene in defining the magni-
tude and geometry of the PSF [19–21]. An interpretation 
of the PSF filtering, which characterizes ultrasound sys-
tems, is to consider the image that would be produced by 
a single reflector much smaller than the acoustic wave-
length but with enough acoustic impedance contrast to 
provide a detected backward echo (Fig. 4b). As seen, that 
reflector cannot be resolved due to this filtering effect. 
By considering all reflectors depicted in Fig. 4a, the PSF 
contributes to the speckle pattern observed on B-mode 
images (this is known as the convolution effect men-
tioned above, Fig.  4c). The “reflector” terminology used 
in Figs. 4 and 5 is generic and is referring to reflection or 
scattered wave phenomena produced by an object.

Fig. 2  Two types of mechanical waves are used in ultrasound 
imaging. a Compression waves, also known as longitudinal waves, 
consist in alternating compressions and dilations of the insonified 
tissue with the moving wave direction parallel to the direction 
of the source. As indicated in Fig. 1, compression waves are used 
in all imaging modes (grayscale, Doppler, strain and shear wave 
elastography, and QUS). b Shear waves, also known as transverse 
waves, consist in alternating shearing motion of the insonified tissue 
with the moving wave direction perpendicular to the direction of 
the source. This type of wave is used in shear wave elastography to 
produce the source of motion, whereas compression waves are used 
for detection and imaging for all imaging modes, including detection 
of the shear wave in shear wave elastography (see Fig. 1)

Fig. 3  During their propagation, compression or shear waves 
are modified due to their interaction with the physical medium. 
Their direction and amplitude may change due to (a) reflection 
or (b) refraction at the interface of media with different acoustic 
impedance. The amplitude may also decrease (i.e., attenuation) 
due to (c) absorption and (d) scattering produced by the insonified 
medium. e Space between scatterers or within specular reflectors 
favor the spreading of the wave field due to diffraction. Waves 
received by the ultrasound transducer to produce an image are 
attributed to reflection and scattering

Fig. 4  B-mode images do not provide a resolved signature of the 
tissue cellular content. a Single cells or structured connected cells 
forming a living tissue are providing acoustic impedance interfaces 
reflecting or scattering compressive waves emitted by the ultrasound 
probe. b These backward waves are detected by the same probe but 
are filtered by the “point spread function” of the ultrasound system. In 
other words, the limited resolution of ultrasound coupled with probe 
characteristics and scanner settings do not allow resolving single 
cell geometry. The “point spread function” can be interpreted as the 
image that would be produced by a single reflector much smaller 
than the acoustic wavelength but with enough acoustic impedance 
contrast with the ambient medium to provide a detected backward 
echo. c The B-mode image corresponds to the tissue sub-resolution 
characteristics filtered by the “point spread function.” The spatial 
distribution of reflectors and scatterers impact the final image 
appearance
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Constructive and destructive wave interferences
When an ultrasound wave interacts with densely packed 
tissue constituents, constructive and destructive wave 
interferences are generated: the number and spatial 
positioning of reflectors are also key determinants of 
the speckle image characteristics and are a source of the 
sub-resolution information gathered by QUS backscat-
ter imaging biomarkers. The previous explanation on 
image formation is oversimplified because a given reflec-
tor does not lead to a specific speckle defined by the 
PSF (as in the case of Fig. 4c). When multiple reflectors 
are present (Fig. 5a, b, we consider here weak scatterers 
- i.e., small acoustic impedence contrasts - thus multi-
ple reflections between scatterers are negligable), wave 
interferences are observed and this is also contributing 
to the speckle pattern characteristics. The PSF and wave 
interferences are modulating image characteristics. As 
illustrated in Fig. 5c, a given tissue with specific position-
ing of reflectors that is imaged with different scanners or 
system settings leading to different PSFs would result in 
quite different B-mode image appearance. The concept 
of constructive and destructive wave interferences is fur-
ther illustrated in Fig.  6. If one considers two reflectors 
producing echoes with different delays among them due 
to different spatial positioning, the summation of these 
waves contributing to the final image pixel can be quite 

different according to the importance and value of this 
delay. If two echoes are in phase (i.e., no delay between 
them), then a constructive interference with a doubled 

Fig. 5  a Constructive and destructive wave interference patterns when forward echoes sent by a transducer (on the top of the image) are reflected 
or scattered by 2 particles located at the same depth. b Wave interference patterns when reflectors or scatterers are distributed in space. c B-mode 
images with different speckle patterns obtained from same reflectors or scatterers distributed in space, but with different point spread functions 
at lower to higher frequencies from left to right. The terminology “reflector” is generic here but formally a reflector has a dimension larger than the 
acoustic wavelength, whereas a scatterer has a dimension much smaller than the wavelength

Fig. 6  Illustration of the concept of constructive and destructive 
wave interferences. a Constructive wave interference occurs when 
both interfering waves (in blue and red) are in phase (i.e., aligned 
as indicated by the dashed line); the resulting wave (in purple) 
has doubled its amplitude. b Partial destructive wave interference 
observed when both interfering waves are phase delayed (as 
indicated by nonmatching dashed lines); in that case, the resulting 
wave (in purple) has a lower amplitude than both interfering waves 
(in blue and red). c A complete destructive wave interference 
occurring when both interfering waves are phase shifted to obtain 
a maximum when the other wave has reached its minimum (as 
indicated by dashed lines); in this case, the resulting wave (in purple) 
has zero amplitude
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final amplitude is observed. If two echoes are out of 
phase (i.e., with a phase shift of 180 degrees), then the 
wave interference will produce a null echo. This is typi-
cal of black pixels observed on B-mode images when an 
underlying tissue is expected. Intermediate conditions 
with phase delays between 0 and 180 degrees lead to dif-
ferent levels of wave interferences.

Advanced materials: Intuitively, one may think that 
more reflectors or scatterers present in a given ROI would 
produce brighter images (or higher backscatter in the con-
text of QUS), but this is not true because of wave inter-
ferences. Experimental reports using flowing red blood 
cells or cellulose particles embedded in a gel phantom at 
different volume concentrations revealed a linear rela-
tion between the backscatter intensity and the number 
of particles up to a volume fraction of approximately 6%, 
followed by a peak around 13–20% volume fractions, 
and a reduction in backscatter at higher number densi-
ties of particles (i.e., hematocrit in the case of blood) [22, 
23]. Destructive wave interferences explain the reduc-
tion of the echo magnitude as the number of particles is 
increased beyond typically 13–20% volume fractions. This 
observation might be of value to interpret blood backscat-
ter in anemia, or liver backscatter at different lipid vesicu-
lar concentrations in steatosis [24].

RF mode at the origin of all ultrasound imaging modalities
All imaging modes in ultrasound start from radiofre-
quency (RF) data processing. RF images correspond to 
the summation of echoes received by each element of a 
transducer following beam forming to improve image 
resolution. As indicated in Fig.  1, imaging modes are 
specifically processing RF data, in-phase and quadrature 
(I/Q) demodulated data, or simply B-mode images, as 
in the case of speckle tracking for cardiac strain imag-
ing [25]. Following beam forming, a B-mode image is 
obtained from side-by-side RF lines (usually with inter-
polation) that are processed to obtain I/Q and then 
envelop detected echoes (i.e., a B-mode echo). The Dop-
pler mode is based on the processing of the demodulated 
I/Q data to retrieve the phase shift between emitted and 
received echoes to apply the Doppler equation for assess-
ing blood velocities [26]. In strain or shear wave elastog-
raphy, RF data processing is privileged to improve tissue 
movement detection accuracy, but I/Q or B-mode data 
processing can be used for some algorithms [27]. I/Q data 
are advantageous to reduce sampling rate and data trans-
fer load, whereas B-mode processing is of value because 
of the wide access to clinical B-mode image sequences.

Notice that 15–20  years ago, a few ultrasound manu-
facturers started providing access to RF data for research 
purpose (e.g., Ultrasonix Medical Corporation, Verason-
ics, Visualsonics, Esaote, Terason). Today, most major 

clinical ultrasound manufacturers can provide RF or I/Q 
access in addition to clinical imaging packages (e.g., Sie-
mens Healthineers, General Electrics Healthcare, Canon 
Medical Systems, Samsung Healthcare, Supersonic Imag-
ine—Hologic, etc.). Research agreements may, however, 
still be required to have RF access with some companies. 
Acquiring RF data had a major impact because it pro-
vided academic scientists the possibility of developing 
technical innovations with state-of-the-art ultrasound 
scanners.

RF, I/Q and B‑mode data formats
Figure  7 illustrates the difference between RF, I/Q, and 
B-mode datasets (adapted from [28]). The left panel 
shows time-domain processing, and the right panel 
presents the corresponding spectral content. The time-
domain RF signal contains detected reflected and scat-
tered echoes returning to the transducer. It is understood 
that constructive and destructive wave phenomena 
contribute to the RF signal signature. Since transmitted 
compression waves are selected to provide frequency 
contents covering the whole bandwidth of the transducer 
(typically by using a short transient electrical signal), and 
considering that frequency characteristics are modified 
by frequency-dependent phenomena, such as attenuation 
and backscatter, the received compression waves can be 
seen as a “filtered” representation of transmitted echoes. 
Once detected by the transducer in analogic form (i.e., 
as a time-varying voltage), analog-to-digital converters 
are used to obtain a numerical representation for further 
processing. As indicated in the top right panel of Fig. 7, 
the frequency content of the RF signal is in the MHz 
range and corresponds to the transducer bandwidth (e.g., 
1.25 to 3.75 MHz for this example that might correspond 
to an abdominal or cardiac probe). Time-domain pro-
cessing of the RF signal provides the low-frequency I/Q 
representation of received echoes with corresponding 
spectral description on the right panel. Following enve-
lope detection (red line on the left panel) made by pro-
cessing time-domain or frequency-domain echoes, its 
magnitude is mapped in gray levels to represent B-mode 
speckle at a given lateral (i.e., a given RF scan line) and 
depth (i.e., a given time) positions to produce an image.

Introduction to QUS imaging
Figure 8 provides an intuitive representation of speed of 
sound, attenuation, and backscatter measurements. Most 
algorithms and methods developed to provide these QUS 
biomarkers are based on RF data processing. RF data are 
more suited to track wave motion required for speed of 
sound imaging, and they contain spectral information 
used to describe attenuation and backscatter measures 
as a function of frequency. Since QUS imaging provides 
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sub-resolution information relying on the cellular con-
tent and structure of a tissue, it could also be angular 
dependent when the measure is done on anisotropic tis-
sues, such as muscles or tendons having fibers organized 
with privileged orientations. Examples of parametric 
images of these biomarkers are given in specific sections 
describing how these imaging modes are obtained.

Speed of sound imaging
Concept
Biological tissues are characterized by different speed of 
sound (SoS) providing acoustic impedance contrast.

Units
SoS is expressed in meters per second (m/s).

Range
Reported values measured using experimental ultra-
sound devices and excised soft tissues are typically 

varying from 1400 to 1700 m/s at body temperature [1]. 
SoS is lower in fatty tissues and higher in muscles and 
tendons, and it changes according to the pathological 
state of the tissue [29]. Most reports on SoS are based on 
technical experimental setups; tabulated values obtained 
using clinical implementation of the methods are scarce.

Measurement methods
Original efforts in this field aimed at improving the 
quality of B-mode images corrupted by phase aber-
rations produced by varying SoS along the acoustic 
wave propagation path [30–33]. As discussed earlier 
(in advanced materials), a heterogeneous tissue with 
varying bulk moduli and mass densities can locally 
modify the SoS, and consequently the depth at which 
each component of the tissue would be represented. 
For example, the boundary of an organ with spatially 
varying SoS might be displayed at different depths due 
to compression wave phase aberrations, potentially 

Fig. 7  Time-domain (a–d) and frequency-domain (e–h) representation of ultrasound echoes to illustrate the difference between radiofrequency 
(RF), in-phase (I), and quadrature (Q) datasets. a The radiofrequency signal corresponds to the ultrasound echo at a given scan line on an image. 
b The demodulated in-phase and (c) quadrature components are obtained through signal processing implying multiplication of the RF signal by 
cosine (I) and sine (Q) functions at the center frequency of the probe, or of the transmitted wave. d The envelope detected echo used to produce a 
B-mode image by mapping the magnitude (red envelope) as a function of depth in gray scale is obtained as the square root of I2 plus Q2. Advanced 
materials: e Frequency-domain representation of the RF signal, where the bandwidth of interest is governed by the ultrasound transducer characteristics. 
The Nyquist frequency is the minimum sampling frequency of the temporal signal required to avoid aliasing (i.e., an undersampling of the echo resulting in a 
wrong representation of the signal). Here a 2.5 MHz center frequency probe is considered with a bandwidth covering the frequency range of 1.25–3.75 MHz. 
f I/Q demodulation in the frequency domain (one needs to know that the Fourier transform of a temporal signal used to obtain its power spectrum results in 
a real—positive frequency, and imaginary—negative frequency display since it is a complex number representation). g The demodulation is followed by the 
use of a low-pass (LP) filter to keep frequency contents corresponding to the original main positive spectrum of the RF signal. By applying an inverse Fourier 
transformation on the final spectral representation, one obtains the temporal I and Q complex signals. h For the example of this figure, the demodulation 
allowed reducing the sampling rate by a factor of 6. Adapted from [28]
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affecting the quality of the diagnosis. The objective 
of phase aberration correction methods is to adjust 
locally the SoS to produce clearer images with less 
blurring. Technical efforts made in the field of phase 
aberration corrections constitute the framework of 
contemporary SoS measurement and imaging methods 
in the QUS field.

Advanced materials: Phase aberration correction 
methods led to the development of focusing strategies 
relying on the estimation of the mean SoS between the 
face of the transducer and the focal depth of interest. 
Alternatively, an image processing approach also aim-
ing at improving beam focusing was proposed [34]. In 
the latter report, the mathematical deconvolution oper-
ator was used to retrieve a restored image produced by 
considering an ultrasound system PSF having different 
mean SoS values. A focusing approach based on the 
estimation of SoS along the wave propagation path was 
specifically introduced for the purpose of providing a 
tissue characterization signature in [35]. Conceptually, 
since a mean estimate along the ultrasound beam is 
obtained with these abovementioned methods [34, 35], 
no local measure within a given ROI of an organ having 
inhomogeneous SoS can be produced. Current methods 

allowing local assessments or images within an ROI are 
based on spatial coherence [36] and image compound-
ing [37] approaches.

Illustration
A schematic representation of the current state-of-the-
art spatial coherence [36] and image compounding [37] 
methods developed for local SoS assessments is illus-
trated in Fig. 9. Another recent strategy was proposed for 
producing local SoS maps based on a prior estimate of 
the mean SoS along the wave propagation path [38].

Clinical example(s)
A few ultrasound manufacturers are today offering SoS 
capability for tissue characterization by providing a mean 
value within a selected ROI (no image), as in [39]. Imag-
ing local heterogeneous SoS pixel values within an ROI 
might become available soon to clinicians; an example of 
such capability in the context of breast cancer imaging is 
given in [37], see Fig. 10 (image compounding method). 
It is anticipated that multiple organ diagnosis based on 
SoS images might spread once manufacturers will release 
such imaging packages. SoS measurement methods and 
instruments were also proposed in the context of QUS 
imaging using tomographic reconstructions [40–43].

Attenuation imaging
Concept
Ultrasound attenuation refers to the loss of mechanical 
energy as an acoustic wave propagates in soft tissues [4]. 
In addition to compression wave absorption (i.e., transfer 
of energy into heat), wave reflection, refraction, diffrac-
tion, and scattering are also contributing to the diminu-
tion of the wave amplitude with distance by redirecting 
acoustic energy away from the field of view of the trans-
ducer. The attenuation can be qualitatively appreciated by 
clinicians performing a standard B-mode examination. 
The magnitude of the echo within the image is reduced by 
attenuation, and loss of structural details over depth and 
shadowing can be observed. Thus, attenuation may be 
considered as an imaging artifact or as a specific feature 
of the tissue with diagnostic value. For a proper under-
standing of concepts described below, “total” attenuation 
means the attenuation between the ultrasound probe and 
an organ at a given depth (thus considering the contribu-
tion of all tissues along the path, e.g., the skin, fat layers, 
muscles, blood vessels, etc.), whereas “local” attenuation 
refers to the attenuation within an organ ROI to provide 
a tissue signature. Images might be reported using both 
total and local attenuation measurements. The character-
ization of an organ based on QUS attenuation measures 
or images usually refers to local attenuation assessment.

Fig. 8  Simple interpretation of QUS imaging modes. Tissues T1 
and T2 when interacting with a compression wave emitted by the 
transducer are characterized by different QUS properties evaluated 
by the speed of sound (SoS), attenuation, and backscatter coefficient 
measures. The interpretation of QUS parameters in this example is 
based on the B-mode representation of the tissue. a Compared with 
a reference tissue T1 that has a speed of sound of 1540 m/s, tissue T2 
that has a higher speed of sound would appear compressed because 
distances on clinical ultrasound systems are measured with the 
assumption that all tissues behave with an SoS = 1540 m/s. b Tissue 
T2 that has a higher attenuation would appear hypoechoic in deeper 
locations. c Tissue T2 that has a higher backscatter would appear 
hyperechoic on B-mode imaging
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Units
Since attenuation is the ratio of one RF magnitude to 
another at a different depth, it is expressed using the 
unit of decibel (dB) computed as 20 times the loga-
rithm (in base 10) of this ratio. Also, because ultrasound 

attenuation increases with frequency, it is reported in 
dB/cm/MHz. If one assumes that the attenuation on a 
log scale varies linearly with frequency (which is not the 
case of all biological tissues [44]), the value at a higher 
frequency may be obtained by multiplying the attenua-
tion in dB/cm/MHz by the frequency in MHz to obtain 
a measure in dB/cm at a given frequency (which is often 
reported). By assuming such a linear dependency with 
frequency, the relation between attenuation versus fre-
quency is obtained by computing the slope of this rela-
tion; for this reason, it is common to report attenuation 
measures with the acronym “attenuation coefficient 
slope” (ACS).

Range
Experimental measures of the ultrasound attenuation 
coefficient at body temperature using through transmis-
sion (i.e., 2 transducers located on both sides of the tis-
sue) or reflection (i.e., one transducer for emission and 
reception) instrumentations vary from 0.01 dB/cm/MHz 
in blood to 4 dB/cm/MHz in muscles [1, 45]. These val-
ues correspond to extremes reported in technical reports 
based on experimental setups and ex vivo tissue samples.

Fig. 9  Schematic representation of current local speed of sound (SoS) algorithms. a Local speed of sound assessed using the spatial coherence 
method provides a global value in m/s without a parametric image. A tissue with a low coherence R(m) among transducer elements location 
(m = 1–128 on this example) would underestimate the speed of sound, whereas a tissue with high coherence would provide the real speed of 
sound. b Local speed of sound determined with the spatial domain compounding approach provides a parametric map of the speed of sound. 
Compounding is obtained by insonifying the tissue at different angles θ. See [37] for specific definitions of parameters used in this graph. Figure 
modified, adapted, and reproduced with permission from [36] and [37]

Fig. 10  a B-mode image of an 88-year-old woman with a breast 
cancer. b Speed of sound map computed within the selected region 
of interest considered for B-mode imaging. Figure provided by 
Orcun Goksel from the Swiss Federal Institute of Technology, Zurich, 
Switzerland. Related works can be found in [37]
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Measurement methods
There are two main methods for estimating the local 
attenuation coefficient slope, i.e., the attenuation in dB/
cm/MHz within a pre-specified ROI: the spectral differ-
ence [46, 47] and the spectral shift [48] methods. With 
the former approach, the attenuation coefficient slope is 
estimated from the reduction of the echo signal power 
with depth, whereas for the latter, it is deduced from the 
downshift in center frequency of the backscatter echo 
with depth due to the frequency-dependent attenuation. 
Variants of these strategies were proposed, namely the 
spectral log difference method [49] and a hybrid method 
[50]. These algorithms are assuming that the scattering 
properties (i.e., the backscatter coefficient) of the organ 
are unchanged over the depth range of the ROI. More-
over, a calibration method is required to compensate 
for the compression wave diffraction confounder of the 
transducer, which also reduces the echo magnitude with 
depth. As illustrated in Fig. 11, a compression wave emit-
ted by an ultrasound transducer does not have uniform 
magnitude laterally and axially following beam forming; 
consequently, a calibration is required to compensate for 
spatial changes in magnitude.

To perform the calibration, echo signals from a ref-
erence phantom whose attenuation is known must be 
obtained using the same equipment and system settings 
as the clinical examination. Such calibration phantoms 
are available commercially (e.g., Sun Nuclear or CIRS). 
Because of the often assumed linear frequency depend-
ence of the logarithm representation of local attenu-
ation, such calibration phantoms may be used for the 
whole frequency bandwidth of clinical array transducers. 
The ratio of power spectra from the tissue and reference 
phantom within an ROI yields the attenuation coeffi-
cient of the scanned organ at the frequency and depth of 
interest. System effects such as diffraction, beam form-
ing, and transmitted acoustic power are accounted for by 
applying the reference phantom method [51]. Tissue dif-
fraction (Fig. 3e) is a QUS signature captured by attenu-
ation measurements. Gain, time-gain compensation, and 
image filtering settings on clinical scanners, which affect 
B-mode images, usually do not impact RF images and 
thus the computation of attenuation.

Illustration
A schematic illustration of the contemporary spectral dif-
ference and spectral shift methods used to assess local 
attenuation is given in Fig. 12. It displays an ROI within 
a B-mode image with measurement windows used for 
computation, along with a simplified representation of 
the phantom calibration approach.

Clinical example(s)
A few ultrasound manufacturers are offering real-time 
attenuation images on their scanners [52–55], or val-
ues computed within an ROI with no imaging capability 
[56–58]. Other manufacturers reported post-processed 
RF datasets on remote computers with no capability of 
real-time attenuation imaging [59–62]. To compensate 
for ultrasound system wave diffraction, ultrasound beam 
focusing, and other system settings, most manufacturers 
opted for an embedded calibration (from either a train-
ing dataset or a preset reference phantom measurement). 
Figure  13 shows an example of local attenuation imag-
ing implemented on a commercial clinical system for the 
assessment of liver steatosis.

Backscatter imaging
Concept
Backscatter imaging refers to the analysis of ech-
oes received by the ultrasound transducer due to 

Fig. 11  Typical diffraction pattern of an ultrasound probe 
and presence of side lobes associated with the beam forming 
reconstruction method, and finite dimension of the transducer 
aperture (typically determined by the number of transducer elements 
used at emission and reception). Notice that diffraction and side 
lobe characteristics are defining the point spread function property 
schematized in Fig. 4. This example illustrates the acoustic pressure 
distribution of a typical ultrasound beam produced by an array 
transducer. Specific beam forming strategies are used to reduce side 
lobes and multiple focuses improve the uniformity of the acoustic 
pressure distribution. Nevertheless, wave diffraction occurs and 
should be compensated to achieve reliable QUS measurements. 
Because the magnitude of compression waves is not uniform in the 
lateral (x-axis) and axial (y-axis or depth) directions, calibration with a 
reference phantom is required to compensate for spatial changes
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Fig. 12  Schematic representation of contemporary local attenuation algorithms. a A region of interest within a B-mode image is discretized into 
rectangular measurement windows to locally estimate the attenuation coefficient α. b Spectral difference method, (c) spectral shift method, (d) 
compensation for diffraction and ultrasound system focusing using the reference phantom method, and (e) estimation and display of the local 
attenuation coefficient

Fig. 13  Local attenuation map of a 55-year-old man with nonalcoholic fatty liver disease reporting a mean attenuation within the selected ROI of 
0.75 dB/cm/MHz, indicating a stage 1 to 3 liver steatosis. Reproduced with permission from [54]
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compression wave reflection and scattering, which are 
modulated in magnitude by constructive and destructive 
wave interferences produced by the tissue microstruc-
ture. A backscatter image therefore reflects the tissue 
microstructure, but varies with ultrasound frequency. For 
assessing the backscatter tissue property, a compensation 
for compression wave attenuation along the propaga-
tion path should be considered to get a signature of the 
intrinsic distribution in acoustic impedance inhomog-
enities of the tissue producing backscatter echoes. This is 
accomplished by considering the total attenuation along 
the path between the emitted compression wave at the 
surface of the skin to the ROI within the insonified organ 
[63, 64].

Units
The most recognized approach to describe backscatter in 
the field of QUS imaging is to use the magnitude squared 
and frequency dependency of RF echoes received by the 
transducer to compute the backscatter coefficient (BSC) 
[65]. By definition, the BSC at a given frequency corre-
sponds to the time-averaged scattered intensity in the 
backward direction per unit solid angle per unit volume 
normalized by the time-averaged incident wave intensity 
(cm−1 Sr−1) [4].  Practical implementation may require 
sampling at different probe positions and/or orientations 
to get spatial averaging of the tissue BSC. Units are per 
cm and per steradian, where the latter is a dimensionless 
measure referring to the ratio of the area subtended by 
the square of its distance from the center to that distance 
squared, as illustrated in Fig. 14. In this figure, the origin 

of the subtended angle may correspond to the central 
position of a scatterer within a specific ROI comprising 
multiple acoustic scatterers.

Advanced materials: By definition, BSC < 1 (no back-
scatter amplification) unless hypothetically a specific ROI 
would contain scatterers with a reflection coefficient of 1 
(i.e., no loss in energy between transmitted and reflected 
waves, which would correspond to a huge contrast in 
acoustic impedance), and these scatterers would need to 
be organized spatially in such a way that mainly construc-
tive wave interferences would be present. Such conditions 
are not expected for biological soft tissues so that BSC is a 
fractional measure.

Range
As for previous SoS and local attenuation values, BSC 
measurements have been experimental and mainly based 
on laboratory instruments; approximate extreme values 
are given here for soft biological tissues. Reported val-
ues for porcine whole blood at a normal hematocrit and 
a frequency of 7.5 MHz vary from ≈ 0.1 to 5 × 10–3 cm−1 
Sr−1. The range of BSCs for blood at a given frequency 
is explained by the modulating effect of erythrocyte 
aggregation and flow condition [22, 66]. The mean BSC 
at 3  MHz of human fatty livers is ≈ 7 × 10–3  cm−1 Sr−1 
compared with a mean value of ≈ 0.5 × 10–3  cm−1 
Sr−1 in healthy livers [67]. At low frequencies (typi-
cally < 10 MHz), BSC has a frequency dependency vary-
ing from ≈ f2 to f4 so that values at higher frequency are 
much higher for a given tissue. When the frequency is 
further increased, oscillating behavior with BSC peaks 
and troughs is observed and corresponds typically to the 
microstructure of the tissue and mean scatterers’ size.

Measurement methods
Similarly to local attenuation estimation requiring a ref-
erence phantom calibration method, backscatter assess-
ment using the BSC also needs a calibration to account 
for ultrasound system characteristics and settings [68]. 
A requirement for BSC measurements is to obtain a ref-
erence BSC in cm−1 Sr−1 at a specific frequency, or at 
different frequencies within the bandwidth of the ultra-
sound transducer, to compare the RF signal from the 
insonified organ to that of the reference for calibration. 
Commercially available reference phantoms provide BSC 
values but usually at a single frequency. Contrary to local 
attenuation in dB/cm that varies almost linearly with 
frequency, the BSC has a more complex tissue specific 
frequency behavior [3, 4], as mentioned above. Conse-
quently, additional effort is often required to calibrate the 
BSC of the reference phantom at a specific frequency or 
frequencies of interest.

Fig. 14  Illustration of the steradian dimensionless unit used to define 
the backscatter coefficient. The solid three-dimensional angle Ω 
corresponds to the area A divided by the radius squared of the sphere
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As summarized by Wear et al. [65], the assessment of 
the BSC has been associated with a greater variability 
than SoS or attenuation measurements due to the greater 
variety of measurement procedures, algorithms, and 
mathematical formulation relying on specific scattering 
theories. Using a more standardized way to compute the 
BSC with clinical array transducers, more robust esti-
mates have been reported in vitro [69, 70] and in vivo [71, 
72]. The framework of all BSC methods relies on similar 
concepts [73].

Illustration
Figure  15 shows requirements necessary to report 
calibrated and robust BSC values; measurements are 
typically taken in the frequency domain using Fou-
rier transforms applied to RF signals. With a reference 
phantom properly calibrated to provide known BSCs 

within the bandwidth of the transducer, a clinical meas-
urement of RF datasets within a specified ROI (i.e., tis-
sue T1) at a given depth in an organ is taken, followed 
by a second measurement on the reference phantom for 
the same ROI, keeping all ultrasound system settings 
the same. As indicated in Fig.  15, the mean RF power 
spectrum of the clinical measures computed over a few 
frames is divided by the mean RF power spectrum of 
the reference phantom, and then the result is multiplied 
by a function used to compensate for total attenuation. 
For this purpose, the total attenuation of the reference 
phantom at the measurement window depth should be 
known, along with an estimate of the total attenuation 
at the measurement window location within the imaged 
organ. The latter measure might be quite challenging, 
especially in obese patients with layered fat structures 
above the organ of interest [70]. For this reason, recent 

Fig. 15  Block diagram describing processing steps required to compute the backscatter coefficient (BSC). a A biological tissue, containing 
ultrasound scatterers distributed in space, is interrogated by an ultrasound wave. b The interaction of the ultrasound wave with the tissue produces 
a backscattered RF image discretized into rectangular measurement windows. c Using the same ultrasound system, a reference RF image is taken 
on a reference phantom with a known BSC, and discretized rectangular measurement windows are distributed at the same depth and lateral 
positions as in the case of the tissue image. d, e At every location of a measurement window, power spectra are computed for both images. f 
To eliminate effects of the system point spread function (PSF) and beam diffraction (which are system dependent and not tissue dependent), 
a spectral ratio is computed at each location and calibrated by the known BSC of the reference phantom. g At this stage, the tissue BSC is still 
affected by total attenuation, which needs to be removed. h Depth-dependent attenuation is removed for each measurement window location, 
which yields a BSC parametric image in i that is system independent. Averaging over multiple acquisitions with different probe positions and/or 
orientations is practically required to improve robustness
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clinical reports assumed a constant total attenuation 
coefficient slope between the probe and the liver ROI 
for steatosis grading characterization with the BSC [74, 
75]. As indicated in Fig.  15, because the BSC is com-
puted within measurement windows of a given ROI 
(i.e., tissue T1) in an organ, methods used either the 
total attenuation up to the measurement window or the 
total attenuation up to the ROI added to the local atten-
uation up to the measurement window. One assump-
tion in the calculation of the BSC is the postulate of a 
similar speed of sound for the clinical tissue sample and 
reference phantom, which can be a source of variability.

Advanced materials: As mentioned above, a first pre-
requisite for BSC computation is the availability of a ref-
erence phantom with a known BSC for the calibration of 
diffraction and ultrasound system settings. If such phan-
tom is not available or not calibrated at the frequency of 
interest or within the frequency bandwidth considered, a 
pre-step additional calibration is required. This is done 
by using another reference phantom mimicking specific 
theoretical scattering conditions. Notice that a few fun-
damental research laboratories may have the expertise 
to fabricate such phantoms, and to match acquired RF 
spectra to the appropriate theoretical scattering model. 
Once the pre-calibration phantom is fabricated, it is usu-
ally recommended to calibrate the reference commer-
cial phantom for clinical use. Indeed, the lifetime of such 
pre-calibration phantoms is usually limited by dehydra-
tion, bacterial contamination or structural fragility, thus 
preventing them to be used as a reference for clinical BSC 
measurements.

The theoretical Faran model describing scattering by 
hard spheres is the most often used for BSC calibration 
[76]; it is appropriate to model the BSC of a low num-
ber density of small glass spheres randomly distributed 
within a solidified gel, which is a common fabrication 
process for BSC reference phantoms. The requirement of 
a low number density of scatterers is to avoid construc-
tive and destructive wave interferences not supported by 
this theoretical model.  It also avoids multiple reflections 
due to the use of glass spheres with a high acoustic imped-
ance mismatch with the surrounding gel. With proper 
total attenuation compensation, RF spectra acquired on 
the pre-calibration phantom embedding scatterers of a 
uniform size are then compared to the Faran model to 
calibrate the commercially available reference phantom 
at frequencies of interest. This is achieved by repeating 
measurements on that commercial phantom whilst keep-
ing ultrasound system settings the same.

Alternatively for blood BSC assessment on patients 
to assess specific conditions, such as systemic inflamma-
tion [77] or risk of deep vein thrombosis [78], a suspen-
sion of erythrocytes washed with saline to remove plasma 

proteins that are responsible for cell aggregation is a com-
mon practice for reference phantom calibration [79]. To 
avoid wave interference effects, a low 4–6% hematocrit 
suspension datasets are used and compared to the Per-
cus–Yevick scattering model [80, 81] to obtain the refer-
ence BSC(f ). An advantage of this calibration process is 
to keep similar flow condition between calibration and 
clinical measurements [82], since it is affecting the BSC of 
blood.

Clinical example(s)
To our knowledge, no ultrasound manufacturer has yet 
implemented quantitative BSC on their scanners. How-
ever, technology releases are in development [62] and 
are using an embedded calibration with preset reference 
phantom measurements. Alternatively, relative backscat-
ter measures (or relative echogenicity) have widely been 
reported, as in the case of the hepatorenal index imple-
mented on a few clinical scanners for liver steatosis char-
acterization [83]. However, such measures depend on 
the instrument, organ assessed or used for normaliza-
tion (e.g., kidney in the case of the hepatorenal index, or 
blood and artery wall adventitia in the case of atheroscle-
rotic plaque analysis [84]).

Investigational backscatter imaging methods
Advanced materials: Modeling approaches were proposed 
to consider the whole bandwidth of the BSC instead of 
a single measurement at a given frequency. The ration-
ale is relevant because the spectral representation of the 
BSC and especially its oscillating frequency behavior may 
provide unique description of the sub-resolution struc-
tural characterization of a tissue. Numerous reports thus 
described backscatter descriptive approaches to fit the 
behavior of BSC(f ) to retrieve imaging biomarkers [4]. We 
do not aim at being exhaustive but simple metrics such 
as the spectral slope, mid-band fit, and spectral intercept 
have been widely used. For example, these metrics, which 
do not rely on physical modeling but on frequency fitting 
characteristics of BSC(f ), allowed following breast cancer 
treatment response to chemotherapy [85]. By considering 
a Gaussian-shaped form factor of scatterers distributed 
randomly within an insonified tissue, physical modeling 
of BSC(f ) allowed retrieving other diagnostic features, 
known as the effective scatterer diameter and effective 
acoustic concentration [86]. Images based on these back-
scatter metrics have been reported for in vivo tissue analy-
ses [87]. Inspired by blood backscatter modeling, for which 
a structure factor was introduced to model constructive 
and destructive wave interferences attributed to the scat-
terers’ spatial positioning [88], BSC physical models con-
sidering a form factor of scatterers, and a structure factor, 
were proposed and used for spectral analyses of other 
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tissues than blood [89–91]. The model behind these latter 
developments is known as the structure factor size estima-
tor (SFSE) [92].

Statistical backscatter modeling
Alternatively to the BSC, first-order statistical properties 
of the RF echo envelope (i.e., B-mode speckle) have been 
used as a signature of the tissue microstructure [93]. Pio-
neer works showed potential of these backscatter meas-
ures for breast and liver image analyses [94, 95]. The basic 
concept relies on modeling the magnitude of speckle with 
probability density functions. Figure  16 illustrates the 
concept of speckle analysis with homodyned-K (HDK) 
and Nakagami statistical models. Parameters used to fit 
the model to a histogram distribution representing the 
dataset can be presented in the form of color parametric 
images overlaid on B-mode images for diagnosis [96].

Recently, an ultrasound manufacturer has released 
backscatter imaging based on Nakagami modeling [55, 
97] (Fig. 17). The color map in Fig. 17 may indicate that 
proprietary post-processing was performed because the 
range does not correspond to expected values for the 
scale and shape parameters of this model. This is a tech-
nique that has advantages in terms of reduction of the 
computational complexity when compared with the BSC, 

but the independence to ultrasound system settings and 
total attenuation remains to be fully validated. Alterna-
tively, another ultrasound manufacturer is proposing an 
imaging mode based on normalized variance statistics 
[98].

Advanced materials: Before concluding this educational 
review, a last explanation is given to help appreciating 

Fig. 16  Various statistics may be computed on the echo envelope data within a region of interest. Prior to modeling with a probability density 
function (PDF), a histogram of the echo magnitude is computed within a specified region of interest. Two models with meaningful parameters can 
be used to fit the data: (1) the homodyned-K distribution (HDK), which is a general model with one scale parameter (the mean intensity μ) and two 
shape parameters (α and k); and (2) the Nakagami distribution, which is an approximate simpler model with one scale parameter (Ω) and a single 
shape parameter (m). As illustrated, changing the shape parameter(s) allow(s) modeling different forms of the image histogram corresponding to 
different backscatter tissue properties. PHK is the PDF of the fit with the HDK model; and PN is the PDF of the fit with the Nakagami model

Fig. 17  a B-mode image of an unidentified patient with suspected 
liver steatosis. b Tissue scattering imaging (TSI) based on Nakagami 
histogram modeling and post-processing. Reproduced with 
permission from [55]
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the relevance of HDK or Nakagami tissue modeling for 
QUS imaging. Long standing developments in the field of 
QUS aimed at interpreting or providing structural mean-
ing to fitted parameters obtained from statistical speckle 
models. This was mainly done through acoustic phys-
ics simulations or comparison of model parameters with 
ex  vivo tissue histopathology slides. Without going into 
details, unifying concepts were recently made between 
BSC spectral modeling with the SFSE, and HDK statistical 
representation of backscatter echoes [99, 100]. The total, 
coherent (i.e., from spatially organized scatterers), and 
diffuse (i.e., from randomly distributed scatterers in space) 
signal powers related to HDK modeling were expressed 
explicitly in terms of the structure factor of the BSC SFSE 
model [99]. Also, the scatterer clustering parameter of the 
HDK model (α in Fig.  16) could be related to the pack-
ing factor of the SFSE model. We can thus conclude that 
BSC(f ) and HDK speckle modeling (or Nakagami mode-
ling) share common sub-resolution tissue descriptors.

Future directions
The field of QUS imaging is very active and recent inno-
vations have aimed at improving image quality by using 
mathematical regularization algorithms [49, 101–106]. 
Indeed, most QUS imaging methods rely on computa-
tions made over windows that are typically larger than 
the PSF (5–10 times), which degrades the spatial resolu-
tion compared to B-mode imaging. Spatial filtering might 
be employed to reduce the window effect but regulariza-
tion has the additional advantage of reducing computed 
outlier values appearing as background noise on QUS 
images. The development of phantom-free methods in 
QUS imaging is also a trend to pursue to improve the 
clinical workflow [107]. The efforts made by a few ultra-
sound manufacturers in this direction deserve to be 
acknowledged.

Artificial intelligence has started to be introduced in 
the field of QUS imaging to improve the tissue sub-res-
olution signature [108]; this may certainly play a major 
role in the future. Notice finally that the assessment of 
the total attenuation between the ultrasound probe and 
the tissue of interest remains a challenge for improving 
the robustness of BSC computation [64]. Mathemati-
cal optimization algorithms were proposed to simulta-
neously model the frequency dependency of the BSC 
with an assessment of the total attenuation [109–111]. 
Robustness and validation of these methods remain to be 
demonstrated.

A last word goes to the QIBA-PEQUS (quantitative 
imaging biomarkers alliance–pulse echo quantitative 
ultrasound) committee of the Radiological Society of 
North America and American Institute of Ultrasound 
in Medicine that should release soon guidelines on the 

clinical use of QUS imaging methods for liver steatosis 
assessment.  A similar effort is conducted by the World 
Federation of Ultrasound in Medicine and Biology [112].

Conclusion
QUS has been investigated for more than 50 years and 
is undergoing a resurgence, particularly for liver stea-
tosis applications. The recent introduction of dedicated 
instruments using QUS techniques and implementa-
tion of speed of sound, local attenuation, and back-
scatter statistical packages on clinical scanners should 
contribute to their clinical adoption. Backscatter coeffi-
cient packages may also become available soon on clini-
cal scanners. This educational review emphasized the 
fact that the ultrasound image texture is determined 
by the relationship between the spatial distribution of 
acoustic scatterers, their acoustic impedance discrep-
ancy with respect to surrounding tissues, and charac-
teristics of the ultrasound source. Acoustic scatterers 
in biological tissues are neither randomly nor perfectly 
ordered, and are generally present at a high number 
density, which has an impact on wave propagation. The 
ultrasound image texture is determined by constructive 
and destructive wave interferences affected by the den-
sity of scatterers, and their distribution in space. QUS 
methods provide a signature of tissues’ physical prop-
erty, which may be represented as parametric images 
for diagnosis. The introduction of QUS techniques in 
clinical care should provide additional diagnostic tools 
to clinicians.
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