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The impact of lung parenchyma attenuation 
on nodule volumetry in lung cancer screening
Diana Penha1,2* , Erique Pinto1 , Bruno Hochhegger3 , Colin Monaghan2, Edson Marchiori4,5 , 
Luís Taborda‑Barata1  and Klaus Irion6  

Abstract 

Background: Recent recommendations for lung nodule management include volumetric analysis using tools that 
present intrinsic measurement variability, with possible impacts on clinical decisions and patient safety. This study was 
conducted to evaluate whether changes in the attenuation of the lung parenchyma adjacent to a nodule affect the 
performance of nodule segmentation using computed tomography (CT) studies and volumetric tools.

Methods: Two radiologists retrospectively applied two commercially available volumetric tools for the assessment of 
lung nodules with diameters of 5–8 mm detected by low‑dose chest CT during a lung cancer screening program. The 
radiologists recorded the success and adequacy of nodule segmentation, nodule volume, manually and automatically 
(or semi‑automatically) obtained long‑ and short‑axis measurements, mean attenuation of adjacent lung paren‑
chyma, and presence of interstitial lung abnormalities or disease, emphysema, pleural plaques, and linear atelectasis. 
Regression analysis was performed to identify predictors of good nodule segmentation using the volumetric tools. 
Interobserver and intersoftware agreement on good nodule segmentation was assessed using the intraclass correla‑
tion coefficient.

Results: In total, data on 1265 nodules (mean patient age, 68.3 ± 5.1 years; 70.2% male) were included in the study. In 
the regression model, attenuation of the adjacent lung parenchyma was highly significant (odds ratio 0.987, p < 0.001), 
with a large effect size. Interobserver and intersoftware agreement on good segmentation was good, although one 
software package performed better and measurements differed consistently between software packages.

Conclusion: For lung nodules with diameters of 5–8 mm, the likelihood of good segmentation declines with increas‑
ing attenuation of the adjacent parenchyma.
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Key points

• Lung nodule volumetry is currently recommended 
for lung nodule management.

• Artificial intelligence tools for volumetric analysis 
still present with some limiting factors.

• Location, size, shape, density are the most common 
factors affecting nodule volumetry.

• Attenuation of the lung parenchyma is another limit-
ing factor for nodule volumetry.

• Recognition of these factors has impact on clinical 
decisions and patient safety.

Background
Although lung nodule management guidelines histori-
cally have recommended the measurement of nodules 
using electronic calipers, artificial intelligence tools are 
increasingly used for nodule detection and measurement. 
This shift was introduced mainly in the Dutch–Belgian 
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lung cancer screening (Nederlands–Leuvens Long-
kanker Screenings Onderzoek or NELSON) trial, and 
was subsequently integrated into the guidelines of the 
Fleischner Society and British Thoracic Society for inci-
dental pulmonary nodules with volumes exceeding 100 
and 80  mm3, respectively. These guidelines clearly iden-
tify micronodules (< 5  mm) as benign, and larger nod-
ules (> 8  mm) as having a high risk of malignancy, as 
supported by data from the NELSON trial. For nodules 
between 5 and 8 mm, growth rate is a better discrimina-
tor between benign and malignant lesions than size or 
morphological characteristics [1, 2].

The recommendation that pulmonary nodules be 
measured volumetrically is based on the recognition 
that nodule diameter does not accurately reflect size or 
growth, as not all nodules are perfectly spherical or sym-
metrically growing. Thus, the calculation of nodule vol-
ume enables the use of better growth markers, such as 
the volume doubling time (VDT) [3].

Several recent studies have examined the reliability and 
limiting factors of pulmonary nodule volumetry, such as 
location (i.e., adjacency or connection to high-density 
structures), size, shape, and density [4–6]. Marked volu-
metric variability among studies for nodules smaller 
than 6 mm in diameter, and the high probability that the 
segmentation of ground-glass nodules with currently 
available software will fail, have been recognized [7, 8]. 
Technical factors, such as the number of detectors in the 
computed tomography (CT) scanner, administration of 
contrast medium, slice thickness, interpolation of recon-
structed images, and reconstruction algorithm used, also 
affect the accuracy of volumetry [9–12].

However, little is known about the impact of changes in 
the density of adjacent lung parenchyma on the volumet-
ric evaluation of a lung nodule; such changes may alter 
the degree of contrast between these structures. Empiri-
cally, an increase in contrast caused by certain pathologi-
cal conditions (e.g., emphysema) is assumed to reduce the 
variability of volume measurement, whereas a decrease 
in contrast [e.g., due to interstitial lung disease (ILD)] is 

thought to increase this variability [12]. Data from lung 
cancer screening programs suggest that the prevalence 
of ILD is as high as 20% [13]. Effects on nodular volume 
calculation attributable to changes in the attenuation of 
the adjacent pulmonary parenchyma would have medi-
cal and therapeutic implications for a substantial number 
of patients and major financial impacts on lung cancer 
screening programs. This study was conducted to evalu-
ate the effect of the degree of contrast of the parenchyma 
adjacent to a pulmonary nodule on nodule segmentation 
using volumetric software.

Materials and methods
The Institutional Research Committee Review Board 
approved this retrospective cross-sectional study (obser-
vational, analytical) and waived the requirement for writ-
ten informed consent due to the use of existing clinical 
data.

Study sample
The study sample was derived from all patients partici-
pating in a lung cancer screening program in a tertiary 
hospital in Northeastern England between August 2016 
and December 2018. All CT screening examinations 
were performed with the same equipment (Somatom 
Definition Flash; Siemens, Erlangen, Germany) using 
a low-dose CT protocol (Table  1). All CT studies with-
out technical (e.g., respiratory motion) artifacts showing 
solid pulmonary nodules with diameters of 5–8 mm were 
included in this study. For the included patients, the clini-
cal records were accessed via the hospital information 
system, and the following patient data were collected: 
patient age and sex and previous histories of chronic 
obstructive pulmonary disease (COPD), tuberculosis 
(TB), and lung surgery (Table 2).

Readers and measurements
Two cardiothoracic radiologists with 5 (reader 1) and 10 
(reader 2) years of experience, respectively, identified and 
measured the pulmonary nodules, following the protocol 

Table 1 Low‑dose chest CT imaging protocol parameters

CT, computed tomography

Range Lung apices–bases

Respiratory phase Inspiration, breath hold

Enhancement None

Image reconstruction 2‑mm thickness, 1‑mm overlap

Kernels B60f sharp/lung, B30f medium smooth/lung, B20f 
smooth/mediastinum

Acquisition parameters kVp and mAs varied according to body habitus

Planned CTDI(vol) 2.03 mGy, with 120 kVp and quality reference of 30 mAs



Page 3 of 9Penha et al. Insights Imaging           (2021) 12:84  

described in Fig. 1 and using the Carestream Vue PACS 
v 11.4.01.1011 (Carestream Health, Inc, Rochester, NY; 
tool 1) and Syngo via VB20 (Siemens Healthineers AG, 

Erlangen, Germany; tool 2) volumetric software pack-
ages. Disagreements among readers regarding the inclu-
sion of a pulmonary nodule were resolved by consensus 
after a discussion between both readers and a third chest 
radiologist with more than 25 years of experience (con-
sensus decision).

For each nodule identified, the readers used both soft-
ware packages to record the following:

• Nodule segmentation success or failure (whether the 
software tool provided a result or notified the user of 
measurement failure). Failure was defined as three 
consecutive failed attempts at segmentation.

• Nodule segmentation adequacy or inadequacy (in 
case of segmentation success, this is subjective 
impression by the reader of full nodule inclusion and 
with vessel and parenchymal consolidation exclu-
sion).

• Nodule volume, calculated semi-automatically with 
the software.

• Long- and short-axis nodule diameters (orthogonal 
and in the axial plane), determined manually with 
electronic calipers, rounded to one decimal place.

Table 2 Patients’ demographic and clinical characteristics

SD, standard deviation

Characteristic n (%) or 
mean ± SD 
(n = 1265)

Age (years) 68.3 ± 5.1

Sex

 Male 888 (70.2)

 Female 377 (29.8)

Previous lung surgery

 No 1238 (97.9)

 Yes 27 (2.1)

Chronic obstructive pulmonary disease

 No 1198 (94.7)

 Yes 67 (5.3)

Tuberculosis

 No 1258 (99.4)

 Yes 7 (0.6)

Fig. 1 Example of the implementation of the nodule measurement protocol. A small nodule is identified in the posterior segment of the left 
lower lobe of the lung. a, b The volumetric tools [Vue PACS, ver. 11.4.01.1011;  Carestream© (tool 1) and Syngo via VB20,  Siemens© (tool 2)] are 
used to segment the nodule, yielding volumes of 48.5 and 75  mm3, respectively. c, d The longest orthogonal diameters are measured manually 
using electronic calipers tools in both software packages. e, f A region of interest (5‑mm thickness) is drawn manually around the nodule for 
determination of the average attenuation of adjacent lung parenchyma (− 768.4 and − 795 HU obtained with tools 1 and 2, respectively). The 
images have been edited to improve the readability of the measurements
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• ‘Mean attenuation of the adjacent lung parenchyma’, 
in Hounsfield units, obtained after using the PACS 
region-of-interest (ROI) tool to delineate an area 
of about 5  mm thickness surrounding the nodule, 
rounded to one decimal place (Fig. 2)

• Presence or absence of signs suggestive of interstitial 
lung abnormalities (ILA) or ILD, emphysema, pleural 
plaques, and linear atelectasis.

Statistical analysis
The clinical and imaging data were analyzed using SPSS 
software (ver. 26.0; IBM Corporation, Armonk, NY, 
USA). The dichotomous variable ‘Proper segmentation’, 
reflecting segmentation success and adequacy, and the 
continuous variable ‘Average of long and short diameters’, 
reflecting the average of the nodule’s long- and short-axis, 
manually measured, diameters (following the Fleischner 

Society recommendation [1]), were created and values 
were calculated for all included cases.

A descriptive statistical analysis is performed including 
sample mean, standard deviation (SD), minimum, maxi-
mum and quartiles (Table 3).

The data were analyzed using a binary logistic regres-
sion model, with ‘Proper segmentation’ serving as the 
dependent variable and ‘Average of long and short diam-
eters’, ‘Mean attenuation of the adjacent lung paren-
chyma’, reader, software package, patient age and sex, 
and relevant epidemiological factors (previous lung sur-
gery, ILAs/ILD, emphysema, COPD, TB, calcified pleural 
plaques, and linear atelectasis; reference = absent for all 
variables) serving as independent variables (predictors). 
Automatic selection of the significant independent vari-
ables was performed (significance threshold of 0.10). The 
Nagelkerke R2 value was used to assess how much of the 
variance of dependent variable (‘Proper segmentation’) 

Fig. 2 Examples of the measurement of lung nodules in lung parenchyma with attenuation changes. a A small subpleural nodule in the right lower 
lobe of the lung of a patient with known interstitial lung disease. b The nodule is shown with a region of interest drawn manually around it, with a 
rim of about 5‑mm thickness. The average attenuation of the adjacent lung parenchyma on this slice is − 462.5 HU. c A nodule in the anterolateral 
aspect of the left upper lobe of the lung in a patient with known centrilobular and paraseptal emphysema. d Manual measurement of the average 
attenuation of the surrounding lung parenchyma (− 811 HU)
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is explained by the independent variables. The Hos-
mer–Lemeshow chi-squared goodness-of-fit test and the 
omnibus test of model coefficients were used to assess 
the overall fit of the model. Analysis of variance between 
readers and software packages was performed using the 
one-way ANOVA test. The intraclass correlation coef-
ficient (ICC) and an absolute agreement–type two-way 
mixed model were used to assess interobserver and inter-
software agreement.

Results
One thousand four hundred and ninety-seven partici-
pants were identified as being enrolled in the screen-
ing program between August 2016 and December 2018, 
and having at least one low-dose chest CT examination 
during this period of time. Some participants had addi-
tional low-dose CT scans performed under this LCS 
program outside of this time frame, and these were also 
included in the study. The earliest scan dated from 5th 
April 2016 and the latest from 2nd August 2020. Data 
from 971 patients were excluded due to the absence of 
qualifying lung nodules, data from three patients were 

excluded due to respiratory motion artifacts, and data 
from eight patients were excluded after consensus deci-
sion. One additional patient was excluded due to techni-
cal issue specific to one software package that failed to 
access the patient’s records. The final sample consisted of 
5060 measurements (1265/observer/software package) 
taken on CT studies of 514 patients (Fig. 3). The patients’ 
demographic and clinical characteristics are summarized 
in Table 2.

Readers 1 and 2 recorded ‘Proper segmentation’ 
(defined as success and adequacy of the segmentation) 
more frequently with tool 2 (88.1% and 88.4%, for reader 
1 and reader 2 respectively) than with tool 1 (84.8% and 
83.8%, for reader 1 and reader 2, respectively).

For readers 1 and 2, the mean nodule volumes  (cm3) 
obtained using tool 1 (102.7 ± 257.7 and 100.3 ± 250.6, 
for reader 1 and reader 2 respectively) were greater than 
those obtained using tool 2 (97.1 ± 105.5 and 95.5 ± 98.5, 
for reader 1 and reader 2 respectively). For both tools, 
the volumes recorded by reader 1 were greater than 
those recorded by reader 2. Both readers also recorded 
greater ‘Average of long and short diameters’ (mm) values 

Table 3 Results for quantitative variables

SD, standard deviation; Min, minimum; Q, quartile; max, maximum

Variable Reader Tool n Mean ± SD Min Q1 Q2 Q3 Max

Volume  (cm3) Global 5030 98.9 ± 193.2 0.0 43.5 67.0 100.0 8200.0

Reader 1 Tool 1 1250 102.7 ± 257.7 3.0 43.9 67.4 100.0 8200.0

Tool 2 1264 97.1 ± 105.5 0.0 42.0 66.5 110.0 1401.0

Reader 2 Tool 1 1251 100.3 ± 250.6 1.3 44.0 67.2 100.0 8200.0

Tool 2 1265 95.5 ± 98.5 0.0 43.0 66.0 110.5 1402.0

Manual long‑axis diameter (mm) Global 5060 6.19 ± 1.12 4.0 5.3 6.1 7.0 10.0

Reader 1 Tool 1 1265 6.13 ± 1.11 4.4 5.2 6.0 7.0 8.4

Tool 2 1265 6.27 ± 1.11 4.2 5.4 6.2 7.1 9.3

Reader 2 Tool 1 1265 6.11 ± 1.12 4.0 5.2 6.0 7.0 9.0

Tool 2 1265 6.26 ± 1.11 4.0 5.3 6.1 7.1 10.0

Manual short‑axis diameter (mm) Global 5060 4.68 ± 1.00 1.9 4.0 4.6 5.3 9.1

Reader 1 Tool 1 1265 4.62 ± 1.00 2.2 3.9 4.5 5.2 8.3

Tool 2 1265 4.74 ± 1.00 2.3 4.1 4.6 5.3 9.1

Reader 2 Tool 1 1265 4.63 ± 1.00 1.9 3.9 4.5 5.2 8.5

Tool 2 1265 4.75 ± 0.99 2.6 4.1 4.6 5.3 8.4

‘Average of long and short diameters’ (mm) Global 5060 5.44 ± 0.95 3.2 4.7 5.3 6.1 9.2

Reader 1 Tool 1 1265 5.38 ± 0.96 3.4 4.7 5.2 6.0 8.3

Tool 2 1265 5.51 ± 0.94 3.6 4.8 5.4 6.2 9.2

Reader 2 Tool 1 1265 5.37 ± 0.96 3.2 4.7 5.2 6.0 8.8

Tool 2 1265 5.51 ± 0.95 3.6 4.8 5.4 6.2 8.7

‘Mean attenuation of the adjacent lung parenchyma’ (HU) Global 5060 − 774.2 ± 84.7 − 937.0 − 833.0 − 790.2 − 735.8 − 296.0

Reader 1 Tool 1 1265 − 761.1 ± 85.3 − 933.4 − 821.0 − 775.2 − 722.5 − 306.8

Tool 2 1265 − 787.8 ± 82.4 − 932.0 − 845.0 − 804.0 − 752.0 − 317.0

Reader 2 Tool 1 1265 − 760.3 ± 84.7 − 925.9 − 819.9 − 775.4 − 722.4 − 315.1

Tool 2 1265 − 787.5 ± 82.0 − 937.0 − 845.0 − 805.0 − 749.5 − 296.0
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with tool 2 (5.51 ± 0.94 and 5.51 ± 0.95, for reader 1 and 
reader 2 respectively) than with tool 1 (5.38 ± 0.96 and 
5.37 ± 0.96, for reader 1 and reader 2 respectively). ‘Aver-
age of long and short diameters’ values obtained with 
each software package were similar between readers. 
Both readers obtained greater ‘Mean attenuation of the 
adjacent lung parenchyma’ values (Hounsfield Units; 
HU) with tool 1 (− 761.1 ± 85.3 and − 760.3 ± 84.7, 
for reader 1 and reader 2 respectively) than with tool 
2 (− 787.8 ± 82.4 and − 787.5 ± 82.0, for reader 1 and 
reader 2 respectively). ‘Mean attenuation of the adjacent 
lung parenchyma’ values obtained with each software 
package were similar between readers (Table 3).

The binary logistic regression model included data 
from 5030 valid cases, after the exclusion of 30 cases with 
missing values. The Hosmer–Lemeshow test verified the 
goodness of model fit (χ2

8 = 15.23, p = 0.055) and the 
omnibus test indicated that the model with predictors 
differed significantly from the model with only the inter-
cept (χ2

5 = 1601.47, p < 0.001). The Nagelkerke R2 value 
indicated that the model explained 50.3% of the variation 
in the dependent variable.

The odds of ‘Proper segmentation’ increased by a fac-
tor of 1.558 (95% confidence interval (CI), 1.350–1.797) 
with each 1-mm increase in ‘Average of long and short 
diameters’ (p < 0.001) and by a factor of 3.414 (95% CI 
1.575–7.401) with a previous history of lung surgery 
(p = 0.002); they decreased by a factor of 0.984 (95% CI 
0.982–0.986) with each 1-mm3 increase in nodule vol-
ume (p < 0.001), by a factor of 0.987 (95% CI 0.985–0.988) 
with each Hounsfield-unit (HU) increase in ‘Mean atten-
uation of the adjacent lung parenchyma’ (p < 0.001), and 
by a factor of 0.593 (95% CI 0.414–0.849) in the presence 
of calcified pleural plaques (p = 0.004). No other variable 
significantly predicted ‘Proper segmentation’ (Table  4). 
The effect size was greatest for ‘Mean attenuation of the 
adjacent lung parenchyma’ (ζ2 = 0.195), followed by nod-
ular volume (ζ2 = 0.033).

ICCs for the whole sample and tools 1 and 2 (0.905 
(95% CI 0.897–0.912), 0.885 (95% CI 0.872–0.897), and 
0.929 (95% CI 0.920–0.936), respectively) indicated very 
high intersoftware reliability, and greater reliability of tool 
2 than of tool 1. Analysis of variance (ANOVA) revealed 
no significant difference between readers for the whole 
sample (F1,2519 = 0.962, p = 0.327), tool 1 (F1,1264 = 2.452, 
p = 0.118), or tool 2 (F1,1264 = 0.257, p = 0.621). Simi-
larly, ICCs (0.745 (95% CI 0.722–0.766), 0.741 (95% CI 
0.710–0.769), and 0.749 (95% CI 0.717–0.778), for the 
whole sample, reader 1 and reader 2, respectively) indi-
cated reasonable interobserver reliability, with no sig-
nificant difference between readers. ANOVA revealed 
significant differences between software packages for 
the whole sample (F1,2519 = 41.642, p < 0.001), reader 1 
(F1,1264 = 14.615, p < 0.001), and reader 2 (F1,1264 = 28.166, 
p < 0.001).

Discussion
This study showed that the probability of proper seg-
mentation of lung nodules with diameters of 5–8 mm is 
related mainly to the ‘Mean attenuation of the adjacent 
lung parenchyma’, followed by nodule volume and the 
‘Average of long and short diameters’. Given the global 
variability of ‘Mean attenuation of the adjacent lung 
parenchyma’, this finding could have substantial clinical 
implications.

The results of this study indicate that the probabil-
ity of proper segmentation using volumetric software is 
reduced for smaller nodules. This finding is in line with 
previous reports that smaller nodules exhibit greater 
volumetric variability (up to 30% for nodules with diam-
eters < 6  mm) [14, 15]. In this context, the decreased 
probability of proper segmentation with increasing 
nodule volume (which is related to nodule diameter) is 
counterintuitive. This finding may be explained by the 
fact that the automatic calculation of nodule volume 
is reliant on the volumetric tool’s algorithm, while the 

Fig. 3 Flow chart of patient selection and inclusion. LCS, lung cancer screening; CT, computed tomography
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variable ‘Average of long and short diameters’ is calculated 
from the manually measured long- and short-axis diam-
eters of the nodule, and as such, describes the observer’s 
assessment of the nodule. Since an inadequate nodule 
segmentation is likely to involve over segmentation and 
overestimation of nodule volume, this inverse correlation 
between volume with proper segmentation may reflect 
an increase in the error of measurement by the volumet-
ric tool.

A previous history of lung surgery and the presence of 
calcified pleural plaques were also related significantly to 
proper segmentation in this study, although their effect 
sizes were negligible. Previous lung surgery increased the 
probability of proper segmentation, possibly because par-
tial and total pneumonectomies promote major changes 
in vascular and respiratory mechanisms via compensa-
tory overexpansion of the remaining lung, and possibly 
via hormonally regulated compensatory growth of the 
remaining lung lobes in the attempt to restore normal 
mass, structure, and function [16–18]. To our knowledge, 
however, the literature contains no report on changes 
lung parenchyma attenuation after lung surgery, and the 
negligible effect size and small number of patients with 
previous histories of lung surgery in our sample should 
caution against over interpretation. The presence of pleu-
ral plaques reduced the probability of proper segmenta-
tion, possibly due to the architectural distortion of the 
lung parenchyma that it causes.

The dataset used in this study did not contain informa-
tion about the proximity of the measured nodules to focal 

parenchymal changes, such as surgical scars or pleural 
plaques, which renders interpretation difficult and the 
model incomplete. This factor could also help to explain 
the nonsignificant effect of ILA/ILD-related changes in 
our model, despite the clear effect of the average attenu-
ation of the lung parenchyma adjacent to the nodule and 
the increased lung parenchymal attenuation caused by 
ILA/ILD [19–22].

A cutoff of -950 HU is the most widely accepted thresh-
old in quantitative analysis for distinguishing emphysema 
from normal lung tissue [23–25]. This threshold is based 
on the routine full-dose chest CT protocol used in clinical 
practice. All values in our sample exceeded this thresh-
old, regardless of the presence of emphysema, which 
could be related to the lower signal-to-noise ratio of the 
low-dose protocol used in screening; and/or the nodule 
itself may distort the parenchyma and influence its sur-
rounding attenuation. As far as the authors are aware, no 
specific threshold has been defined for low-dose proto-
cols. We suspect that it would differ from that used for 
full-dose protocols, but more evidence is needed.

Our analysis of mean values revealed that for automatic 
measurements there were differences in volume meas-
urements between software packages and readers, but for 
manual measurements (long and short-diameter meas-
urements and attenuation of the lung parenchyma adja-
cent to the nodule) there were only differences between 
software packages (not between readers). We also found 
good performance in terms of interobserver and inter-
software reliability, although less so for the latter, in line 

Table 4 Parameter estimates for the prediction of nodule segmentation success and adequacy

OR, odds ratio; CI, confidence interval; ***p < 0.001; **p < 0.01

ILA, interstitial lung abnormality; ILD, interstitial lung disease; COPD, chronic obstructive pulmonary disease

Variable OR 95% CI p Effect size

‘Average of long and short diameters’ 1.558 1.350–1.797 ***< 0.001 0.006

Volume 0.984 0.982–0.986 ***< 0.001 0.033

‘Mean attenuation of the adjacent lung parenchyma’ 0.987 0.985–0.988 ***< 0.001 0.195

Previous lung surgery 3.414 1.575–7.401 **0.002 0.000

Pleural plaques 0.593 0.414–0.849 **0.004 0.002

Excluded variables p

Observer 0.584

Software 0.385

Age 0.083

Sex 0.875

ILA/ILD 0.488

Emphysema 0.169

COPD 0.952

Tuberculosis 0.401

Linear atelectasis 0.096
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with the current recommendation that follow-up studies 
performed in the context of lung cancer screening pro-
grams be reported by the same reader and performed 
using the same software package as the baseline study. 
These findings also suggest that the manual measure-
ments of short- and long-axis diameters are more reli-
able among readers than the volumetric tools’ automatic 
measurements.

The present study was conducted with a large sample 
of nodule measurements; larger, to our knowledge, than 
any other published series. However, it has several limita-
tions; notably, the use of a nonstandard measurement of 
lung parenchymal attenuation (selected as a reasonable 
compromise, as no standard exists) and lack of informa-
tion on the location of focal parenchymal changes (i.e., 
pleural plaques and changes resulting from previous lung 
surgery) relative to lung nodule location. Future research 
could further examine the effects of nodule size on the 
results found (is the impact of the average attenuation 
of the lung parenchyma adjacent to the nodule in the 
nodule segmentation more significant in smaller nod-
ules?), and how it effects the calculation of a nodule’s 
VDT (is the VDT a reliable indicator of nodule’s growth 
in nodules with abnormal average attenuation of the lung 
parenchyma adjacent to the nodule?).

Conclusion
For lung nodules measuring between 5 and 8  mm in 
long-axis diameter, an increase in the average attenuation 
of the adjacent lung parenchyma is related to a decrease 
in the quality of the nodule’s segmentation by volumet-
ric tools, contributing to measurement error. When fol-
lowing lung nodules in the setting of abnormal lung 
parenchymal attenuation, care should be taken when 
interpreting automatic measurements of the nodule to 
assess growth.
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