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Abstract

We address the economic lot sizing problem with product returns and remanufacturing.
For this problem we provide a new theoretical result about the form of the optimal
solutions that can be considered a generalization of the well-known zero-inventory
property. Based on this result we suggest an optimized version of an existing Tabu
Search procedure. The original and the optimized version of the procedure are evaluated
on a recent benchmark set of large instances of 52 periods. The numerical experiment
carried out shows that both variants of the procedure outperform the solving procedure
suggested in the literature in over 90 % of the tested cases and in about tenth of
computation time in the worst case.
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Background
In the economic lot-sizing problem with product returns and remanufacturing (ELSR)

the objective is to determine the quantities to produce and remanufacture at each

period in order to meet the demand requirements of a single product on time, minim-

izing all the costs involved. Eventually, disposal option for returns is considered. This

kind of problem has attracted growing attention over the last years from both the aca-

demic as well as the industry side [1–5]. Governmental, social pressures and economic

opportunities have motivated many firms to become involved with the return of used

products for recovery. Among the industrial options for recovering, the remanufactur-

ing activity can be defined as the recovery process of returned products after which it

is warranted that the remanufactured products offer the same quality and functionality

that those newly manufactured [6, 7]. Products that are remanufactured include auto-

motive parts, engines, tires, aviation equipment, cameras, medical instruments, furni-

ture, toner cartridges, copiers, computers, and telecommunications equipment.

Remanufacturing offers benefits for all of the parties involved. From the consumer’s

point-of-view, remanufactured products assume the same quality of new products and

are sometimes offered at an inferior market price. For the manufacturer, remanufactur-

ing provides cost savings in energy consumption, raw materials, and labour. Finally,

the environment benefits from the more efficient use of raw materials and energy
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employed during the production phase. In addition, remanufacturing tends to reduce

the total number of products put in the market and later disposed, i.e. long-life products.

For overviews about remanufacturing, the reader is referred to Ijomah [6], Hormozi [8],

Sundin [9] and Gutowski et al. [10].

Richter and Sombrutzki [11] and Richter and Weber [12] consider the ELSR for the

particular case in which the number of returns in the first period is sufficient to satisfy

the total demand over the planning horizon. Golany et al. [13] provide a Network Flow

formulation for the ELSR and an exact algorithm of O(T3) time for the case of linear

cost functions. They also show that the ELSR is NP-hard for the case of general con-

cave cost functions. Yang et al. [14] show the same result of complexity for the case of

stationary concave cost functions and suggest a heuristic procedure of O(T4) time for

the ELSR. van den Heuvel [15] shows that ELSR is NP-hard for the case of set-up and

unit costs for the activities and unit costs for holding inventory, even in the time-

invariant case, i.e., the same values for every period. Teunter et al. [16] consider two

ELSR variants with joint and separate set-up costs for the production and remanufac-

turing, respectively. For the case of joint set-up costs they provide an exact algorithm

of O(T4). For the case of separate set-up costs, they adapt and compare three well-

known heuristics, including the Silver-Meal based heuristic. Later, Schulz [17] extends

and improves the work of Teunter et al. [16] about the Silver-Meal based heuristic for

the ELSR, and Retel-Helmrich et al. [18] provide and compare different mathematical

formulations for the ELSR with both separate and joint set-up costs. They also show

that both ELSR variants are NP-hard in general. In Piñeyro and Viera [19] we suggest

and compare several inventory policies for the ELSR using a divide-and-conquer

approach, including a Tabu Search-based on procedure. Piñeyro and Viera [20]

consider the problem of determining the remanufacturing quantities of an optimal

solution of the ELSR assuming that the periods where the remanufacturing is allowed

are known in advance. Li et al. [21] suggest and evaluate a more sophisticated Tabu

Search based on procedure for the ELSR. They propose a block-chain method to pro-

duce high-quality initial solutions and a new LP formulation for determining the mini-

mum cost of each block. Baki et al. [22] also exploit the block-chain structure of the

ELSR solutions in order to provide a dynamic programming based procedure of poly-

nomial time. In Sifaleras et al. [23] Variable Neighborhood Search (VNS) based on pro-

cedures are suggested and compared with others solving methods in the literature. The

authors also present a benchmark set of problem instances with a large number of

periods. Several authors have considered extensions of the ELSR. Pan et al. [24]

address a dynamic lot-sizing problem with returns recovery and capacity constraints.

Mitra [25] analyzes a two-echelon inventory system with returns. Piñeyro and Viera [26]

consider the ELSR with substitution of remanufactured products by new ones but not

viceversa.

In this paper we consider the ELSR formulation introduced by Teunter et al. [16] for

the separate set-up scheme, i.e., separate set-up costs for producing and remanufactur-

ing. We note that this ELSR formulation is also considered in Schulz [17], Li et al. [21],

Baki et al. [22] and Sifaleras et al. [23]. Our contributions for this formulation of the

ELSR are threefold. First we provide a new theoretical result about the form of the opti-

mal solutions of the ELSR, which can be considered an extension of the well-known

zero-inventory property for the classic economic lot-sizing problem without returns
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options (ELSP). We also note that this result is also valid for the case of time-

variant costs with non-speculative motives. Secondly, we use this theoretical result

for improving the Tabu Search based on procedure suggested in Piñeyro and Viera

[19] for the ELSR. Finally, we evaluate the original as well as the optimized version

of the procedure in a benchmark set of large instances (52 periods) introduced by

Sifaleras et al. [23]. The numerical experiment carried out shows that both the

original and the optimized version of the Tabu Search procedure outperform the

VNS based procedure suggested in Sifaleras et al. [23] in over 90 % of the tested

cases and in about tenth of computation time in the worst case.

The rest of the paper is organized as follows. Methods section provides the prob-

lem formulation and a theoretical result about the optimal solutions of the ELSR.

Then we describe the improvement performed on the Tabu Search based on

procedure of Piñeyro and Viera [19]. In Results and discussion section we report

the numerical experiment carried out for the set of large instances introduced by

Sifaleras et al. [23]. The paper ends with the Conclusions section with some guide-

lines for future research.

Methods
Problem formulation and analysis

We address a dynamic lot-sizing problem of a single product for which the de-

mand requirements of each period over a finite planning horizon must be satisfied

on time either by producing new items or by remanufacturing used items returned

to the origin. Figure 1 shows a picture of the flows of items for the inventory sys-

tem that represents the lot-sizing problem under consideration.

There are set-up costs for producing and remanufacturing, and unit costs for

carrying ending positive inventory from one period to the next. As in Teunter

et al. [16], we consider the following assumptions. Unit costs are assumed zero for

both production and remanufacturing. Inventory costs for used items are at most

equal to the inventory costs for serviceable items, i.e. low-cost returns. Cost values

are time-invariant, i.e. stationary costs pattern. The objective is to determine the

quantities to produce and remanufacture for each one of the periods in the plan-

ning horizon in order to meet the demand requirements on time and minimizing

the sum of the involved costs. This problem can be formulated as the following

Mixed Integer Linear Programming (MILP) [16, 17, 21–23]:

Fig. 1 Flow of items in the ELSR
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min
XT
t¼1

Kpδpt þ Krδrt þ hsyst þ huyut
� � ð1Þ

subject to:

yst ¼ yst−1 þ pt þ rt−Dt ∀t ¼ 1; 2;…;T ð2Þ
yut ¼ yut−1−rt þ Rt ∀t ¼ 1; 2;…;T ð3Þ
Mδpt ≥pt ∀t ¼ 1; 2;…;T ð4Þ
Mδrt≥rt ∀t ¼ 1; 2;…;T ð5Þ
ys0 ¼ yu0 ¼ 0 ð6Þ
δpt ; δ

r
t∈ 0; 1f g pt ; rt ; y

s
t ; y

u
t ≥0 ∀t ¼ 1; 2;…;T ð7Þ

In model (1) – (7) the parameters T, Dt and Rt denote the length of the planning hori-

zon, demand and returns values in periods t = 1,…,T, respectively; Kp (Kr), is the set-up

cost for production (remanufacturing); hs (hu) is the unit cost of holding inventory for ser-

viceable (used) products; M is a number at least as large as max{D1T, R1T}, where Dij and

Rij are the accumulative demand and returns between periods i and j, with 1 ≤ i ≤ j ≤T.
The decision variables pt and rt denote the number of units produced and remanufactured

in periods t = 1,…,T, respectively; δpt (δrt ) is a binary variable equal to 1 if production

(remanufacturing) is carried out in periods t = 1,…,T, or 0 otherwise; yst ( y
u
t ) is the inven-

tory level of serviceable (used) items for periods t = 1,…,T.

A result about the optimal solutions form

In this section we present a property about the form of optimal solutions of the ELSR.

It can be considered a generalization of the well-known zero-inventory property for the

ELSP introduced by Wagner and Whitin [27]. Also Teunter et al. [16] generalize this

property for the case of joint set-up scheme of the ELSR and Richter and Sombrutzki

[11] and Richter and Weber [12] for the case of sufficiently large number of returned

products in the first period. Here we demonstrate that there is an optimal solution for

which it holds that for any couple of periods i and j of either positive production or

positive remanufacturing, there must be at least one period with zero-inventory level of

serviceable items. Note that if it not the case, we can obtain a new feasible solution by

transferring at least one unit of the production (remanufacturing) quantity from period

i to the next period j, thus reducing the inventory level of serviceable items and with at

most the same cost.

Proposition 1. There is an optimal solution for which it holds that for any pair of

periods i and j, i < j, there is at least one period t such that piy
s
tpj ¼ 0 and riystrj ¼ 0,

with i ≤ t < j.

Proof. Consider an ELSR feasible solution s = (p, r) with a production plan p and a

remanufacturing plan r, respectively. Without loss of generality, suppose first that there

is only one pair of successive periods i and j for which piy
s
tpj > 0 for all period t

in 1 ≤ i ≤ t < j ≤ T. Then, define ε ¼ min pi; y
s
i ; y

s
iþ1;…; ysj−2; y

s
j−1

n o
> 0 and determine a

new solution s1 = (p1, r1) with r1 = r and p1 = p except by p1i ¼ pi−εð Þ and p1j ¼ pj þ ε
� �

.

This new solution s1 is feasible since it satisfies that y1st ≥0 for all t in 1 ≤ t ≤ T. For s1 we
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have that p1i y
1s
t p

1
j ¼ 0 for some period t in 1 ≤ i ≤ t < j ≤T, since at least one of the follow-

ing two equations is fulfilled: p1i ¼ 0 and/or y1st ¼ 0; t : 1≤i≤t < j≤T . Note that the cost

of s1 is lower than the cost of the original solution s at least by a term equal to hs(j − i).

The same reasoning is valid for the remanufacturing plan r. In this case, the new solution

is less costly than the original at least by a term equal to (hs − hu)(j − i). Note that

(hs − hu) ≥ 0 since we are assuming low-cost returns. Therefore, given any feasible

solution s = (p, r), even optimal, we can determine a new feasible solution with at

most the same cost and fulfilling the property of Proposition 1.

From Proposition 1 we can establish that in order to determine an optimal solution

of the ELSR we may avoid those solutions in which the serviceable-inventory level is

positive between any pair of successive periods of either positive production or positive

remanufacturing. We also note that the zero-serviceable-inventory property as stated in

Proposition 1 is valid in the case of time-variant costs with non-speculative motives,

even with positive unit costs. Non-speculative motives on the costs mean that it

is profitable to produce or remanufacture as late as possible, i.e., cpi þ
Xj−1ð Þ

t¼i

hst≥c
p
j

and cri þ
Xj−1ð Þ

t¼i

hst−h
u
t

� �
≥crj with 1 ≤ i ≤ j ≤ T. The proof for this case is straightforward

and follows from the proof of above, since we are transferring forward either

newly manufactured o remanufactured items. We state this generalization of Prop-

osition 1 in the next corollary.

Corollary 1. Proposition 1 is also valid in the case of time-variant costs with non-

speculative motives, even with positive unit costs.

The Tabu Search based on procedure

The ELSR as formulated in (1) – (7) is a NP-hard problem [18, 22]. Therefore, it is

unlikely that we can develop any efficient time procedure for determining an optimal

solution of the problem. Considering this complexity result, many authors have pro-

posed heuristic methods for obtaining high quality solutions [14, 16, 17, 21–23]. In

Piñeyro and Viera [19] we suggest a Tabu Search based on procedure in order to obtain

a near optimal solution to the ELSR, even with a more general cost structure and

disposal option for returns. The procedure is referred in that paper as Basic Tabu

Search procedure (BTS) because it uses only the rudiments of the Tabu Search meta-

heuristic [28]. In addition, a simple notion of neighbourhood is used and only one

move is defined to explore it. Despite this fact, the numerical experiment carried out in

Piñeyro and Viera [19] show the effectiveness of the BTS procedure in a wide range of

demand-returns-cost patterns. In Piñeyro and Viera [20] we present a thorough ana-

lysis about the problem of determining the remanufacturing quantities of an optimal

solution that can be considered a theoretical support for the good behaviour of the

BTS procedure reported in Piñeyro and Viera [19].

The original BTS procedure description

The BTS procedure begins by determining an initial ELSR solution from the set of

periods fixed as positive-remanufacturing periods received as input. For each
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period i fixed as positive-remanufacturing period, the remanufacturing quantity is

determined by means of the following remanufacturing rule:

ri ¼ min yui−1 þ Ri;Di j−1ð Þ
� �

; 1≤i < j≤T þ 1 ð8Þ

In (8) the period j is the next positive-remanufacturing period if it exists, or (T + 1) in

the case that period i is the last one. Then, the corresponding optimal production

plan (periods and quantities) is determined by means of a W-W algorithm type.

The initial solution is marked as current solution and the exploration phase of the

process begins. The set of neighbouring solutions is obtained from the current one

by swapping the periods where remanufacturing occurs. For each one of the neigh-

bouring solution, the remanufacturing quantities are determined by means of equa-

tion (8) and the corresponding optimal production plan by applying the W-W

algorithm. The neighbouring solution with smaller cost is marked as the current

solution for the next step. The exploration phase continues until either the number

of iterations is greater than the total number of iterations allowed or the number

of iterations without improvement is greater than the maximum allowed. The pro-

cedure returns the best global solution evaluated. For more details about the pro-

cedure we refer to Piñeyro and Viera [19].

An optimization process for the BTS procedure

Given the solution returned by the BTS procedure, we can check whether that solution

satisfy the zero-serviceable-inventory property of Proposition 1. First we note that for

any solution considered by the BTS procedure, the production plan satisfies the prop-

erty stated in Proposition 1, since it is determined using a W-W algorithm [27]. There-

fore, we must check the property only for the remanufacturing plan. We proceed as

Fig. 2 Pseudocode of the optimization suggested for the BTS procedure
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follows. For each period i of the remanufacturing plan with a strictly positive remanu-

facturing quantity consider the immediately next period j for which riystrj > 0 for

all period t in 1 ≤ i ≤ t < j ≤ T. Define q > 0 as the minimum quantity between the

remanufacturing level of period i and the serviceable-inventory level for all periods

t in 1 ≤ i ≤ t < j ≤ T, i.e. q ¼ min ri; ysi ; y
s
iþ1;…; ysj−2; y

s
j−1

n o
> 0. Then, determine a new

feasible remanufacturing plan by subtracting the quantity q to the remanufacturing

level of period i, and adding q to the remanufacturing level of period j. The new

remanufacturing plan satisfies the zero-serviceable-inventory property of Propos-

ition 1 since either the remanufacturing level of period i or the serviceable-

inventory level is zero for some period t in 1 ≤ i ≤ t < j ≤ T. In Fig. 2 we provide the

pseudocode of the optimization stage added to the end of the BTS procedure

according to the description above.

We note that the optimization process of Fig. 2 is O(T2) time, thus keeping the run-

ning time of the original BTS procedure. This fact can be appreciated in the time

Table 1 Results on benchmark set of Sifaleras et al. [23]. Instances 1–27.

No Gurobi 5.6.2 RGVNS BTS Optimized BTS

Obj. Value Obj. Value Error (%) Obj. Value Error (%) Obj. Value Error (%)

1 8698.80 8895.20 2.2600 8751.40 0.6047 8741.80 0.4943

2 8781.80 9185.40 4.6000 9078.40 3.3774 9071.20 3.2955

3 8541.60 8793.80 2.9500 8739.20 2.3134 8739.20 2.3134

4 8943.77 9391.20 5.0000 9294.60 3.9226 9186.60 2.7151

5 9717.00 9853.00 1.4000 9741.00 0.2470 9720.00 0.0309

6 9962.45 10240.50 2.7900 10127.50 1.6567 10072.50 1.1046

7 9598.00 9955.00 3.7200 9654.50 0.5887 9631.00 0.3438

8 9803.50 10327.00 5.3400 10046.50 2.4787 10003.50 2.0401

9 10266.20 10573.80 3.0000 10306.20 0.3896 10293.60 0.2669

10 10812.80 11184.80 3.4400 10947.00 1.2411 10923.00 1.0192

11 10290.76 10445.40 1.5000 10301.60 0.1053 10290.80 0.0004

12 10745.60 11027.00 2.6200 10879.00 1.2414 10851.40 0.9846

13 13200.95 13568.00 2.7800 13405.40 1.5488 13405.40 1.5488

14 12131.36 12387.40 2.1100 12438.60 2.5326 12353.80 1.8336

15 13018.36 13403.60 2.9600 13186.00 1.2877 13172.40 1.1833

16 11853.20 12230.60 3.1800 12104.40 2.1193 12044.40 1.6131

17 14236.50 14429.50 1.3600 14335.50 0.6954 14319.50 0.5830

18 13150.99 13660.00 3.8700 13360.50 1.5931 13242.00 0.6920

19 13901.98 14278.50 2.7100 13958.00 0.4030 13952.00 0.3598

20 13495.47 13725.00 1.7000 13913.00 3.0939 13843.00 2.5752

21 14842.38 15063.60 1.4900 14874.20 0.2144 14865.20 0.1537

22 14122.20 14595.40 3.3500 14159.60 0.2648 14130.80 0.0609

23 14561.16 14854.40 2.0100 14725.60 1.1293 14703.60 0.9782

24 13865.91 14428.20 4.0600 13983.60 0.8488 13958.60 0.6685

25 25657.20 26068.20 1.6000 25989.00 1.2932 25885.00 0.8879

26 21247.40 22016.80 3.6200 21706.40 2.1603 21540.00 1.3771

27 24364.40 24988.20 2.5600 24409.00 0.1831 24374.60 0.0419
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consumption of CPU reported for both BTS variants in the next section about the

numerical experiment.

Results and discussion
In this section we report the results of the numerical experiment carried out for the

original BTS procedure of Piñeyro and Viera [19] and the optimized version according

to the improvement suggested above. For the experiment we resort to the benchmark

set of 108 different large instances of 52 periods developed by Sifaleras et al. [23] and

downloadable from the authors web site http://users.uom.gr/~sifalera/benchmarks.html

(last access: 24/07/2015). The benchmark set was designed with the aim to evaluate the

robustness of the RGVNS procedure suggested in that paper. It is based on the Schulz

[17] well-known benchmark set, but with instances more than four times larger. As the

authors claim “this new benchmark set is more difficult and larger than those that have

ever been used in the literature, for the ELSR problem”. For this benchmark set of large

instances, the different values for both setup costs are 200, 500 and 2000; the values for

Table 2 Results on benchmark set of Sifaleras et al. [23]. Instances 28–54

No Gurobi 5.6.2 RGVNS BTS Optimized BTS

Obj. Value Obj. Value Error (%) Obj. Value Error (%) Obj. Value Error (%)

28 20328.95 20479.40 0.7400 20647.20 1.5655 20639.20 1.5261

29 26561.00 26888.00 1.2300 26828.00 1.0052 26791.00 0.8659

30 22332.50 22851.50 2.3200 22784.00 2.0217 22732.50 1.7911

31 26625.50 27326.00 2.6300 26727.00 0.3812 26676.50 0.1915

32 23229.50 23945.50 3.0800 23863.50 2.7293 23635.00 1.7456

33 27872.60 28482.20 2.1900 28047.00 0.6257 28019.00 0.5252

34 24116.80 25426.00 5.4300 24816.20 2.9001 24738.40 2.5775

35 26762.40 27823.60 3.9700 26874.20 0.4178 26808.40 0.1719

36 24065.20 24785.80 2.9900 24682.20 2.5639 24599.60 2.2206

37 10622.20 10937.40 2.9700 10657.00 0.3276 10657.00 0.3276

38 12011.00 12266.80 2.1300 12194.60 1.5286 12131.40 1.0024

39 10652.20 10867.00 2.0200 10749.00 0.9087 10749.00 0.9087

40 11741.60 12088.60 2.9600 11948.00 1.7579 11912.00 1.4513

41 12249.48 12585.00 2.7400 12455.50 1.6819 12455.50 1.6819

42 13844.99 13998.50 1.1100 14003.00 1.1413 14001.00 1.1268

43 12309.00 12616.00 2.4900 12320.50 0.0934 12320.50 0.0934

44 13626.97 13895.00 1.9700 13737.50 0.8111 13697.50 0.5176

45 13348.00 13584.40 1.7700 13477.40 0.9694 13477.40 0.9694

46 15030.80 15543.40 3.4100 15236.00 1.3652 15215.40 1.2281

47 13635.60 13979.00 2.5200 13785.00 1.0957 13778.60 1.0487

48 15051.80 15788.20 4.8900 15330.20 1.8496 15301.00 1.6556

49 15625.40 15982.80 2.2900 15759.20 0.8563 15759.20 0.8563

50 15447.80 15984.80 3.4800 15817.80 2.3952 15667.40 1.4216

51 14997.80 15409.60 2.7500 15119.80 0.8135 15119.80 0.8135

52 15176.60 15494.00 2.0900 15376.80 1.3191 15360.80 1.2137

53 16782.00 17172.00 2.3200 17011.50 1.3675 16957.50 1.0458

54 17102.50 17757.00 3.8300 17186.50 0.4912 17102.50 0.0000
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the holding cost of used items are 0.2, 0.5 and 0.8. The holding cost for serviceable

items is equal to 1. Demand values follow a normal distribution of mean 100 per

period. Returns values also follow a normal distribution but three different means of

30, 50 and 70 are considered. The coefficient of variation of the normal distributions

can be of 10 % and 20 % (small and large variance respectively). A total of 108 different

instances of 52 periods were generated.

For both BTS procedure variants we use the following configuration values. The

size of the tabu list is fixed at 1,000,000. The total number of iterations is 10,000

and the maximum without improvement is 50. The size of the tabu list and the

total number of iterations are greater than those considered in Piñeyro and Viera

[19] since the ELSR instances considered here are four times longer. However, we

set the maximum number of iterations without improvement in 50 rather than 500

in order to maintain low computation times. The zero-remanufacturing plan is

used as initial solution for all the instances, as in Piñeyro and Viera [19] and later

in Sifaleras et al. [23].

Table 3 Results on benchmark set of Sifaleras et al. [23]. Instances 55–81

No Gurobi 5.6.2 RGVNS BTS Optimized BTS

Obj. Value Obj. Value Error (%) Obj. Value Error (%) Obj. Value Error (%)

55 16591.44 17149.50 3.3600 16716.50 0.7538 16704.50 0.6814

56 17217.93 17544.00 1.8900 17356.50 0.8048 17313.00 0.5522

57 18047.53 18215.60 0.9300 18132.60 0.4714 18132.60 0.4714

58 18780.16 19158.40 2.0100 19234.80 2.4209 19166.60 2.0577

59 17742.76 18337.20 3.3500 18085.20 1.9300 18055.60 1.7632

60 18646.54 19212.60 3.0400 18678.20 0.1698 18646.60 0.0003

61 27623.80 28428.20 2.9100 27810.60 0.6762 27793.80 0.6154

62 24892.60 25562.40 2.6900 25190.20 1.1955 25190.20 1.1955

63 26587.40 28083.00 5.6300 26802.80 0.8102 26665.20 0.2926

64 24252.40 24596.20 1.4200 24640.00 1.5982 24622.40 1.5256

65 29328.50 30033.00 2.4000 29538.00 0.7143 29527.00 0.6768

66 26961.50 27544.00 2.1600 27184.00 0.8253 27091.50 0.4822

67 28484.00 29139.00 2.3000 28524.00 0.1404 28484.00 0.0000

68 27019.00 28116.00 4.0600 27313.50 1.0900 27186.50 0.6199

69 30515.40 31117.40 1.9700 30644.20 0.4221 30626.00 0.3624

70 28758.40 30014.60 4.3700 28924.40 0.5772 28850.60 0.3206

71 29864.60 30497.40 2.1200 29940.00 0.2525 29889.00 0.0817

72 28195.06 30267.60 7.3500 28628.00 1.5355 28573.20 1.3412

73 14443.40 14835.40 2.7100 14443.40 0.0000 14443.40 0.0000

74 18364.00 18517.40 0.8400 18364.00 0.0000 18364.00 0.0000

75 14954.00 15007.00 0.3500 14954.00 0.0000 14954.00 0.0000

76 17857.80 17979.20 0.6800 17960.80 0.5768 17960.80 0.5768

77 18546.00 18903.50 1.9300 18828.00 1.5205 18828.00 1.5205

78 23069.50 23266.50 0.8500 23130.00 0.2623 23130.00 0.2623

79 18657.50 18821.00 0.8800 18760.00 0.5494 18760.00 0.5494

80 23329.00 23449.50 0.5200 23378.00 0.2100 23378.00 0.2100

81 20999.80 21431.80 2.0600 21088.60 0.4229 21088.60 0.4229
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The BTS procedure was coded in Java and the experiment was carried out in a

Java Runtime Environment 1.8.0_25 on HP laptop with Intel(R) Core(TM) i5-

42010 CPU, 8.00 GB of RAM, and operating system Windows 8.1 of 64 bits. We

note that this computing environment is less powerful of that used in Sifaleras

et al. [23].

In Table 1, Table 2, Table 3 and Table 4 we report the results for Gurobi optimizer,

the VNS procedure from Sifaleras et al. [23] and for both BTS variants from our

numerical experiment. As in Sifaleras et al. [23], in the 2nd column we mark in bold

those instances for which Gurobi reaches the optimal solution. In the 3rd column we

mark in bold those instances for which the VNS procedure achieves a minor cost solu-

tion than both BTS variants and with italic for only the original BTS procedure. Finally,

in the 5th column we mark in bold those instances for which both BTS variants obtain

the same solution, i.e. the optimization performed is not able to improve the solution

of the original BTS. In order to compare the results obtained, the error is defined as in

Sifaleras et al. [23], that is the percentage gap between the objective value of Gurobi (g)

Table 4 Results on benchmark set of Sifaleras et al. [23]. Instances 82–108

No Gurobi 5.6.2 RGVNS BTS Optimized BTS

Obj. Value Obj. Value Error (%) Obj. Value Error (%) Obj. Value Error (%)

82 26519.60 27048.60 1.9900 26856.40 1.2700 26856.40 1.2700

83 21114.40 21649.40 2.5300 21399.40 1.3498 21399.40 1.3498

84 26162.80 27142.60 3.7500 26896.20 2.8032 26896.20 2.8032

85 19646.00 19834.80 0.9600 19769.40 0.6281 19769.40 0.6281

86 22567.57 23128.60 2.4900 22612.60 0.1995 22612.60 0.1995

87 19880.40 19963.60 0.4200 19880.40 0.0000 19880.40 0.0000

88 22483.80 22646.60 0.7200 22524.80 0.1824 22524.80 0.1824

89 23013.50 23190.00 0.7700 23144.00 0.5671 23144.00 0.5671

90 27076.00 27632.00 2.0500 27309.50 0.8624 27309.50 0.8624

91 22706.50 23090.50 1.6900 22706.50 0.0000 22706.50 0.0000

92 26754.00 26793.00 0.1500 27027.50 1.0223 27027.50 1.0223

93 25890.80 26118.80 0.8800 26101.40 0.8134 26101.40 0.8134

94 30229.20 30669.60 1.4600 30535.00 1.0116 30505.60 0.9143

95 26188.80 26935.80 2.8500 26240.80 0.1986 26240.80 0.1986

96 29504.40 30231.20 2.4600 29607.40 0.3491 29562.20 0.1959

97 32952.36 33512.00 1.7000 33078.40 0.3825 33078.40 0.3825

98 33332.20 33940.00 1.8200 33757.80 1.2768 33757.80 1.2768

99 33072.40 33586.20 1.5500 33088.80 0.0496 33088.80 0.0496

100 33115.00 33539.20 1.2800 33587.20 1.4259 33491.20 1.1360

101 36285.90 36581.00 0.8100 36461.50 0.4839 36461.50 0.4839

102 37205.50 38265.50 2.8500 37500.50 0.7929 37438.00 0.6249

103 36173.50 37194.00 2.8200 36912.00 2.0415 36824.00 1.7983

104 36817.00 37861.50 2.8400 37230.50 1.1231 37230.50 1.1231

105 38728.00 39020.20 0.7500 38862.20 0.3465 38857.80 0.3352

106 40310.40 41261.80 2.3600 40615.20 0.7561 40597.00 0.7110

107 38611.20 39281.00 1.7300 38639.20 0.0725 38617.60 0.0166

108 39826.10 40932.40 2.7800 40330.00 1.2653 40301.20 1.1929
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and the objective value of the solution determined by the procedure under consider-

ation (p): 100 × (p − g)/g.

From Tables 1 to 4 we note that both BTS procedure variants outperform the

RGVNS procedure of Sifaleras et al. [23] in most cases. The original BTS achieves

better solutions in 100 of 108 instances, and the optimized version in 102 instances,

that is 92.59 % and 94.44 % of the total number of instances respectively. In addition,

the optimized BTS achieves better solutions than the original version in 70 instances,

which results in 64.81 % of the total number of instances. The original BTS procedure

is able to achieve the same objective value as Gurobi in 5 instances, all them optimal

values, and the optimized variant in 2 instances more, one of them optimal. In Fig. 3

you can clearly see the good performance of both BTS procedures.

Tables 5 and 6 provide the statistics of percentage errors and computation times

respectively. As stated in Sifaleras et al. [23] the Gurobi optimizer is set to 3600 s of

maximum time of running and 10−4 of tolerance. The RGVNS ran for 30s for all

instances.

In average, solutions achieved by the optimized BTS procedure are nearly three times

more cost-effective than those of the VNS procedure with a running time of

1.31 seconds and in less than tenth computation time in the worst case. In

addition, the extra running time required for the optimization phase is almost

negligible. Although the solutions provided by Gurobi are more cost-effective in

most cases, the BTS procedure variants may also offer high quality solutions and

with 1870 times less computational effort on average.

Conclusions
In this paper we have tackled the economic lot-sizing problem with remanufacturing

under the assumptions of time-invariant costs and low-costs for the returns. We

Table 5 Percentage cost errors

Avg. (%) Std. (%) Min. (%) Max. (%)

RGVNS 2.4402 1.2453 0.1458 7.3507

BTS 1.0530 0.8350 0.0000 3.9226

Optimized BTS 0.8784 0.7239 0.0000 3.2955

Fig. 3 Error values of the RGVNS and BTS procedures for the 108 instances
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present a new theoretical result about the form of optimal solutions that can be consid-

ered a generalization of the well-known zero-inventory property of the classic eco-

nomic lot-sizing problem, i.e. without returns options. Based on this extended property

we develop an improvement to the Basic Tabu Search procedure of Piñeyro and Viera

[19] for the ELSR. The original and the optimized version of the BTS procedure are

compared against the VNS procedure of Sifaleras et al. [23] on a benchmark set of large

instances (108 instances of 52 periods). The numerical experiment performed reveals

that the original BTS procedure outperforms the VNS procedure in 92.59 % and the

optimized version in 94.44 % of the total number of instances, respectively. The running

time required to obtain the solution by both BTS procedures is about twenty times less

on average and ten in the worst case. In addition, the optimized version outperforms the

original BTS procedure in 64.81 % of the total number of instances in the benchmark set.

We also note that both the original and the optimized BTS are able to reach an optimal

solution for some of the instances.

In future works it would be interesting to see what the consequences are on the

production plan of the optimization process on the remanufacturing plan presented

here. Since the remanufacturing quantities may be changed during the optimization

process, this can lead in a different optimal production plan [19]. We also note

that the numerical experiment carried out in this paper is for a planning horizon of 52

periods which seems to be unrealistic in practice under deterministic assumptions.

Therefore, it would be interesting to evaluate the optimized BTS procedure in a

benchmark set of instances with smaller number of periods, in which the parameter

values of the problem can be estimated more accurately. The cases of multi-item [29] or

heterogeneous quality for the returns [30] are also interesting extensions for future works

about the ELSR.

Abbreviations
BTS: Basic Tabu Search.; ELSP: Economic Lot-Sizing Problem.; ELSR: Economic Lot-Sizing Problem with Remanufacturing.;
MILP: Mixed Integer Linear Programming.; RGVNS: Randomised General Variable Neighborhood Search.; VNS: Variable
Neighborhood Search.

Competing Interests
The authors declare that they have no competing interests.

Authors' contributions
PP developed the concepts and carried out the numerical experiment. OV participated in the validation and the
correction of the different versions of the paper. All authors read and approved the final manuscript.

Authors' information
PP is Assistant Professor at Department of Operations Research, Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Uruguay.
OV is Titular Professor at Department of Operations Research, Instituto de Computación, Facultad de Ingeniería,
Universidad de la República, Uruguay.

Acknowledgements
The authors thank the two anonymous reviewers for their valuable comments in improving this manuscript. This work
was supported by PEDECIBA and CSIC of Uruguay.

Table 6 CPU times in seconds

Avg. (s) Std. (s) Min. (s) Max. (s)

Gurobi 5.6.2 2450.55 1425.82 3.47 3600.03

RGVNS 30.00 0.00 30.00 30.00

BTS 1.30 0.49 0.72 3.03

Optimized BTS 1.31 0.47 0.74 2.88
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