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Neurite orientation dispersion and density 
imaging reveals white matter microstructural 
alterations in adults with autism
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Abstract 

Background:  Evidences suggesting the association between behavioral anomalies in autism and white matter (WM) 
microstructural alterations are increasing. Diffusion tensor imaging (DTI) is widely used to infer tissue microstructure. 
However, due to its lack of specificity, the underlying pathology of reported differences in DTI measures in autism 
remains poorly understood. Herein, we applied neurite orientation dispersion and density imaging (NODDI) to quan-
tify and define more specific causes of WM microstructural changes associated with autism in adults.

Methods:  NODDI (neurite density index [NDI], orientation dispersion index, and isotropic volume fraction [ISOVF]) 
and DTI (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity, and radial diffusivity [RD]) measures were 
compared between autism (N = 26; 19 males and 7 females; 32.93 ± 9.24 years old) and age- and sex-matched typi-
cally developing (TD; N = 25; 17 males and 8 females; 34.43 ± 9.02 years old) groups using tract-based spatial statistics 
and region-of-interest analyses. Linear discriminant analysis using leave-one-out cross-validation (LDA-LOOCV) was 
also performed to assess the discriminative power of diffusion measures in autism and TD.

Results:  Significantly lower NDI and higher ISOVF, suggestive of decreased neurite density and increased extracellular 
free-water, respectively, were demonstrated in the autism group compared with the TD group, mainly in commissural 
and long-range association tracts, but with distinct predominant sides. Consistent with previous reports, the autism 
group showed lower FA and higher MD and RD when compared with TD group. Notably, LDA-LOOCV suggests that 
NDI and ISOVF have relatively higher accuracy (82%) and specificity (NDI, 84%; ISOVF, 88%) compared with that of FA, 
MD, and RD (accuracy, 67–73%; specificity, 68–80%).

Limitations:  The absence of histopathological confirmation limit the interpretation of our findings.

Conclusions:  Our results suggest that NODDI measures might be useful as imaging biomarkers to diagnose autism 
in adults and assess its behavioral characteristics. Furthermore, NODDI allows interpretation of previous findings on 
changes in WM diffusion tensor metrics in individuals with autism.
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Background
Autism is a neurodevelopmental condition character-
ized by social communication and interaction deficits 
and the presence of restricted and repetitive patterns 
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of behaviors, interests, or activities [1]. Evidences sug-
gesting the association between behavioral anomalies in 
autism and white matter (WM) microstructural altera-
tions that persist until adult life are increasing [2–6]. 
Although the pathophysiological causes of autism are not 
yet fully understood, recent postmortem studies support 
the view that neuronal loss [7, 8] and neuroinflammation 
[9, 10] contribute to autism etiology.

Diffusion tensor imaging (DTI) has shown great poten-
tial in noninvasively probing WM tissue microstructure 
by enabling the measurement of the diffusion proper-
ties of water in the tissue. DTI-derived measures such as 
fractional anisotropy (FA), mean diffusivity (MD), axial 
diffusivity (AD), and radial diffusivity (RD) character-
ize the degree of anisotropy of water molecules, overall 
magnitude of diffusion, diffusional directionality perpen-
dicular to the axon, and diffusional directionality along 
the axon, respectively [11]. Decreased FA accompanied 
by increased MD and RD has been reported in the WM 
tracts involved in social processing in individuals with 
autism [12, 13]. Alterations are demonstrated in the cor-
pus callosum (CC), arcuate fasciculus, inferior longitu-
dinal fasciculus (ILF), inferior fronto-occipital fasciculus 
(IFOF), superior longitudinal fasciculus (SLF), and unci-
nate fasciculus (UF) [12]. The role of these WM tracts in 
autism-related behaviors is summarized in Table 1. How-
ever, due to the lack of specificity, the underlying pathol-
ogy of reported differences in DTI measures in autism 
remains poorly understood. Lower FA and higher MD 
indicate impaired WM integrity owing to changes in the 
axonal diameter, fiber density, tissue geometry, myelina-
tion degree, and an increase in extracellular free-water 
[14, 15]. Higher AD and RD appear to be modulated by 
axonal loss and demyelination, respectively [16]. How-
ever, the interpretations may be meaningless because 

pathology might change the diffusional directionality 
according to the underlying structures [17].

Novel advanced diffusion-weighted imaging tech-
niques aim to improve WM characterization by employ-
ing multi-compartment models to describe various WM 
features. One of these approaches is the neurite orien-
tation dispersion and density imaging (NODDI), which 
incorporates multiple shells with different b-values to 
model the brain tissue into three compartments show-
ing different diffusion properties with a clinically feasible 
protocol (imaging the whole brain within 30 min in the 
original protocol [18] and 13 min in the present study). 
In the NODDI model, each voxel is assumed as a com-
bination of three compartments: intracellular (mod-
eled as restricted anisotropic non-Gaussian diffusion), 
extracellular (modeled as hindered anisotropic Gauss-
ian diffusion), and cerebrospinal fluid (CSF; modeled as 
isotropic Gaussian diffusion). NODDI can disentangle 
the different microstructural contributions to DTI meas-
ures, consequently, providing more specific insights into 
the underlying WM microstructural changes. NODDI-
derived measures, including neurite density index (NDI), 
orientation dispersion index (ODI), and isotropic volume 
fraction (ISOVF), reflect neurite density, neurite orienta-
tion dispersion, and extracellular free-water, respectively 
[18]. In brief, lower values of NDI represent lower neurite 
density (or packing of neuronal tissue), whereas higher 
ODI indicates fanning of neurites, and ISOVF measures 
the extracellular component of the free-water compart-
ment [18]. Previous studies using multishell diffusion-
weighted imaging techniques (including NODDI) have 
detected reduced neurite density in the gray matter (GM) 
of children with autism and brain areas related to facial 
emotion recognition in young adults with autism [19, 20].

Table 1  The anatomical definition and functions of white matter tracts frequently involved in autism

ATR, anterior thalamic radiation; IFOF, inferior fronto- occipital fasciculus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate 
fasciculus

White matter tracts Category Connection Function related to autism

ATR​ Projection fiber Dorsomedial thalamic nucleus to prefrontal 
cortex through the anterior limb of internal 
capsule

Executive function and planning complex 
behaviors

Corpus callosum Commissural fiber The cortices of the two cerebral hemispheres Cognitive and social function

Cingulum Long-range associative fiber Cingulate gyrus to the anterior thalamic nuclei Visuospatial processing and memory access

IFOF Long-range associative fiber Occipital cortex, temporo-basal areas, and supe-
rior parietal lobe to the frontal lobe

Semantic processing

ILF Long-range associative fiber Occipital lobe to the anterior temporal lobe Face and emotion recognition

SLF Long-range associative fiber Frontal lobe to parietal lobe and partially to 
temporal lobe

Visuospatial attention, language auditory 
comprehension, articulatory processing, 
reading, and lexical access

UF Long-range associative fiber Lateral orbitofrontal cortex and Broadmann area 
10 to anterior temporal lobes

Episodic memory, language, and social emo-
tional processing
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In the current study, we employed NODDI (1) to assess 
differences in the WM microstructure integrity in adults 
with autism compared with typically developing (TD) 
individuals; (2) to define more specific causes of WM 
microstructural alterations in autism by hypothesizing 
that NODDI might resolve component pathologies of 
autism in the WM, such as neuronal loss or neuroinflam-
mation, in order to overcome DTI limitations; and (3) to 
determine if these WM properties are associated with 
autism-related scores. Most previous studies in adults 
with autism have focused on evaluating the changes in 
the microstructure of WM [6, 21–24] or the morphol-
ogy of GM [25–27]; however, the relationship between 
the different brain regions and autism remain unclear. 
In addition, GM structural analysis was also performed 
to observe the association between WM microstructural 
alterations measured using NODDI and GM structural 
changes. Finally, a linear discriminant analysis (LDA) 
[28] using leave-one-out cross-validation (LOOCV) was 
implemented to delineate individuals with autism and 
TD and understand the discriminative power of diffusion 
measures.

Methods
Study participants
The study protocol was approved by the research eth-
ics committee of Juntendo University Hospital in Tokyo, 
Japan, and written informed consent was obtained 
from each participant. A total of 51 right-handed 

young (18–35  years) and middle-aged (36–55  years) 
adults were included in this study [29]. Study par-
ticipants were divided into autism (N = 26, 19 males; 
mean age 32.93 ± 9.24  years, range 19.29 − 52.93  years) 
and TD (N = 25, 17 males  and 8 females; mean age 
34.43 ± 9.02  years, range 20.45 − 49.21  years) groups. 
Individuals with autism were recruited from the outpa-
tient clinics of Juntendo Koshigaya Hospital (Saitama, 
Japan) and Juntendo Shizuoka Hospital (Shizuoka, 
Japan), and TD individuals were recruited from the same 
hospitals’ staff.

Autism diagnosis was based on the fifth edition of the 
Diagnostic and Statistical Manual of Mental Disorders 
[1]. Each participant was assessed using the autism-spec-
trum quotient (AQ) [30], empathizing quotient (EQ) [31], 
and systemizing quotient (SQ) [32]. AQ, EQ, and SQ are 
self-administered measures (for use with adults of nor-
mal intelligence) of the autistic traits, social functioning, 
and capability to analyze or construct systems, respec-
tively. AQ comprises five subscales: social skills, attention 
switching, attention to detail, communication skills, and 
imagination. TD participants had no history of any psy-
chiatric, neurological, or developmental disorders. None 
of the participants reported a history of head injury. A 
summary of demographic and autism-related scores is 
presented in Table 2.

Table 2  Demographic characteristics of study participants

AQ, autism-spectrum quotient; EQ, empathy quotient; GM, gray matter; SD, standard deviation; SQ, systemizing quotient; TD, typically developing subjects; WM, white 
matter

Autism (N = 26) TD (N = 25) P-value

Age (mean ± SD, range; years) 32.93 ± 9.24, 19.29−52.93 34.43 ± 9.02, 20.45−49.21 0.56

Sex (male/female) 19/7 17/8 0.69

Years of education (mean ± SD, range) 14.67 ± 2.28, 12−19 15.32 ± 2.36, 12−19 0.33

Clinical scores:

AQ (mean ± SD, range)

 Total 32.92 ± 5.19, 22−41 15.16 ± 5.41, 5−26  < 0.0001

 Social skill 6.96 ± 1.61, 3−9 2.40 ± 2.02, 0−8  < 0.0001

 Attention switching 7.27 ± 1.82, 3−10 3.28 ± 1.90, 0−7  < 0.0001

 Attention to detail 4.96 ± 1.93, 2−9 4.28 ± 2.13, 0−8 0.24

 Communication 7.31 ± 1.83, 3−10 2.00 ± 1.80, 0−6  < 0.0001

 Imagination 6.42 ± 1.60, 4−9 3.20 ± 1.58, 1−7  < 0.0001

 EQ (mean ± SD, range) 24.50 ± 7.42, 11−35 38.56 ± 10.76, 23−60  < 0.0001

 SQ (mean ± SD, range) 26.73 ± 14.32, 5−59 22.40 ± 9.76, 1−47 0.22

Global brain volumes

 ICV (mean ± SD; mL) 1415.94 ± 218.66 1318.14 ± 258.43 0.15

 Normalized WM volume (WM volume /ICV) 0.34 ± 0.04 0.36 ± 0.05 0.09

 Normalized GM volume (GM volume/ICV) 0.44 ± 0.06 0.48 ± 0.06 0.08



Page 4 of 14Andica et al. Molecular Autism           (2021) 12:48 

MRI data acquisition
MRI data of all study participants included diffu-
sion-weighted images and three-dimensional (3D) 
T1-weighted images, acquired using the same 3  T 
Achieva scanner (Philips Healthcare, Best, The Nether-
lands). Multishell diffusion-weighted imaging was per-
formed using a spin echo echo-planar imaging sequence 
(b = 1000 and 2000s/mm2, 32 diffusion-weighted 
directions, 1 b0 image, echo time [TE] = 100  ms, rep-
etition time [TR] = 9810  ms, flip angle 90°, matrix 
size = 128 × 128, field of view [FOV] = 256 × 256, slice 
thickness = 2  mm), and acquisition time = 13  min, 
whereas 3D T1-weighted imaging was obtained using 
a turbo field echo (TFE) sequence with the follow-
ing parameters: TE = 3.4  ms, TR = 15  ms, inversion 
time = 932  ms, flip angle 10°, matrix size = 256 × 256, 
FOV = 256 × 256, slice thickness = 1  mm, TFE fac-
tor = 116, shot interval time = 2500  ms, and acquisition 
time = 3.5 min.

Diffusion‑weighted image processing
All diffusion-weighted images were assessed for severe 
artifacts in the axial, sagittal, and coronal views. The 
EDDY tool, part of the FMRIB Software Library 5.0.9 
(FSL, Oxford Centre for Functional MRI of the Brain, 
UK; www.​fmrib.​ox.​ac.​uk/​fsl) [33] was used to correct 
eddy current-induced distortions and subject movements 
from diffusion-weighted data [34]. Resulting images were 
then fitted to the NODDI model [18] using the NODDI 
MATLAB Toolbox  5 (http://​www.​nitrc.​org/​proje​cts/​
noddi_​toolb​ox), and maps of NDI, ODI, and ISOVF were 
generated using the Accelerated Microstructure Imag-
ing via Convex Optimization [35]. The DTIFIT tool, 
part of the FSL [33], was used to generate tensor-derived 
(FA, MD, RD, and AD) maps based on the ordinary least 
squares method [36] using diffusion-weighted data with 
b-values of 0 and 1000 s/mm2.

Tract‑based spatial statistical analysis
Voxel-wise statistical analysis of the diffusion data was 
carried out using tract-based spatial statistics (TBSS) [37] 
implemented in FSL [33]. The TBSS approach was per-
formed to investigate DTI and NODDI measure changes 
between groups (autism vs. TD) and evaluate the correla-
tion between diffusion metrics and autism-related scores 
in individuals with autism.

The TBSS procedure was as follows: (1) FA maps of all 
participants were aligned into 1 × 1 × 1 × mm3 Montreal 
Neurological Institute 152 common space (an averaged 
brain) using FMRIB’s nonlinear registration tool. Sub-
sequent processing and analysis were carried out in this 
space for convenient interpretation and display. Nota-
bly, the following steps, i.e., creating the FA skeleton and 

projecting FA or other diffusion images onto the skeleton, 
work well at this higher resolution and limit the partial 
volume [37]. (2) A population-based mean FA image was 
created and thinned to make a mean FA skeleton, which 
represents centers of all tracts common to the group. 
This skeleton had a threshold FA level of 0.2 to exclude 
voxels from the GM and CSF (3). The averaged FA map of 
each participant was projected onto the skeleton. Other 
DTI (MD, AD, and RD) and NODDI (NDI, ODI, ISOVF) 
maps were then projected onto the FA-derived skeleton 
after applying each participant’s warping registration to 
the common space.

In autism, the pattern abnormality of WM varies 
across the sex of participants [38]. For exploratory pur-
poses, TBSS analyses were also performed between male 
(N = 19, mean age 34.02 ± 7.39 years) and female (N = 7, 
mean age 29.96 ± 13.34 years) individuals with autism.

Region‑of‑interest analysis
Using a region-of-interest (ROI) analysis, DTI and 
NODDI metrics were extracted in the genu, body, and 
splenium of the CC, forceps major and minor, left- and 
right-anterior thalamic radiation (ATR), anterior limb 
of internal capsule (ALIC), cingulum cingulate gyrus 
(CCG), corticospinal tract (CST), ILF, IFOF, SLF, and UF. 
The WM tracts included in this study have all been found 
to have significant changes in the DTI metrics in previ-
ous studies in adults with autism [21–24, 39]. Hypothe-
sis-driven ROIs were selected to reduce the severity of 
correction for multiple tests that could lead to type II 
error (false negative) [40]. Quantitative diffusion meas-
ures (average value over the entire tract is reported) of 
each WM tract were obtained by first labeling the WM 
skeleton tract regions using the John Hopkins Univer-
sity’s ICBM-DTI-81 WM tractography and label atlases 
[41, 42].

Brain volumes and cortical thickness measurements
Global brain [intracranial (ICV), WM, and GM] volumes 
and cortical thickness were measured using FreeSurfer 
version 6.0.0 (http://​surfer.​nmr.​mgh.​harva​rd.​edu/​fswiki). 
FreeSurfer was run with the “recon-all pipeline using 
default analysis” setting on each 3D T1-weighted image, 
as previously described [43].

Statistical analysis
Independent-sample t-tests were used to compare age; 
years of education; AQ (total score and subscales), EQ, 
and SQ scores; ICV; normalized WM volume (WM vol-
ume/ICV); and normalized GM volume (GM volume/
ICV). The chi-square test was used to compare the indi-
viduals according to their sex between autism and TD 
groups. A P-value of < 0.05 was considered statistically 

http://www.fmrib.ox.ac.uk/fsl
http://www.nitrc.org/projects/noddi_toolbox
http://www.nitrc.org/projects/noddi_toolbox
http://surfer.nmr.mgh.harvard.edu/fswiki
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significant. These tests were conducted using SPSS Sta-
tistics for Macintosh version 25.0 (IBM, Armonk, NY, 
USA).

For TBSS analysis, a voxel-wise general linear model 
(GLM) framework, including age, sex, and ICV as covari-
ates, was used to compare DTI (FA, MD, RD, and AD) 
and NODDI (NDI, ODI, and ISOVF) metrics between 
autism and TD groups using the FSL randomize tool with 
10,000 permutations. Between-group differences were 
considered significant at P < 0.05 and corrected for mul-
tiple comparisons using the family-wise error (FWE) and 
threshold-free cluster enhancement approaches.

For ROI analysis, differences of diffusion measures 
between participants with autism and TD were per-
formed using the GLM while controlling for age, sex, 
and ICV in SPSS 25. The effect size was calculated with 
Cohen’s d to evaluate the strength of the relationship in 
between-group comparisons [44]. The correlation analy-
sis with autism-related scores in the autism group was 
performed using Pearson’s correlation coefficient. Here, 
the Bonferroni correction was used to correct between-
group multiple comparisons (n = 23; forceps minor, genu, 
body, and splenium of the CC, forceps major, left and 
right ATR, CCG, CST, IFOF, ILF, SLF, and UF), with sta-
tistical significance set at P < 0.05/23 = 0.0022.

After comparing diffusion measures across different 
groups, the discriminant power of each diffusion meas-
ure was evaluated. We applied LDA using the scikit-learn 
package [45] in Python to identify which diffusion meas-
ure performed better in differentiating autism and TD 
groups. LDA is a robust classification method using a 
linear combination of the independent variables to pre-
dict a categorical outcome [46]. A separate LDA classifier 
was computed for each of the diffusion metrics, including 
data from the 23 ROIs described above. Since this study 
included a relatively small sample size, we used the leave-
one-out technique to cross-validate the classification 
method [47].

A vertex-wise analysis on cortical volume and thick-
ness differences between groups (autism vs. TD) was per-
formed separately for the left and right hemispheres with 
FreeSurfer’s graphical user interface, query, design, esti-
mate, and contrast using data smoothed at full-width half 
maximum of 10  mm. Different offsets and slope meth-
ods were used to create the design matrix while includ-
ing age and sex as covariates. Multiple comparisons were 
corrected with a Monte Carlo simulation using a P-value 
set at < 0.05 and a cluster-wise P-value of 0.05 to display 
results.

Results
Study participants
Age, sex, years of education, ICV, normalized WM vol-
ume, normalized GM volume, AQ-attention to detail 
score, and SQ score were not significantly different 
between autism and TD groups (Table 2). Participants 
with autism had significantly (P < 0.0001) higher AQ 
(total score, social skill, attention switching, commu-
nication, and imagination domain subscales) and lower 
EQ scores compared to TD participants. AQ represents 
the degree to which a person shows autistic traits (the 
higher the score, the higher the degree of autistic traits) 
[30], whereas EQ reports the level of empathy (a lower 
score indicates lower empathizing skills, responsible for 
difficulties in social interactions in autism) [31].

Between‑group differences
Figure  1 and Table  3 show results of TBSS analysis of 
the DTI and NODDI metrics. Significantly (FWE-cor-
rected P < 0.05) lower FA and NDI and higher MD, RD, 
and ISO were demonstrated in participants with autism 
than in those with TD. No statistically significant dif-
ferences in AD and ODI were observed between autism 
and TD groups. Notably, NDI changes were predomi-
nantly observed in the major WM tracts of the right 
hemisphere and anterior part of the left hemisphere. 
In contrast, ISOVF changes were demonstrated in 
the posterior left hemisphere. In exploratory analyses 
of individuals with autism, we did not find any differ-
ence in all diffusion measures between male and female 
groups.

Figure 2 and Table 4 show the results of ROI analysis 
of the DTI (FA, MD, and RD) and NODDI (NDI and 
ISOVF) metrics. Significantly lower FA (P ≤ 0.0021, 
Cohen’s d ≥ 0.90; in the forceps minor, genu, and body 
of the CC, forceps major, left IFOF, and left SLF) and 
NDI (P ≤ 0.00037, Cohen’s d ≥ 1.01; in the forceps 
minor, genu and body of CC, left and right IFOF and 
UF, left ALIC and ATR, and right ILF and SLF) were 
demonstrated in autism group compared with those in 
TD group. Significantly higher MD (P ≤ 0.0015, Cohen’s 
d ≥ 1.07; in forceps minor, body and splenium of CC, 
forceps major, left and right ALIC, IFOF, ILF, SLF, 
and UF, and left ATR and the posterior limb of inter-
nal capsule), RD (P ≤ 0.0059, Cohen’s d ≥ 1.04; in for-
ceps minor, genu, body and splenium of CC, forceps 
major, left and right ALIC, ATR, ILF, SLF, and UF, and 
left IFOF), and ISOVF (P ≤ 0.000032, Cohen’s d ≥ 1.35; 
in body and splenium of CC, forceps major, left IFOF, 
ILF, and SLF) were observed in autism group compared 
with those in TD group. Consistent with TBSS results, 
no statistically significant differences were observed in 
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AD and ODI between autism and TD groups. LDA-
LOOCV results indicated greater accuracy (82%) and 
specificity (NDI, 84%; ISOVF, 88%) of NDI and ISOVF 
compared with that of FA, MD, and RD (accuracy: 71%, 
73%, and 67%, respectively; specificity: 72%, 80%, and 
68%, respectively; Table 5).

Correlation analysis
NDI was moderately [48] negatively correlated with 
AQ-communication score in the left ATR (P = 0.039, 
r2 =  − 0.41), SLF (P = 0.036, r2 =  − 0.41), and UF 
(P = 0.042, r2 =  − 0.40) (Fig. 3). However, the correlation 
was not established after correction for multiple com-
parisons. No associations were found between NDI and 
other autism-related scores or between other diffusion 
measures and autism-related scores.

Cortical volume and thickness evaluation
No statistically significant difference was observed in 
the cortical volume and thickness between the studied 
groups.

Discussion
This study provides evidence on significant alterations 
in the microstructural organization of WM in young 
and middle-aged adults with autism. Overall, our find-
ings confirm several previous diffusion-weighted imag-
ing studies that have examined WM tracts in adults 
with autism. However, using NODDI, we were able to 
disentangle the contribution of the different tissue com-
partments underlying WM microstructural changes in 
autism, including neurite loss (as indexed by lower NDI) 
and increased extracellular free-water (as indexed by 
higher ISOVF), mainly in commissural and long-range 
association tracts that mediate autistic symptoms and 
traits. In addition, LDA-LOOCV results indicated that 
NODDI metrics (NDI and ISOVF) have higher discrimi-
native power compared with DTI metrics (FA, MD, and 
RD).

Previous studies that used varied approaches to diffu-
sion-weighted imaging data have found evidence for WM 
microstructural abnormalities in adults with autism in 
the ATR [3, 4], ALIC [23], CC [2, 4–6, 21, 22, 24, 49], cin-
gulum [2, 3, 21, 24], forceps minor and major [21], IFOF 
[4, 21, 22, 49], ILF [3, 4, 21, 22, 49], SLF [3, 4, 21–23, 49], 
and UF [2–4, 21, 49], which is broadly neuroanatomically 
consistent with our findings. This shows the robustness 

Fig. 1  Comparison of DTI (FA, MD, AD, and RD) and NODDI (NDI, ISOVF, and ODI) measures between autism and TD groups. Using TBSS analysis, 
significantly (family-wise error corrected P < 0.05) lower FA and NDI (blue–light blue voxels) and higher MD, RD, and ISOVF (red–yellow voxels) values 
were observed in the autism group than that in the TD. No significant differences were observed in AD and ODI values between the groups. The 
FA skeleton with FA of > 0.2 is shown in green. To aid visualization, results are thickened using the fill script implemented in FMRIB Software Library. 
AD, axial diffusivity; DTI, diffusion tensor imaging; FA, fractional anisotropy; ISOVF, intracellular volume fraction; L, left; MD, mean diffusivity; NDI, 
neurite density index; NODDI, neurite orientation dispersion and imaging; NS, not siginificant; ODI, orientation dispersion index; R, right; RD, radial 
diffusivity; TD, typically developing
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of the diffusion MRI data analysis pipeline used in the 
current study. These WM tracts are known to be asso-
ciated with autism behavioral characteristics. The ana-
tomical definition of these white tracts, including the 

normal function and impact in autism, are summarized 
in Table 1 [50–56].

Our findings on reduced NDI suggest a reduction of 
neurite density in adults with autism [18]. Of note, NDI 

Table 3  Comparison of tract-based spatial statistics analysis of DTI and NODDI measures in participants

ACR, anterior corona radiata; ALIC, anterior limb of internal capsule; ATR, anterior thalamic, radiation; CCG, cingulum cingulate gyrus; CgH, cingulum hippocampus; 
CP, cerebral peduncle; CST, corticospinal tract; DTI, diffusion tensor imaging; FA, fractional anisotropy; IC, internal capsule; IFOF, inferior fronto-occipital fasciculus; 
ILF, inferior longitudinal fasciculus; ISOVF, isotropic volume fraction; MD, mean diffusivity; MNI, Montreal Neurological Institute; NDI, neurite density index; NODDI, 
neurite orientation dispersion and density imaging; PCR, posterior corona radiata; PLIC, posterior limb of internal capsule; PTR, posterior thalamic radiation; RD, radial 
diffusivity; SCR, superior corona radiata; SFOF, superior fronto-occipital fasciculus; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; TD, typically developing 
subjects

Modality Contrast Significant voxels Anatomical region Mean (range) T-value Peak MNI 
coordinates (X, 
Y, Z)

DTI

 FA Autism < TD 4229 Bilateral ACR, SCR; Left ATR, CST, IFOF, UF, PCR; Forceps minor, 
genu, body, and splenium of CC

1.88 (1.07−6.09) 108, 120, 106

 MD Autism > TD 17,006 Bilateral ATR, CST, IFOF, ILF, SLF, UF, ALIC, PLIC, retrolenticular 
part of IC, ACR, SCR, PCR, PTR, sagittal stratum, and SFOF; 
Left-CCG and CgH; Right-external capsule; Forceps major 
and minor, genu, body, and splenium of CC, and fornix

1.61 (0.81–5.39) 48, 107, 107

 RD Autism > TD 20,728 Bilateral ATR, CST, CCG, IFOF, ILF, SLF, UF, ALIC, PLIC, retro-
lenticular part of IC, ACR, SCR, PCR, PTR, sagittal stratum, 
external capsule, and SFOF; Left-CgH; Right SLF temporal 
part; Forceps major and minor, genu, body, and splenium of 
CC, and fornix

1.61 (0.81−6.27) 144, 94, 102

NODDI

 NDI Autism < TD 4110 Bilateral IFOF, UF, and external capsule; Left ATR, ALIC, and 
ACR; Right CST, ILF, SLF, retrolenticular part of IC, SLF tempo-
ral part, SCR, PCR, and PTR; Forceps major and minor, genu 
and body of CC

1.92 (1.07−4.84) 109, 168, 94

 ISOVF Autism > TD 2472 Left IFOF, ILF, SLF, UF, PLIC, retrolenticular part of IC, SCR, PCR, 
and PTR; Right-sagittal stratum; Forceps major, body, and 
splenium of CC

1.77 (1.04 − 4.74) 119, 101, 80

Fig. 2  Region-of-interest analysis of WM areas involved in adults with autism. Left panel: WM areas obtained using the John Hopkins University’s 
ICBM-DTI-81 WM tractography and label atlases (only left side tracts are shown). Right panel: The mean of each measure in autism and TD groups 
(represented as the percentage difference from TD). Significant areas (Bonferroni-corrected P < 0.0022) are displayed in color, whereas nonsignificant 
tracts are shown in gray. ALIC, anterior limb of internal capsule; ATR, anterior thalamic radiation; CC, corpus callosum; CCG, cingulum cingulate 
gyrus; CST, corticospinal tract; FA, fractional anisotropy; IFOF, inferior fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; ISOVF, isotropic 
volume fraction; MD, mean diffusivity; NDI, neurite density index; RD, radial diffusivity; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus; 
TD, typically developing
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Table 4  ROI analysis of DTI and NODDI measures in participants with autism compared to TD

Autism TD P-value Cohen’s d

Mean SD Mean SD

DTI

FA

 Forceps minor 0.506 0.034 0.536 0.026 0.00017 0.96

 Genu of CC 0.707 0.022 0.732 0.025 0.00027 1.04

 Body of CC 0.730 0.026 0.764 0.022 0.0000095 1.44

 Forceps major 0.728 0.020 0.744 0.016 0.0021 0.90

 Left IFOF 0.487 0.026 0.516 0.031 0.00020 1.00

 Left SLF 0.479 0.034 0.521 0.033 0.000023 1.25

MD

 Forceps minor 0.776 0.024 0.745 0.021 0.000059  − 1.36

 Body of CC 0.834 0.035 0.789 0.029 0.000049  − 1.39

 Splenium of CC 0.782 0.030 0.742 0.026 0.000031  − 1.43

 Forceps major 0.821 0.026 0.790 0.018 0.000016  − 1.38

 Left ALIC 0.716 0.024 0.685 0.020 0.000024  − 1.42

 Left ATR​ 1.038 0.138 0.889 0.140 0.00033  − 1.08

 Left IFOF 0.830 0.026 0.796 0.020 0.0000089  − 1.48

 Left ILF 0.862 0.027 0.828 0.021 0.000015  − 1.42

 Left SLF 0.763 0.021 0.736 0.018 0.000024  − 1.40

 Left UF 0.813 0.028 0.780 0.018 0.000020  − 1.39

 Left PLIC 0.747 0.026 0.724 0.017 0.0015  − 1.07

 Right ALIC 0.734 0.046 0.692 0.021 0.00010  − 1.19

 Right IFOF 0.780 0.025 0.750 0.020 0.000027  − 1.32

 Right ILF 0.789 0.024 0.762 0.020 0.000056  − 1.24

 Right SLF 0.709 0.021 0.688 0.018 0.00023  − 1.08

 Right UF 0.804 0.043 0.763 0.018 0.000030  − 1.24

RD

 Forceps minor 0.496 0.027 0.465 0.024 0.000068  − 1.22

 Genu of CC 0.363 0.029 0.330 0.032 0.00059  − 1.07

 Body of CC 0.379 0.034 0.333 0.032 0.000026  − 1.40

 Splenium of CC 0.297 0.026 0.263 0.021 0.0000025  − 1.46

 Forceps major 0.395 0.025 0.358 0.021 0.00000083  − 1.59

 Left ALIC 0.461 0.037 0.424 0.021 0.000057  − 1.23

 Left ATR​ 0.733 0.108 0.609 0.108 0.00011  − 1.15

 Left IFOF 0.531 0.027 0.500 0.023 0.000028  − 1.26

 Left ILF 0.580 0.028 0.545 0.023 0.000012  − 1.39

 Left SLF 0.530 0.024 0.501 0.021 0.000085  − 1.26

 Left UF 0.562 0.029 0.523 0.025 0.000012  − 1.41

 Right ALIC 0.408 0.030 0.377 0.019 0.000088  − 1.25

 Right ATR​ 0.570 0.051 0.507 0.036 0.000014  − 1.42

 Right ILF 0.542 0.032 0.512 0.022 0.00027  − 1.11

 Right SLF 0.474 0.024 0.449 0.023 0.00017  − 1.04

 Right UF 0.505 0.034 0.470 0.022 0.000020  − 1.24

NODDI

NDI

 Forceps minor 0.588 0.031 0.627 0.022 0.0000043 1.46

 Genu of CC 0.651 0.039 0.687 0.032 0.00037 1.01

 Body of CC 0.689 0.036 0.732 0.034 0.00022 1.22

 Left ALIC 0.581 0.040 0.622 0.041 0.00023 1.01
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Table 4  (continued)

Autism TD P-value Cohen’s d

Mean SD Mean SD

 Left ATR​ 0.579 0.032 0.619 0.028 0.000016 1.32

 Left IFOF 0.608 0.038 0.648 0.028 0.00013 1.17

 Left UF 0.587 0.045 0.629 0.032 0.00017 1.06

 Right IFOF 0.567 0.037 0.604 0.028 0.00020 1.12

 Right ILF 0.549 0.032 0.583 0.027 0.00035 1.12

 Right SLF 0.668 0.028 0.700 0.028 0.00024 1.14

 Right UF 0.489 0.024 0.518 0.031 0.00031 1.02

ISOFV

 Body of CC 0.161 0.027 0.124 0.017 0.0000018  − 1.65

 Splenium of CC 0.142 0.019 0.112 0.016 0.0000011  − 1.67

 Forceps major 0.137 0.017 0.113 0.014 0.00000027  − 1.56

 Left IFOF 0.160 0.031 0.125 0.019 0.000032  − 1.35

 Left ILF 0.134 0.026 0.102 0.019 0.000015  − 1.43

 Left SLF 0.125 0.018 0.098 0.010 0.000000065  − 1.84

ALIC, anterior limb of internal capsule; ATR, anterior thalamic, radiation; CC, corpus callosum; DTI, diffusion tensor imaging; FA, fractional anisotropy; IFOF, inferior 
fronto-occipital fasciculus; ILF, inferior longitudinal fasciculus; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; NODDI, neurite 
orientation dispersion and density imaging; PLIC, posterior limb of internal capsule; RD, radial diffusivity; ROI, region-of-interest; SLF, superior longitudinal fasciculus; 
TD, typically developing subjects; UF, uncinate fasciculus

Table 5  Linear discriminant analysis classification with leave-one-out cross-validation results

AD, axial diffusivity; DTI, diffusion tensor imaging; FA, fractional anisotropy; ISOVF, isotropic volume fraction; MD, mean diffusivity; NDI, neurite density index; NODDI, 
neurite orientation dispersion and density imaging; ODI, orientation dispersion index; RD, radial diffusivity; TD, typically developing subjects

Modality Accuracy (%) Sensitivity (%) Specificity (%) Positive predictive value 
(%)

Negative 
predictive 
value (%)

DTI

 FA 71 69 72 72 69

 MD 73 81 80 81 80

 AD 65 58 72 68 62

 RD 67 81 72 75 78

NODDI

 NDI 82 81 84 84 81

 ODI 55 58 52 56 54

 ISOVF 82 77 88 87 79

Fig. 3  Scatterplots showing a moderate negative correlation between NDI and AQ-communication score in individuals with autism. ATR, anterior 
thalamic radiation; AQ, autism-spectrum quotient; NDI, neurite density index; SLF, superior longitudinal fasciculus; UF, uncinate fasciculus
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was well-correlated with the histological measurements 
of the levels of hyperphosphorylated tau protein asso-
ciated with neuronal loss in a mouse model of human 
tauopathy (rTg4510) [57]. Consistent with our results, 
postmortem studies on the brain of patients with autism 
have previously reported reduced numbers of medium 
and large-caliber axons, which likely affects the synaptic 
function [7, 8]. Using diffusion kurtosis imaging (DKI) 
[58] and fixel-based analysis (FBA) [59], reduced axonal 
density, marked by decreased axonal water fraction, has 
also been suggested within the CC and long-range associ-
ation tracts in adults with autism [4, 49]. The exact cause 
of autism remains unclear; however, some genetic factors 
might also contribute to axon alterations in autism as 
recently reviewed [60]. Indeed, mutations in the chromo-
domain helicase DNA binding protein 8 gene, one of the 
most commonly reported mutations in autism, have been 
associated with reduced axon and dendritic growth in 
humans, resulting in neuronal deficits that can contrib-
ute to autism pathophysiology [61]. Loss of axon integ-
rity may result in reduced information processing speed 
in autistic participants [7]. This is reinforced by the fact 
that NDI was moderately inversely correlated (although 
the correlation was not established after correction for 
multiple comparisons) with AQ-communication score in 
the left ATR, SLF, and UF, the language and social pro-
cessing-related tracts that have an impact on communi-
cation, whose deficits are the core of autism [51, 62, 63]. 
Furthermore, left hemisphere regions are critical for lan-
guage functions, especially in right-handed individuals 
(all participants studied were right-handed) [64]. Taken 
together, we can assume that axonal loss is a likely patho-
logical substrate for autistic symptoms, particularly in 
communication impairment.

The higher ISOVF observed in individuals with autism 
indicated increased extracellular water volume, which is 
expected in neuroinflammatory states [65]. Postmortem 
studies have demonstrated the presence of brain neu-
roinflammation in patients with autism, as shown by 
marked activation of astrocytes and microglia together 
with abnormal chemokine and cytokine levels, such 
as IL-6, IL-8, IFN-γ, TNF-α, and TGF-β1 [9, 66–68]. 
Neuroinflammation is expected to affect the intersti-
tial extraneuronal space where the microglia and other 
immunoreactive cells mediate neuroinflammation [69], 
thereby increasing the isotropic diffusion of extracellu-
lar water content [65]. However, histologically confirm-
ing ISOVF as a neuroinflammatory marker is not feasible 
since it is an active physiological process not observed in 
fixed samples [70]. A recent longitudinal study in trans-
genic rats with Alzheimer’s disease (TgF344-AD) found 
that the evolution of ISOVF changes corresponds to the 
inflammatory burden [71]. Furthermore, in humans, a 

positive correlation was observed between a diffusion 
MRI marker of extracellular free-water and positron 
emission tomography imaging of the translocator pro-
tein, a putative neuroinflammatory marker [72]. Some 
previous studies have also demonstrated higher ISOVF 
in the brain of patients with multiple sclerosis [73, 74], 
Parkinson’s disease [75], and hypertension [76], where 
neuroinflammation is known to play a crucial role in the 
disease process.

Interestingly, NDI and ISOVF changes in individuals 
with autism were observed in distinct WM areas. Lower 
NDI was mainly demonstrated in the right hemisphere 
and anterior parts of the CC and left hemisphere. Con-
versely, higher ISOVF was shown in the posterior parts 
of the CC and left hemisphere. In line with our findings, 
asymmetry of WM diffusion abnormalities with greater 
differences in specific parts of the brain has also been 
observed in adults with autism. However, previous DTI, 
DKI, and FBA studies yielded mixed results, such as left-
anterior [2], right-anterior [5], or right-posterior [49] 
hemisphere dominance or bilateral findings [4]. Incon-
sistency among previous findings is probably due to 
various factors including the heterogeneity of samples, 
such as age, sex, and handedness (including only either 
right- or left-handed or both right- and left-handed par-
ticipants), and technical limitations. The loss of normal 
interhemispheric asymmetry is one of the most repli-
cated findings in autism [12, 77, 78], indicating that the 
underlying pathological process is rather asymmetrical 
in individuals with autism. Our findings with NODDI 
suggest the possible relation between the asymmetricity 
in autism and pathological conditions of different lev-
els. Evidence shows that the typical rightward cerebral 
asymmetry is associated with social reciprocity in autism 
[79]. Furthermore, microglia activation is the first sign 
of neuroinflammation; when activated, microglia can 
cause neuronal dysfunction and cell death [9]. To sum-
marize, we can speculate that an increase in extracellu-
lar free-water and a decrease in neurite density in autism 
occurs via separate trajectories, and their detection 
might depend on scan timing. For instance, changes in 
ISOVF might precede those in NDI. Similar observations 
have been demonstrated in studies on patients with Par-
kinson’s disease [80] and hypertension [76]. Therefore, 
future longitudinal studies that fully depict the trajec-
tory of NODDI changes in the brain of individuals with 
autism are warranted.

DTI evidence on higher FA with higher MD and RD 
in individuals with autism is consistent with those of 
previous studies [12, 13]. Widespread increased MD 
and RD for nearly all tracts showed NDI and ISOVF 
changes, indicating that both metrics are influenced by 
neurite loss and increased extracellular free-water. In 



Page 11 of 14Andica et al. Molecular Autism           (2021) 12:48 	

contrast, increased FA was observed to a much lesser 
extent than NDI and ISOVF, showing the inconsist-
ency of DTI results. As mentioned in the Introduction 
section, DTI is reportedly sensitive but not specific to 
microstructural changes [14, 81]. Furthermore, other 
methodological challenges were associated with DTI. 
First, the DTI model did resolve multiple fiber orien-
tations in regions of crossing/kissing fibers [82]. Sec-
ond, RD may provide an acceptable approximation if 
the voxel includes a healthy fiber bundle. If the signal-
to-noise ratio is low, if crossing fibers are present, or 
if pathology causes decreased anisotropy, such an 
approach can result in misinterpretation of results 
[83]. Indeed, our LDA-LOOCV results showed that 
the NDI and ISOVF measured by NODDI had higher 
diagnostic accuracy, sensitivity, and specificity than 
DTI metrics (i.e., FA, MD, and RD, enhancing their use 
as robust imaging biomarkers in autism.

In the exploratory analysis, no significant difference 
was demonstrated in cortical structural measurements 
between autism and TD groups. Our results were con-
sistent with those of previous studies reporting the 
dynamic pattern of abnormalities in the cortical thick-
ness of children and adults with autism. A widespread 
cortical thickness increase was demonstrated in chil-
dren with autism compared with TD, whereas adults 
with autism showed an increased rate of cortical thin-
ning, resulting in the absence of differences with TD 
[26, 84]. This could be a potential indicator that WM 
microstructural alterations are more prevalent in adults 
with autism.

Limitations
Some limitations exist in the current study. First, an 
absence of histopathological confirmation limited the 
interpretation of our findings. Second, this study has 
a relatively small sample size, which might have lim-
ited the power of statistical analyses and resulted in 
false positive or negative findings. We suspect that a 
relatively small sample size has reduced the statistical 
power, which prevented the association between NDI 
and AQ-communication scores from being statistically 
significant after correction for multiple comparisons. 
Therefore, the relationship between NODDI metrics 
and clinical scores should be carefully interpreted. 
Third, the age range of participants is wide (from 19 
to 53 years), which increases the heterogeneity of par-
ticipants. Indeed, the pattern of WM abnormality var-
ies across the age range of individuals with autism [3, 
38]. Since age was included as a nuisance covariate and 
no significant difference in age was observed between 
autism and TD groups, the impact of the wide age 

range was minimized. Besides age, both sexes were also 
included. As sex has been assumed to have an impact 
on results [85], it was included as a nuisance covariate. 
To assess the influence of sex in our results, supple-
mentary TBSS analysis was performed between male 
and female individuals with autism, and no significant 
difference was observed. However, owing to the small 
sample size of female participants, the results should be 
cautiously interpreted.

Conclusion
Our results suggest that NODDI metrics might be use-
ful as imaging biomarkers for diagnosing autism in 
adults with an accuracy higher than that of DTI. Fur-
thermore, NODDI allows the interpretation of previous 
findings on diffusion tensor metrics changes in the WM 
of individuals with autism. NDI and ISOVF changes 
might reflect neuronal loss and neuroinflammation, 
respectively, within the commissural and long-range 
association tracts in adults with autism. Our findings 
might also suggest that the neuronal loss within the 
language and social processing-related tracts is the 
underlying pathology of communication impairment 
in autism. Future histological studies should investigate 
the correlation between NODDI measures and WM 
pathological changes in autism. Therefore, an improved 
knowledge of the pathogeneses of autism may result in 
an optimized therapeutic strategy.
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