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Abstract

Background: Deficits in motor movement in children with autism spectrum disorder (ASD) have typically been
characterized qualitatively by human observers. Although clinicians have noted the importance of atypical head
positioning (e.g. social peering and repetitive head banging) when diagnosing children with ASD, a quantitative
understanding of head movement in ASD is lacking. Here, we conduct a quantitative comparison of head movement
dynamics in children with and without ASD using automated, person-independent computer-vision based head
tracking (Zface). Because children with ASD often exhibit preferential attention to nonsocial versus social stimuli, we
investigated whether children with and without ASD differed in their head movement dynamics depending on
stimulus sociality.

Methods: The current study examined differences in head movement dynamics in children with (n = 21) and without
ASD (n = 21). Children were video-recorded while watching a 16-min video of social and nonsocial stimuli. Three
dimensions of rigid head movement—pitch (head nods), yaw (head turns), and roll (lateral head inclinations)
—were tracked using Zface. The root mean square of pitch, yaw, and roll was calculated to index the magnitude
of head angular displacement (quantity of head movement) and angular velocity (speed).

Results: Compared with children without ASD, children with ASD exhibited greater yaw displacement, indicating
greater head turning, and greater velocity of yaw and roll, indicating faster head turning and inclination. Follow-
up analyses indicated that differences in head movement dynamics were specific to the social rather than the
nonsocial stimulus condition.

Conclusions: Head movement dynamics (displacement and velocity) were greater in children with ASD than
in children without ASD, providing a quantitative foundation for previous clinical reports. Head movement differences
were evident in lateral (yaw and roll) but not vertical (pitch) movement and were specific to a social rather than
nonsocial condition. When presented with social stimuli, children with ASD had higher levels of head movement and
moved their heads more quickly than children without ASD. Children with ASD may use head movement to modulate
their perception of social scenes.
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Background
Autism spectrum disorder (ASD) is characterized by persist-
ent impairments in social interaction and communication,
as well as repetitive and stereotyped behaviors [1]. Previous
research has identified deficits in motor development [2]
and higher levels of motor stereotypies in children with
ASD than children without ASD [3]. Atypical movement
patterns, such as abnormalities in eye contact and body pos-
ture, and motor stereotypies are used in the evaluation of
ASD, but little attention has focused on characterizing these
motor differences through automated, objective measure-
ment [1, 3, 4]. The current study examined whether head
movement dynamics differentiated children with and with-
out ASD, and contrasted head movement while watching
video of nonsocial and social stimuli.
While movement stereotypies are common in typically

developing infants, they decrease rapidly over the first
2 years of life [3]. Atypical head movements in young chil-
dren have garnered little attention, even though this stereo-
typy is clinically viewed as highly suggestive of ASD [3, 5,
6]. Descriptively, clinicians have noted that children with
ASD exhibit atypical head movements as they stare at their
fingers or objects closely from a “strange angle” [3], repeti-
tively peer at objects “from the side” [7], and examine
objects from “odd angles or peripheral vision” [8].
Goldman et al. [3] found that this stereotypy is rare,
but seemingly specific to children with ASD.
Head movement stereotypy may be an adaptive strategy

that facilitates perception or social communication [9, 10].
Turning away from over-stimulating stimuli often marks a
child’s need to self-regulate [11]. By engaging in head
movement stereotypies or similar movements, individuals
with ASD may be regulating incoming visual and social
information that is perceived as over-arousing [9].
On the other hand, atypical head movements in chil-

dren with ASD may contribute to the social impairments
that characterize children with ASD. Motor movement
is crucial for verbal and nonverbal communication, for-
mation of friendships, and the maintenance of social
interactions. Head nods and turns, for example, serve to
influence turn-taking between social partners [12]. In
successful social interactions, motor movements must be
initiated and coordinated [13] as typical motor control
functions link the perception of other’s actions and one’s
own actions [14]. Motor delays in ASD, such as the in-
ability to coordinate functional head and arm move-
ments, may prevent head turning in response to one’s
name and gaze following, and contribute to failures to
engage in gestural nonverbal communication such as
joint attention [11]. Better quantification of these motor
movements will further our understanding of their role
in the development of ASD.
Motor movement in ASD has typically been assessed de-

scriptively via parent report and trained human observers.

While parents have opportunities to observe their children
in multiple contexts, their reports are prone to bias [4, 15].
Coding schemes of motor movement and stereotypies con-
ducted by trained observers are frequently study-specific
and receive little or no independent validation [3, 16]. In
response to the limitations of qualitative efforts, automated
measurement has been used to objectively document atyp-
ical motor movement and stereotypies [3, 4, 16–18]. ASD
is associated with atypical gait in toddlers and children
[19–22], reduced postural stability in children [23–26], and
increased repetitive and stereotypic behaviors in children
[3, 27, 28]. A recent meta-analysis revealed that motor im-
pairments in movement preparation, upper extremity motor
function, and gait were significantly more pronounced in
individuals with ASD than individuals without ASD [4].
Automated measurement and machine-learning algo-

rithms have been used to examine motor movements to
both enhance clinical assessment [29, 30] and to elucidate
the mechanisms and heterogeneity of ASD [22, 31–33].
Machine learning algorithms have successfully distin-
guished children with severe ASD (age 2–4 years) from
children without ASD during a reach-to-grasp task [29].
Machine learning analysis of motor patterns of children
playing with smart tablet computers correctly identified
children with ASD from children without ASD [30]. Chil-
dren with ASD contacted the table with greater force, had
different distributions of force within a gesture, and dis-
played faster and larger movements than children without
ASD [30, 32].
An initial report on postural sway examined head

movement differences between children with and with-
out ASD. Children with ASD exhibited greater head
movement and sway while standing than children with-
out ASD, and both groups reduced their postural sway
during performance of a nonsocial task [23]. However,
with the exception of postural sway tasks [23], investiga-
tions of motor movement have not focused on head
movements in children with and without ASD. Taken
together, previous research supports the importance of
head movement atypicalities in ASD and suggests they
warrant further exploration.

Current study
We conducted a quantitative comparison of head move-
ment dynamics in children with and without ASD,
matched on mental age, between 2.5- and 6.5-years-old,
using an automated head tracking system. In lieu of sub-
jective, manual coding, automated tracking provided
objective measurement to quantify differences in head
movement dynamics. We hypothesized that children
with ASD would exhibit greater and more rapid head
movement than children without ASD. As children with
ASD typically exhibit preferential attention to nonsocial
versus social stimuli [34–36], we conducted an a priori
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analysis to ascertain whether differences in head move-
ment dynamics between children with and without ASD
varied by social and nonsocial stimulus presentation.

Methods
Participants
Participants were 2.5–6.5-year-old children (mean =
4.72 years, SD = 1.14 years, range= 4.25 years) with (n = 21)
and without (n = 21) ASD. Children with ASD were the
older siblings of infants recruited from a longitudinal study
of high-risk development. Children without ASD were typic-
ally developing children, with no reported risks or diagnoses
at the time of study, and were recruited from a longitudinal
study of high-risk development and from the community,
through recruitment flyers. Children were excluded from
the study if they had a gestational age below 37 weeks or
major birth complications. Parents were reimbursed $50 for
their child’s participation in the study. Recruitment and pro-
cedures were approved by the University’s Internal Review
Board and written, parental consent was obtained before
participation.

Measures and procedure
Clinical diagnosis of ASD or the absence of ASD was deter-
mined at study entry. The Autism Diagnostic Observation
Schedule [37] and Autism Diagnostic Interview-Revised
[38] were used to inform the DSM-IV-based best estimate
diagnosis from a licensed psychologist, who was unfamiliar
with the child’s previous diagnosis. To assess children’s
mental age, children were administered with either the
Wechsler Preschool and Primary Scale of Intelligence (n =
33; WPPSI-III, [39]) or the Mullen Scales of Early Learning
(n = 6; Mullen, [40]). The Mullen was typically administered
when children were 37 months of age or younger. Except
for two 36-month-olds (1 ASD, 1 No ASD), the WPPSI
was administered when childern were older than 37 months.
Three children (2 ASD, 1 No ASD) did not receive a cogni-
tive assessment. Groups were comparable on the assess-
ments administered, χ2(2) = 1.27, p = .53.
Groups were matched a priori on mental age [41].

Groups did not differ on chronological age, F (1,41) =
4.00, p > .05; mental age, F (1,38) = .007, p > .05 (Table 1);
or gender, Fisher’s exact test p = .58 (Table 2).

Children were seated approximately 65 cm in front of a
19-in. video monitor. They were asked to watch a short
video, while a camera positioned on top of the monitor
recorded their face and upper body at 29.971 frames/s.
The protocol consisted of a 16-min video, composed of
both social and nonsocial stimuli. The monitor displayed
six videos of stimuli designed to elicit joint-attention
and emotion expression in children. Video 1 was a 3-
min social stimulus presentation of an actual boy point-
ing in a virtual environment to a side television of an an-
imated character (SpongeBob), which was designed to
elicit looks from the boy to the television (joint atten-
tion). Video 2 was a 2-min presentation of a non-social,
audio-visual screensaver. Video 3 was a 3-min social
stimulus presentation of an animated boy pointing in a
virtual environment to a side television of an animated
character (SpongeBob), which was designed to elicit
looks from the boy to the television (joint attention).
Video 4 was a social, 6-min emotion-eliciting story of a
birthday party told by a woman. Video 5 was a social, 1-
min Wonder Pets cartoon clip, and video 6 was a social,
1-min Mickey Mouse cartoon clip (Fig. 1).
Based on an a priori hypothesis, video 2 served as the

nonsocial stimulus and the first 2-min of video 4 served as
the social stimulus (the same pattern of results was ob-
served when analyzing the full 6-min of video 4). Other
videos contained a mixture of actual and animated figures
and were not appropriate for sociality contrasts.

Head tracking
To quantify head movement dynamics, a fully automatic,
person-independent computer-vision algorithm was used to
track pitch, yaw, and roll of head movement (http://zfa-
ce.org/, Zface, [42]). For each video frame, the algorithm
registered a dense 3D face shape in real-time. This was ac-
complished using a fast cascade regression framework
trained on high-resolution 3D face-scans of posed and spon-
taneous face and head motion. Zface was computationally
efficient but delivered high precision tracking. Experimental
findings strongly support the validity of real-time, 3D regis-
tration and reconstruction from 2D video [42]. Compared
to 10 other computer-vision based approaches for head
tracking, Zface achieved the lowest absolute angular error
for head pitch and the second lowest angular error for yaw
(2.66 and 3.93 degrees, respectively) [43].
For each video frame, the algorithm outputted 3° of rigid

head movement—pitch (vertical movement; head nods),
yaw (horizontal movement; head turns), and roll (lateral

Table 1 Chronological age and mental age by ASD group

N Mean SD

Age at visit (months) No ASD 21 51.23 15.35

ASD 21 60.80 16.52

Mental age (months) No ASD 20 54.58 14.59

ASD 19 54.08 22.95

Children with ASD did not differ from children without ASD on chronological
or mental age

Table 2 Gender by ASD group

Males Females

No ASD 14 7

ASD 17 4

Children with ASD did not differ from children without ASD on gender
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head inclinations toward the shoulder) (Fig. 2) or a failure
message when a frame could not be tracked (see Table 3
for the range of pitch, yaw, and roll).
17.4% of the frames could not be tracked, which is

comparable with previous work in this area [44]. Several
conditions contributed to tracking failure, including self-
occlusion (hands on the face), extreme head movement,
and location change (e.g., i.e., child moved out of the
frame). Proportions of successfully tracked frames were
examined for ASD group differences.

Data reduction
To ensure that missing data would not bias measure-
ments, head movement dynamics were measured separ-
ately for each consecutively tracked segment (epoch).
Epochs were defined as successfully tracked consecutive
frames within a video (mean epoch length = 577.35
frames, at 29.971 frames per second). A 2 (group) by 6
(video) repeated-measures ANOVA indicated that the
number of epochs per video did not differ significantly

between groups, F (40) = 2.70, p = .11, Marginal Mean-
ASD = 18.1, Marginal MeanNonASD = 8.0. A 2 (group) by 6
(video) showed that the mean duration of an epoch also
did not differ significantly between groups, F (40) = 1.89,
p = .18, Marginal MeanASD = 747.98 frames/epoch, Mar-
ginal MeanNonASD = 1049.04 frames/epoch (Table 4).
Nevertheless, children with ASD tended to have more
epochs of briefer duration than children without ASD.
Within each epoch, head movement dynamics were

quantified with respect to the three principal axes of
pitch, yaw, and roll. For each of these axes, angular dis-
placement and angular velocity were calculated for each
frame of video. Angular values in displacement and vel-
ocity of pitch, yaw, and roll were measured in radians
and radians/frame, respectively. For pitch, yaw, and roll,
angular displacement was calculated as the difference
between each observed head angle value and the overall
mean of head angle within each epoch. Similarly, for
pitch, yaw, and roll, angular velocity was calculated as
the temporal derivative of the angular displacement for

Fig. 1 Stimuli presentation by video. The 16-min video consisted of social and nonsocial stimuli, designed to elicit joint-attention and emotion
expression in young children

Fig. 2 Head orientation. The 3° of rigid head movement (pitch, yaw, and roll) are indexed above by the x, y, and z arrows. The green arrow
indexes pitch, the blue arrow indexes yaw, and the red arrow indexes roll
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each movement direction using the finite difference
method (the location difference between successive
video frames).
The root mean square (RMS) then was used to meas-

ure the magnitude of angular displacement and angular
velocity of pitch, yaw, and roll, respectively [44–47]. The
RMS value was calculated as the square root of the
arithmetic mean of the squares of the original values, in
our case the angular displacements and the angular vel-
ocities. To account for the varying lengths of epochs
caused by untracked frames, the RMS value for each
epoch was weighted by its epoch duration. These
weighted values were averaged across epochs to obtain a
normalized RMS value (nRMS; Eq. 1). The obtained
nRMS for angular displacement and angular velocity
for pitch, yaw, and roll are used in subsequent ana-
lyses and are referred to as angular displacement and
angular velocity for simplicity.

nRMSx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n

x21 þ x22 þ…þ x2n
� �

r

ð1Þ

where x21…x2n are the squared differences between the value
of a frame and the mean value of frames within an epoch.

Analytic approach
Preliminary analyses
A preliminary 2 (group) × 6 (video) repeated-measures
analysis of variance (ANOVA) compared the proportion
of successfully tracked frames by ASD group to deter-
mine whether children with and without ASD differed in
levels of automated tracking.

ASD group differences
A second 2 (group) × 6 (video) repeated-measures
ANOVA was used to test for differences between

children with and without ASD in the angular displace-
ment and angular velocity of pitch, yaw, and roll respect-
ively. We hypothesized that children with ASD would
exhibit greater angular displacement and angular vel-
ocity of pitch, yaw, and roll than children without ASD.

ASD group by stimulus type interaction
Planned contrasts were then used to test for the interaction
between stimulus type (social versus nonsocial) and group
(ASD versus no ASD). A 2 (group) × 2 (NonsocialVideo2 vs.
SocialVideo4) repeated-measures ANOVAs examined
whether children with and without ASD differed in pitch,
yaw, and roll angular displacement and angular velocity
separately between nonsocial (video 2) and social stimuli
(video 4). All main analyses were then repeated covarying
chronological age to determine the degree to which differ-
ences between the mental-age-matched groups might be
due to chronological age. (Analyses of supplementary head
movement variables, which yielded results similar to those
outlined below, are found in Additional file 1.)

Results
Preliminary analyses
A one-way analysis of the proportion of successfully
tracked frames over the entire course of the protocol re-
vealed no group differences, F (39) = .08, p = .77, partial
η2 = .003 (Fig. 3). A repeated-measures ANOVA indi-
cated a main effect of video, F (3.58, 38) = 3.01, p = .03
partial η2 = .07, and no interaction of video by group, F
(3.58, 38) = .15, p = .95, partial η2 = .004. There were no

Table 3 Range of pitch, yaw, and roll

Minimum
(radians)

Maximum
(radians)

Minimum
(degrees)

Maximum
(degrees)

Pitch − .75 1.16 42.97 down 66.46 up

Yaw − .85 .84 48.70 left 48.13 right

Roll − 1.05 1.13 60.16 left shoulder 64.74 right shoulder

Table 4 Number of epochs and mean epoch duration by ASD
Group

Marginal Mean F p value

Number of Epochs No ASD 8.00 2.70 .11

ASD 18.00

Mean Epoch Duration
(frames)

No ASD 1049.04 1.89 .18

ASD 747.98

Fig. 3 Proportion of tracked frames by group. Children with ASD did
not differ in their proportion of frames successfully tracked by the
automated software (Zface) than children without ASD. Overall, 85%
of frames for children with ASD were tracked and 87% of frames for
children without ASD were tracked. Error bars: ± 1 SEM
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group differences in proportion of successfully tracked
frames by video, ps > .69.

ASD group differences
For angular displacement, a 2 (group) × 6 (video)
repeated-measures analysis of variance (ANOVA) revealed
main effects of video for pitch and yaw. No significant in-
teractions of video and group were found for the angular
displacement of pitch, yaw, and roll. Children with ASD
exhibited greater angular displacement of yaw than chil-
dren without ASD, indicating greater head turning, F (1,
37) = 4.36, p = .04, partial ηp

2 = .11 (Fig. 4, Table 5). Chil-
dren with ASD did not differ from children without ASD
on pitch and roll angular displacement, ps > .05.
For angular velocity, repeated-measures ANOVA re-

vealed a main effect of video for pitch and roll. No sig-
nificant interactions of video and group were found for
angular velocity of yaw, pitch, and roll. Children with
ASD exhibited greater angular velocity of yaw, F (1, 37)
= 4.01, p = .050, partial ηp

2 = .10, and roll, F (1, 37) = 7.35,
p = .010, partial ηp

2 = .17 than children without ASD, in-
dicating greater head movement (Fig. 5, Table 5). Pitch
angular velocity did not differ between children with
and without ASD, p > .05.

ASD group by stimulus type (social versus nonsocial
video) interaction
Planned contrasts revealed an interaction between video
and group for yaw angular displacement, F (1,40) = 7.86, p
< .01, ηp

2 = 16, and a significant between-subjects effect of
group, F (1) = 5.99, p = .019, ηp

2 = .13 (Fig. 6). Children with
ASD had greater angular displacement of yaw in the social
video (video 4), than children without ASD, and did not
differ in their angular displacement of yaw in the nonso-
cial video (video 2) than children without ASD. There
were no interactions between video and group for angular
displacement of pitch and roll, ps > .05.

For angular velocity of yaw, there was an interaction
between video and group, F (1,40) = 8.35, p < .01, ηp

2

= .17, and a significant between-subjects effect of group,
F (1,40) = 4.90, p = .033, ηp

2 = .11 (Fig. 6). There was also
an interaction between video and group for angular vel-
ocity of roll F (1,40) = 4.27, p = .045, ηp

2 = .10, with a sig-
nificant between-subjects effect of group, F (1,40) = 4.69,
p = .036, ηp

2 = .11 (Fig. 6). Children with ASD had greater
angular velocity of yaw and roll in video 4 (social video)
than children without ASD and did not differ in their
angular velocity of yaw and roll in video 2 (nonsocial
video). There was no interaction between video and
group for angular velocity of pitch, p > .05.

Controlling for age
A 2 (group) × 6 (video) repeated-measures analysis of
variance (ANOVA) was conducted with chronological
age as a covariate. As when not considering this covari-
ate, children with ASD exhibited greater angular dis-
placement of yaw than children without ASD, indicating
greater head turning, F (1, 36) = 5.36, p = .02, ηp

2 = .13. As
when not considering the age covariate, children with
ASD exhibited greater angular velocity of roll, F (1, 36)
= 5.45, p = .02, ηp

2 = .13, than children without ASD, indi-
cating greater head rolling motion. Unlike previous find-
ings without age, children with ASD did not exhibit
greater angular velocity of yaw, F (1, 36) = .73, p = .40,

Fig. 4 Between-group differences in yaw angular displacement.
Children with ASD have greater yaw angular displacement than children
without ASD. Note. Error bars: ± 1 SEM

Table 5 Repeated-measures ANOVA of pitch, yaw, and roll

df F p ηp
2

ADis_Pitch Video 3.74 3.21 .02* .08

Video*Group 3.74 0.40 .79 .01

Group 1.00 1.81 .19 .05

ADis_Yaw Video 4.85 3.97 <.01* .10

Video*Group 4.85 1.39 .23 .04

Group 1.00 4.36 .04* .11

ADis_ Roll Video 2.71 0.42 .72 .01

Video*Group 2.71 1.26 .29 .03

Group 1.00 3.33 .08 .08

AVel_Pitch Video 3.31 3.27 .02* .08

Video*Group 3.31 0.68 .58 .02

Group 1.00 0.77 .39 .02

AVel_Yaw Video 3.60 1.90 .12 .05

Video*Group 3.60 0.57 .67 .02

Group 1.00 4.01 .05* .10

AVel_Roll Video 3.46 2.58 .06 .07

Video*Group 3.46 0.56 .67 .02

Group 1.00 7.35 .01* .17

*p < .05

ADis angular displacement, AVel angular velocity
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ηp
2 = .02 when controlling for chronological age. All other

findings were unchanged.
The planned contrast models (social versus nonsocial

video) were repeated with angular velocity including
chronological age as a covariate. As in previous findings
without age as a covariate, there was an interaction be-
tween video and group for angular velocity of yaw, F
(1,39) = 4.83, p < .03, ηp

2 = .11, but there was no between
subject’s effect of group, F (1,39) = 1.72, p = .20, ηp

2 = .04.
Children with ASD had greater angular velocity of yaw
in the social video (video 4) than children without ASD,
and the two groups did not differ in the angular velocity
of yaw and roll in the nonsocial video (video 2). Unlike
previous analyses without age as a covariate, no inter-
action between group and video was found for angular

velocity of roll when chronological age was included in
the model, F (1,39) = 2.97, p = .09, ηp

2 = .07. All other
findings were unchanged.

Discussion
Using automated, objective measurement, we quantified
differences in head movement dynamics between chil-
dren with and without ASD, shedding light on head
movement atypicalities previously described by clini-
cians. Children with ASD showed greater angular dis-
placement of yaw and greater angular velocity of yaw
and roll than children without ASD. Angular displace-
ment is interpreted as head movement quantity, and
angular velocity is interpreted as the speed of head
movement. Thus, children with ASD exhibited greater

Fig. 5 Between-group differences in yaw and roll angular velocity. Children with ASD had greater yaw and roll angular velocity than children without
ASD. Note. Error bars: ± 1 SEM

Fig. 6 Video (nonsocial vs. social) by group interaction. Compared to children without ASD, children with ASD differed in angular displacement
of yaw (a) and angular velocity of yaw (b) and roll (c) only during the social stimulus (video 4), but not the nonsocial stimulus (video 2). Error
bars: ± 1 SEM
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head turning (yaw)—and turned their heads (yaw) and
inclined their heads (roll) with greater speed—than
children without ASD. Differences in head movement
dynamics between children with and without ASD
were specific to the presentation of a social stimulus.
That is, children with ASD exhibited greater yaw
angular displacement and yaw and roll angular vel-
ocity during presentation of the social stimulus than
children without ASD.
Analyses were repeated including chronological age as a

covariate—groups were matched a priori on mental
age—to disentangle age and ASD differences [3, 48].
When controlling for chronological age, children with
ASD continued to exhibit greater head turning (yaw) and
inclined their heads (roll) with greater speed than children
without ASD. When controlling for chronological age, dif-
ferences in head movement dynamics between children
with and without ASD remained specific to the presenta-
tion of a social stimulus for angular displacement of yaw
and angular velocity of yaw, but not angular velocity of
roll. Comparison of models, with and without statistical
controls for chronological age, highlight angular displace-
ment of yaw and angular velocity of yaw and roll as con-
sistent signatures of ASD.
The current findings add to a small but growing body

of literature utilizing automated measurement of body
and head movement to objectively quantify the ASD
phenotype [32, 49]. In a previous investigation, for ex-
ample, 9-year-old children with ASD exhibited greater
sway while standing in both the anterior-posterior
(front-to-back) and medial-lateral (side-to-side) axes
than did children without ASD, but sway was reduced
during the search task, suggesting better movement con-
trol when pursuing a goal [23]. By contrast, we mea-
sured 3° of rigid head movement (pitch, yaw, and roll)
from video-recordings of younger, seated children.
Younger children with ASD exhibited greater head
displacement and velocity in the horizontal (yaw) and
lateral (roll) but not vertical (pitch) axes than children
without ASD. These differences in displacement and vel-
ocity were specific to social stimuli presentation. To-
gether, these findings suggest that nonsocial engagement
constrains excess head movement dynamics in children
with ASD, while spontaneous activity, particularly in re-
action to social stimuli, is associated with increased head
movement dynamics.
Children with ASD may use head movement as a way

to modulate their sensory experience [50]. Previous pri-
mary research [4] and meta-analytic results of observa-
tional measures [51] indicate that infants and children
with ASD displayed higher levels of motor impairments
than infants and children without ASD. Motor impair-
ments may constitute a core feature of ASD, a finding
supported by the current studies comparisons of

children with and without ASD [4, 32]. However, when
head movement was compared during the presentation
of social and nonsocial stimuli, head movement differ-
ences were specific to the presentation of social stimuli.
Previous research using eye-tracking indicates that chil-
dren with ASD look less at social stimuli than nonsocial
stimuli [36, 51, 52], suggesting that children with ASD
shift their gaze to regulate overstimulating social infor-
mation. Viewing faces and engaging with social partners
requires complex timing and attunement, which may be
effortful for children with ASD [53]. Together, these
findings suggest that increased head movement in reac-
tion to social stimuli may reflect increased sensitivity to
social scenes among children with ASD.
Children with ASD may engage in more extreme and

quicker head movement than children without ASD be-
cause they are unable to regulate incoming social infor-
mation. Possible disruptions in motor planning and head
movements early in development may have cascading
effects in later social engagement [54, 55]. Given early
associations between motor experience and the develop-
ment of social behaviors [56], early disruptions in head
movement may index atypical developmental trajectories
[6, 57].

Limitations and future directions
Differences between children with and without ASD in
head displacement and velocity were obtained in a small
sample, highlighting the need for replication. The
current study tested specific a priori hypotheses regard-
ing head movement dynamic differences by nonsocial
and social stimuli. Future research could build upon this
research and explore whether head movement dynamics
varies proportionally as a result of the degree of sociality
of the stimulus. Future research with larger sample sizes
and a fully counterbalanced protocol will allow re-
searchers to examine more nuanced research questions.
While use of automated measurement marks progress

in objectively quantifying head movement dynamics,
there were limitations associated with this approach.
The inability of the automated software to track extreme
head movement and self-occlusion resulted in missing
data (~ 17%). Although missing data did not vary by
group, the presence of missing data necessitated using
epochs of continuous data collection as a unit of ana-
lysis. Moreover, although not significant, children with
ASD tended to have more epochs of briefer duration
than children without ASD. It is possible that an inabil-
ity to quantify head movement between epochs yielded a
conservative assessment of group differences.
Angular displacement and velocity of pitch, yaw, and

roll were moderately correlated in our data, and we
chose to examine these dynamics separately. An alterna-
tive approach could be to model these movements
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together to assess differences in children with and with-
out ASD. The addition of postural adjustments and
muscle tension measurements to the model would allow
for examination of coupling between head, neck, and
torso in human movement, and potential differences in
coupling associated with ASD.

Conclusions
Using automated measurement, we quantified differences in
the quantity and speed of head movement between children
with and without ASD, finding differences in the lateral (yaw
and roll) but not vertical (pitch) domain. Children with ASD
had greater yaw angular displacement and greater yaw and
roll angular velocity, and these differences were most pro-
nounced during social stimulus presentation. The results are
consistent with the hypothesis that children with ASD use
head movement to regulate their direct exposure to poten-
tially arousing social situations. The study reports on a
promising advance in objectively characterizing head move-
ment dynamics. Our findings highlight the possibility of
using automated measurement of head motion to supple-
ment current diagnostic approaches for ASD. Automated
measurement of head motion in varied contexts could pro-
vide an objective method of differentiating children with and
without ASD. In contrast to previous approaches to head
movement quantification, the computer-vision based ap-
proach we used here is non-invasive, may be applied to
already collected video of children, and may be well suited
for use in monitoring change over the course of the disorder
and in response to interventions.

Additional file

Additional file 1: Summary of Supplementary Data Analyses. (DOCX 23 kb)
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