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Abstract

Background: Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for
administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and
potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using
machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels
of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the
clinical population.

Methods: We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech
(Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273
controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to
select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We
augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust
detection of ASD from non-ASD.

Results: By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of
features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a
majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic
Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of
0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features.

Conclusions: The resulting models provide improved stability over previous machine learning efforts to minimize
the time complexity of autism detection due to regularization and a small parameter space. These robustness
techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of
autism screening, diagnosis and monitoring, possibly including analysis of short home videos.

Keywords: Autism, Autism spectrum disorder, ASD, Autism screening, Autism diagnosis, Machine learning, Sparse
machine learning

Background
Autism spectrum disorder (ASD) is a developmental neu-
ropsychiatric disorder characterized by impairments in
social interaction, communication (both verbal and non-
verbal), and restricted, repetitive behaviors. The most
recent estimates by the Centers for Disease Control
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indicate that autism affects one in 68 children in the USA
and is much more common in males, affecting as many
as one in 42 boys as compared to one in 189 girls [1].
The average age of diagnosis for ASD is 4.5 years, though
parents often identify developmental concerns within the
child’s first year of life, even as early as 6 months of age [2],
and clinicians report that reliable diagnoses can be made
as early as age 2 [3].
Currently, the diagnosis of autism is based on behav-

ioral symptoms alone. A typical diagnostic appointment
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consists of a multi-hour behavioral evaluation by a team
of clinicians, usually in a specialized diagnostic clinic or
developmental medicine center and only after referral
from the child’s general pediatrician. During the diagnos-
tic encounter, trained specialists will administer a battery
of behavioral instruments and rating scales, which are
standardized and can aid clinicians in reaching a best-
estimate diagnosis. One of the most commonly utilized
behavioral instruments is theAutismDiagnostic Observation
Schedule (ADOS) [4], which is considered a gold-standard
diagnostic tool. The ADOS is an observation-based clin-
ical assessment that is broken into four modules based
on age and language level: Module 1 is intended for
young children with no or single-word speech, module
2 is intended for individuals with phrase speech, mod-
ule 3 is intended for verbally fluent children, and module
4 is intended for verbally fluent adolescents and adults.
The ADOS administrator will participate in a number of
standardized activities with the child and subsequently
answer a set of 28–30 questions about the child’s behav-
ior during the activities. Each answer is coded on a scale
from 0 to 3, with higher codes indicating more severe
impairments in each measured behavior. Domain sub-
scores and a total score are calculated by converting
codes of 3 to 2 and totaling the codes from the appro-
priate subset of questions, and from these scores, a final
classification of autism, autism spectrum, or not met is
reached. In the original ADOS-G [5], subscores for com-
munication, social interaction, and restricted, repetitive
behavior (RRB) domains were calculated, but only the
social and communication domains were used to deter-
mine the final classification. In the revised ADOS-2 [6]
scoring algorithm, communication and social interaction
were combined into a single social affect domain. The
ADOS-2 also calculates a RRB domain, and both the
social affect and RRB domains are used in determining
the final classification. In addition to domain/total scores
and a classification, the ADOS-2 also provides an algo-
rithm for calculating a comparison score, which ranges
from 1 to 10 and is meant to capture autism severity after
calibration for age and language level. The total time for
administration and scoring of the ADOS is approximately
60 min.
Due to the rigorous and time-consuming nature of

diagnostic examinations for autism, many diagnostic cen-
ters have expanding waiting lists for appointments as
the increasing demand exceeds their capacity to see
patients. This bottleneck translates to delays in diag-
nosis of 13 months and longer for minority or lower
socio-economic status groups. These delays can also
delay insurance coverage and access to behavioral ther-
apies [7, 8]. These issues indicate that there is a need
for short, easily accessible, and accurate risk assess-
ments for ASD both to provide feedback to parents and

to provide clinics better abilities to triage and man-
age their patients. In our previous work, we applied
machine learning approaches to identify minimal sets
of behavioral features from commonly used behav-
ioral instruments that yielded high accuracy in distin-
guishing children with ASD from those without ASD
[9–12], as well as from children with other develop-
mental delays [13]. In the present study, we focus on
expanding the generalizabilty of those approaches, with
specific focus on observation-based data from modules
2 and 3.
While identifying a minimally viable set of features for

behavioral detection of varying forms of autism is an
important step forward in an effort to construct a clin-
ical process that reduces time to diagnosis, the models
derived from our earlier work [12] did not account for
instances when core features of the model could not be
answered. As a consequence, these models may suffer
from a lack of generalizability, such as in instances when
the answer to one or more questions cannot be given,
a phenomenon we might expect to be common in clin-
ical practice. The present study attempts to address this
limitation by focusing on creating more robust models
that explicitly account for missing features. Specifically,
we focus on data-driven identification of a small set
of behavioral features on which several types of classi-
fiers yield high accuracy to characterize an underlying
structure in the data that is important under a variety
of optimization criteria—that is, the same features used
within and across models—and that confers an inher-
ent robustness to the task of classification. The work
here uses three guiding principals for the use of machine
learning in building a process for faster autism detection,
namely:

• To evaluate model accuracy, we computed the area
under the receiver operating characteristic (ROC)
curve. This metric deals well with label imbalance
and remains agnostic to thresholding choices made
for classification (i.e., tradeoff between false positive
and false negative rates). Our objective was to reach
accuracies close to those of the full ADOS test and
when available to the best-estimate clinical diagnosis.

• A desired behavior for the selected models was
simplicity or parsimony. A model with less
parameters and more regularization (high
penalization, small tree depth) will have better
generalization, more stability to noisy data, and less
over-fitting.

• Finally, a crucial part of our model selection was the
potential for clinical application, and our ability to
interpret exactly how the model’s features influence
the detection of ASD. Interpretable models should be
preferred. Linear models for regression, logistic
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regression, LDA, and linear SVM provide an intuitive
interpretation on how much (value) and how (sign)
each feature is used in the classification. Simple
decision trees explicitly show how features are used
together to decide if a patient has high risk for
autism. With that knowledge, the selected model
should result in a better understanding of the
characteristics of ASD within each subject.

Using these guiding principles, we tested our approach
on an aggregated collection of databases for ADOS mod-
ules 2 and 3. To derive sound estimates of the accuracies
that could be reached on unseen data and avoid overfit-
ting due to testing too many models, we selected only
one or two models per module based on the three above
criteria—accuracy, simplicity, and interpretability—and
tested them on 20% of the data. We show the outcomes
in light of the above criteria and describe the potential
contribution of chosen models to the clinical detection
of autism as well as their limitations. Finally, we discuss
how the derivation of a quantitative phenotype for autism
via the use of smaller sets of features in an interpretable
machine learning model could help to accelerate the diag-
nostic process and therefore help ameliorate bottlenecks
in access to care.

Methods
Data sample and preprocessing
We aggregated item-level Autism Diagnostic Observation
Schedule (ADOS) module 2 and module 3 score sheets
from four autism spectrum disorder (ASD) data repos-
itories: the Boston Autism Consortium (AC), Autism
Genetic Resource Exchange (AGRE), Simons Simplex
Collection (SSC), and the Simons Variation in Individu-
als Project (SVIP). The module 2 data set consisted of
1389 subjects (1319 ASD, 70 non-ASD), and the mod-
ule 3 data set consisted of 3143 subjects (2870 ASD, 273
non-ASD). Subjects were classified as ASD or non-ASD
based on best-estimate clinical diagnosis where avail-
able, and for the small subset where clinical diagnosis
was not available (n = 75 module 2, n = 125 module 3),
the ADOS algorithm outcome was used to define the
class. For module 3, the controls had a mean age of
109 months (std dev = 35 months) and children with ASD
had a mean age of 115 months (std dev = 38 months;
average 116 months (std dev = 38 months) for clas-
sic autism and 114 (std dev = 38 months) for autism
spectrum). For module 2, controls had a mean age of
60 months (std dev = 28) and children with ASD had a
mean age of 83 months (std dev = 38; 85 (std dev = 38)
for classic autism and 74 (std dev = 36) for autism
spectrum). For module 3, our non-ASD control set con-
sisted of 137 males and 136 females and our ASD cohort
consists of 2420 males and 450 females. For module 2,

our non-ASD control set consisted of 41 males and 29
females, and our ASD set consists of 1060 males and 259
females.
Before beginning ourmachine learning pipeline, we per-

formed preprocessing steps on our dataset. Both modules
2 and 3 contained missing value codes (e.g., answer codes
“8,” “9,” “N/A”). Module 2 feature A3 (speech abnormality)
was missing 2.3% of the time, with all other features miss-
ing answers in less than 1% of the subjects. Module 3 had
more missing values, with 1.8% of feature A3 (echolalia)
missing, 78.6% of feature B3 (vocalized nonverbal com-
munication) missing, and 8.2% of D3 (self-injury) missing.
We elected to incorporate these missing values as features
for model development. First, for each item in modules
2 and 3, we created a binary “not answered” feature that
captured whether or not the administrator answered the
question, irrespective of the code provided. We grouped
answers that indicated “N/A” (e.g., an 8 or 9) together with
answers that were omitted and left blank. We then coded
this binary feature (1 if X is missing and 0 if X is present)
as X-missing, so, for instance, if feature A3 was coded as
missing, A3-missing took the value 1. Although this dou-
bled our initial feature set, it allowed us to interpret how
the inability to answer a question, or inability to assess a
certain behavior, related to diagnosis in both modules. In
addition to the primary items from the instruments and
the missing features, we included age and gender as fea-
tures, resulting in a 58-item feature set for both module 2
and module 3. Next, we performed a normalization step
to guarantee that our feature data were all on a uniform
scale. Since all of the original ADOS items range from 0
to 3, we transformed the rest of the features to be on the
same scale. Gender and other binary indicators were rep-
resented by 0’s and 3’s, and age was rescaled to fit in the
0–3 range.
We used the best-estimate clinical diagnosis or ADOS

classification when diagnosis was not available as the pre-
diction class for our machine learning experiment. When
using regression, to increase the granularity of our pre-
diction class, we split our subjects into three diagnostic
groups at training time: autism, spectrum, and non-ASD.
The autism class included diagnoses of autism, autis-
tic disorder, and classic autism, while the spectrum class
included diagnoses of autism spectrum disorder/ASD,
Asperger’s, high-functioning autism, and pervasive devel-
opmental disorder-not otherwise defined (PDD-NOS). In
our machine learning analyses, these group labels would
then be converted into integers (non-ASD (0), spectrum
(1), and autism (2)) which captured the increasing sever-
ity of the classes. This assignment applies only to the
linear regression tasks but is reasonable in order to test
whether increased ordinal structure on a regression task
leads to different performance on a two-class (0 vs 1 and 2)
classification.
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Machine learning
We tested the performance of 17 unique machine learning
classifiers on both our module 2 and module 3 feature sets
to accurately predict the diagnosis of ASD or non-ASD,
using a small stable subset of features yielding comparable
accuracy to the complete feature set. Training and testing
of our models was performed in Python using the package
scikit-learn [14].
We chose to test models from five distinct classifier

families: linear regressions (thresholded for classification),
nearest neighbor models, general linear models (classi-
fiers, as opposed to regressors), support vector machines,
and tree-based methods. Table 1 contains a summary
of the different models we tested. Some classifier fami-
lies provide a built-in sparsifying parameter—for exam-
ple, Lasso penalizes the weights using the L1 norm. By
increasing this penalty term, one can force the model
to use fewer features to generate predictions [15]. How-
ever, some of our models, namely, most of the kernels in
support vector machines (SVMs) and tree-based classi-
fiers, do not have an easily tunable sparsifying parameter.

For these classifiers, we added a feature selection tech-
nique to the training phase. Three techniques for scoring
each feature individually were used, detailed in Table 2:
ANOVA, nonzero coefficients of a Lasso trained on the
data or more important features of a full decision tree
trained on the data (referred to as tree in subsequent
sections). The number of features selected was tuned
using a parameter as detailed in Table 2. This param-
eter was then treated as the sparsifying coefficient for
the sparsified model (feature selection followed by clas-
sification performed on selected features). We annotated
this sparsified model with the feature selection method
(“ANOVA-,” “Lasso-,” or “Tree-”; so, for instance, a SVM
trained on a subset of features found to be important
by application of Lasso was written “Lasso-SVM”) as a
prefix. For comparison, we also used the base model
without any additional feature selection, denoted with
the prefix “NS-.” In this case, and for the second phase,
grid search was used to optimize non-sparsifying regu-
larization parameters (e.g., L2 regularization coefficient)
only.

Table 1 Summary of tested classifiers

Classification family Models used Built-in sparsifying
coefficient, other
penalization

Under-sampling used Relevance

Penalized linear regression Linear Regression L1 penalization Yes • Very interpretable

Lasso L2 penalization • Simple model

Ridge • Linear like ADOS

Elastic net • Can use gradation in label

Relaxed Lasso (ASD vs spectrum)

Nearest neighbors Nearest shrunken centroids L1 penalization Yes • Can identify subgroups within classes,

which is likely for our sample

• Simple model

General linear models for
classification

LDA (L1) L1 penalization No • Simple model

Logistic regression (L1, L2) L2 penalization • Interpretable

• Based on linear assumptions

Support vector machines Linear kernel (L1) L1 penalization No • Can capture more complex shapes in
data when using nonlinear kernels

Polynomial kernel Regularization
parameter

Radial kernel

Exponential kernel

Tree-based classifiers Decision tree Tree depth No • Performs well on categorical data

Random forest Number of trees • Better captures feature interactions

Gradient boosting • Tree is interpretable

AdaBoost • Boosting techniques often gives higher
accuracy than simpler models

We trained and tested 17 unique machine learning classifiers on both our module 2 and module 3 training data sets. Linear regressions models were trained to differentiate
autism, spectrum, and non-ASD (3 prediction classes) but tested to detect only ASD from non-ASD
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Table 2 Summary of feature selection techniques used for classifiers without sparsity enforcing parameters

Feature score Description Sparsifying coefficient Advantages

ANOVA The kmost discriminative features k • Simple test

when doing the ANOVA test • Fast

• A priori information on what features

would not be useful in classification using

only the variance for each features

Lasso Nonzero coefficients of the Lasso L1 coefficient • Linear model

trained on the data for a given L1 coef • Features used by a more parsimonious model

Tree The kmost important features when building k • Good with categorical data as it can use

a full decision tree on the data multiple cuts per feature, unlike linear models

The third column gives the parameter that will be used by the full model as the sparsifying coefficient for the grid search

Feature reduction
The first phase of our machine learning pipeline consisted
of identifying a reduced feature set that was subsequently
used to build our final models. First, we randomly split
our preprocessed data into distinct training (80%) and
testing (20%) sets, with the same proportion of ASD to
non-ASD subjects in each set. Preserving a portion of
our data strictly for testing enabled us to choose our final
model based on how well it could generalize to unseen
data, preventing the selection of a model overfit to our
training set.
To identify an optimal subset of features for each of our

models, we performed a stratified 10-fold cross-validation
(feature selection CV) with a nested grid search on each
fold, using only our training data set. We corrected
imbalance in class size by setting class weights inversely
proportional to the class sizes. When classifiers/classifier
implementations did not allow for different class weights,
we used undersampling in each fold of the feature selec-
tion CV, resulting in a 1:1 ratio of ASD to control data
in each fold. The grid search technique searches for the
set of parameters that optimizes the performance of the
model, traditionally measured by classification accuracy.
For our purposes, we altered the traditional grid search
method in two ways. First, due to our class imbalance,
we utilized the area under the receiver operating char-
acteristic (AUCROC) and area under the precision-recall
curve (AUCPR) as our performance metrics instead of
basic accuracy. Second, we added a penalization term to
the grid search objective function to enforce sparsity in
the model. To do this, we found the set of parameters
θ that maximize the penalized objective of the equation
below where AUC denotes the area under curve of either
ROC or PRC.

θ̂ = argmaxθ

(
Msparsity(θ)

)

= argmaxθ

(
AUC(θ) − μ

Number of features used(θ)

total number of features

)

By penalizing the use of more features, we force some
bias in the selected algorithm but decrease the variance
by decreasing the model complexity. This approach can
be seen as similar to Lasso but for the L0 norm (how
many features are in our model) and will be called L0
regularization in the following sections. This grid search
metric improves the selection of simpler, sparser mod-
els that highlight important features and limit overfitting.
After testing different values on a first cross-validation,
μ = 0.1 Gr was found to be a good coefficient for the reg-
ularization as it yielded a small number of features while
remaining within 1% accuracy of the non-regularized
version.
In addition to the above, and to further enforce spar-

sity, we used the one standard error rule. We chose the
most parsimonious model whose error is no more than
one standard error above the error of the best model [16].
In our case, we defined parsimony as the amount of reg-
ularization, i.e., L1 or L2 penalization, small tree depth,
and/or small numbers of trees. We computed the aver-
age objective function on all folds, selected the classifier
with the maximum value, computed its standard error on
all folds, and selected the most parsimonious (regular-
ized) parameters within one standard error of that highest
objective. This corresponds to the maximization problem
over parsimony in the equation below, where we define
θ̂ to be the optimal set of parameters without the one
standard error rule and SE to be the standard error.

θ̂1se = argmaxθ parsimony(θ)

s.t. Msparsity(θ) ≥ Msparsity(θ̂) − SE
(
Msparsity(θ̂)

)

Once this grid search was performed, we constructed
a heatmap to determine how often each of our features
were selected among our models. This heatmap is a table
where each cell corresponds to a feature and a classifier
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(see Figs. 1 and 6). Using this heatmap, we compared the
feature sets among the best performing models to arrive
at a reduced feature set that is stable both within and
between classifiers. It can also be used to test our assump-
tion that the same subset of features will be selected
by multiple classifiers to reach optimal accuracy. In the
experiments, we computed two heatmaps, using the one
standard error rule and L0 regularization for the first,
and only the one standard error rule for the second. We
then chose sets of 5 and 10 most used features with

the L0 penalization heatmap. When two features were
used equally, we broke the ties by choosing the most
frequently utilized in the non-regularized heatmap. We
labeled these feature sets as reduced-5 and reduced-10,
respectively.

Model training and testing
The second phase of our machine learning pipeline con-
sisted of training each of our models using the reduced
feature set identified in phase 1. To train our models, we

Fig. 1 Heatmap of features used on the different folds for module 3. The darker the color of the cell, the more the feature was used in the different
folds of the feature selection cross-validation (CV). Classifiers were sorted along the y-axis such that those with the highest AUCROC function were at
the top. Color intensity of each cell denotes how often that feature was selected in all folds of the feature selection CV for that model. The top figure
(a) used L0 regularization, and the bottom one (b) did not. Both used the one standard error rule
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Table 3 Grid search results of the classifiers for module 3, with and without L0 penalization

Classifier Linear reg Lasso Ridge Elastic net Relaxed Lasso L1 logreg L2 logreg LDA

L0 penalized ROC AUC 84.8 89.1 84.9 89.5 90.2 90.0 82.5 89.4

Associated real ROC AUC 92.4 90.6 92.4 91.7 91.7 91.8 92.2 90.6

Features used with L0 44.1 8.4 43.2 12.9 8.6 10.7 56.5 7.0

Not penalized ROC AUC 92.3 92.7 92.5 92.6 92.5 92.8 92.2 91.9

Features used without L0 43.9 23.3 40.4 25.8 23.4 19.4 56.5 20.0

Classifier pSVM rSVM eSVM L1 lSVM Grad Boost AdaBoost Rand Forest Tree

L0 penalized ROC AUC 88.9 89.3 49.3 89.5 90.0 90.7 89.9 88.5

Associated real ROC AUC 90.1 91.1 50 91.1 91.1 92.1 90.6 89.6

Features used with L0 6.4 10.0 4.0 9.4 6.4 8.3 7.0 6.4

Not penalized ROC AUC 91.6 93.2 50.0 92.8 93.1 93.1 91.9 90.0

Features used without L0 13.6 58.0 58.0 38.1 20.7 14.5 13.2 16.2

pSVM, rSVM, eSVM, and lSVM correspond to different kernels for SVM (polynomial, radial, exponential, and linear) and logreg to logistic regression. Italicized data points
highlight the worst performing models (too many features used and/or poor performance)

used another stratified 10-fold cross-validation approach
with nested grid search (model tuning CV) in the same
way as the feature selection CV, but in this phase,
the objective function was set to find the values for
model hyper-parameters (such as L2 norm or tree depth)
that maximize only the AUCROC without any additional
sparsity-enforcing parameter.
For each model, we selected the hyper-parameters that

gave the best overall score over all folds, and, using these,
we estimated which classifier should performwell by aver-
aging the corresponding AUCROC for each fold of our
model tuning CV. In addition to this performance esti-
mation, we took into account two other objectives when
choosing our final model: simplicity and interpretability.
For our purposes, simplicity is important because simpler
and more parsimonious models generally decrease the
chances of overfitting on the training data. Finally, we
wanted to choose an interpretable model to gain more
insight on how to reliably detect ASD. In practice, in this
second phase, we selected all the models with high accu-
racy (close to ADOS accuracy) and selected the best trade-
off between accuracy, simplicity, and interpretability from
the remaining models. As an additional metric to distin-
guish models, we use the area under the PR curves (both
AUCPRcontrol, counting controls as the positive class,
and AUCPRASD, counting the ASD cohort as positive
class).
The third and last phase of our pipeline was testing

our final selected model from phase 2 on our dedicated
testing set (20% of our original data) to see how well
this model could separate ASD from non-ASD in com-
pletely unseen data. We computed the area under the
three curves described previously to estimate how our
selected model would perform on unseen data.

Results
ADOSmodule 3 (children with medium to low levels of
autism symptom severity)
Reduced feature set
Using module 3, we obtained two heatmaps using the one
standard error rule with and without L0 regularization
that can be found in Fig. 1. The full grid search results can
be found in Table 3. Taken together, these heatmaps sug-
gested that the reduced feature set was stable, as the same
features were highlighted by both.
The L0 regularization heatmap highlighted A2-, A4-,

A8-, and B3-missing as the top features, and when consid-
ering the non-regularized heatmap, B2 was also frequently
chosen.We denoted this collection of behavioral elements
as our reduced-5 feature set. For the reduced-10 feature

Table 4 Summarized description of the features chosen by the
feature reduction process for module 3

Feature Category

A2 Language (intonation, volume, rhythm)

A4 Language (words/phrases)

A8 Language (conversation)

B3-missing Language: examiner could not test nonverbal
communication linked to language production

B2 Social interaction (facial expressions)

B7 Social interaction (social overtures)

B8 Social interaction (social overtures, attention)

D4 Behavior (repetitive behavior)

D3-missing Behavior: examiner could not test self injurious
behavior

Gender Gender of the patient
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set, we added B7, B8 by the L0 regularized heatmap and
D4, gender and D3-missing from the heatmap without
regularization. Finally, B9 was also frequently used in the
first heatmap and A7, B1, B6, and D2 on the second one.
The categories of the chosen feature are summarized in
Table 4.

Selected classifier
Reduced-10 feature set Four classifiers performed bet-
ter on the reduced-10 feature than the others: SVM,

boosting on decision trees (with both AdaBoost and
Gradient Boosting methods) and logistic regression with
AUCROC of all three around 0.93. However, when con-
sidering our three criteria for choosing the best model,
logistic regression and linear SVMwere simpler and more
interpretable than the the boosting methods for simi-
lar performance. Although logistic regression tends to be
more interpretable, we provide results for both classi-
fiers. Moreover, it supported the ADOS rating criterion,
suggesting that the class distinction had an underlying

Fig. 2 Histogram of predicted probabilities of the two discarded models on the cross-validation set. The x-axis denotes the predicted probabilities
and the y-axis the number of subjects. The top figure (a) corresponds to AdaBoost and the bottom figure (b) to Gradient Boosting. AdaBoost
probability plot is unstable, and gradient boosting has a high rate of misclassification among the control subjects
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Table 5 Summary of accuracies for modules 2 and 3 with best classifier, best parameters, and different feature sets

Module 3 3 3 2 2 2

Number of features 10 10 5 5 5 5

Best classifier L2 LR L1 Lin SVM L2 LR LDA L1 Lin SVM L2 LR

Optimal parameters C = 1 C = 0.5 C = 10 S = 0.8 C = 0.5 C = 0.05

Area under ROC 0.95 0.95 0.93 0.93 0.93 0.92

Precision 0.99 0.99 0.99 0.98 0.98 0.98

Recall/sensitivity 0.90 0.95 0.88 0.97 0.98 0.93

Specificity 0.89 0.87 0.89 0.50 0.58 0.67

Balanced accuracy 0.90 0.90 0.88 0.74 0.78 0.80

F1 score 0.94 0.97 0.93 0.97 0.98 0.95

LR denotes logistic regression, L1 Lin SVM denotes L1 penalized linear SVM, and S denotes the LDA shrinkage parameter

linear structure. By looking at the probability plots for
these three well-performing classifiers (see Fig. 2), we can
see that the AdaBoost probability plot was unstable and
SVM and gradient boosting yielded a higher rate of mis-
classification among controls than the logistic regression
model. In the performed grid search, the optimal regular-
ization coefficient (inverse of the penalization coefficient)
was C = 1 and L2 penalization performed slightly better
than L1 penalization.
Lastly, we computed the performance of our final logis-

tic regression and SVM models on the test set, composed
of 20% of our original data. Logistic regression, on the
reduced-10 feature set, achieved AUCROC = 0.95 and a
balanced accuracy (BalAcc) of 0.90, while SVM performed

lower with AUCROC = 0.95 and BalAcc = 0.80. Other
statistics can be found in Table 5. AUC for precision-
recall indicated that it is harder to detect controls than it
is to detect children with ASD, an expected phenomenon
given the compositional biases of our dataset. The full
PRC curve on Fig. 3 indicated that for a recall above 0.8,
we could not achieve a reasonable precision. Figure 4
shows that most of the controls were well classified and
most of the ASD cases were identified as well. The cutoff
area inducing reasonable accuracy is quite large (between
0.2 and 0.4), suggesting that we have a stable prediction.
Classic autism subjects, i.e., the higher severity group,
were more difficult to classify than the spectrum. This
is counter-intuitive—one would expect them to be more

Fig. 3 Precision-recall curve of controls for logistic regression with L2 penalization on the test set. Above 0.8 of recall, precision decreases drastically.
Precision-recall curve of ASD is the whole square (area under the curve is ∼ 1)
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Fig. 4 Histogram of predicted probabilities for logistic regression with L2 penalization (a) and linear SVM with L1 penalization (b) on the test set. The
x-axis denotes the predicted probabilities for logistic regression and the decision function for SVM and the y-axis represents the number of subjects.
Each subplot correspond to a different label

distinguishable. We defer to the “Discussion” section
reasoning as to why this might be the case.
Given the imbalance in the gender ratio found in the

non-ASD and ASD data, we elected to perform the same
test on classifiers trained on the top 9 features, excluding
gender as a feature. Results were essentially unchanged;
see Table 6 for details. Further, see Table 7 for correlations
between age, gender, and chosen features. All correlations
with age and gender are relatively low and therefore not
likely to be impacting the classification.

Reduced-5 feature set Using only the reduced-5 feature
set, the grid search results suggested that AdaBoost, logis-
tic regression, and gradient boosting performed best, with
AUCROC close to 0.92. Following the same logic used for
the reduced-10 feature set, we chose logistic regression
with L2 penalization for our final model. Its optimal spar-
sity coefficient was C = 10, confirming the intuition that
less regularization was necessary with fewer features.
The final performance estimate yieldedAUCROC = 0.93

andBalAcc = 0.88. Other statistics can be found in Table 5.
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Table 6 Summary of accuracies for module 3 with best classifiers
and parameters for our 10-feature set, this time trained without
gender

Module 3 3

Number of features 9 9

Best classifier L2 LR L1 Lin SVM

Optimal parameters C = 1 C = 0.5

Area under ROC 0.95 0.95

Precision 0.99 0.99

Recall/sensitivity 0.89 0.95

Specificity 0.90 0.87

Balanced accuracy 0.90 0.91

F1 score 0.94 0.97

LR denotes logistic regression, and L1 Lin SVM denotes L1-penalized linear SVM

Figure 5 shows that even though the AUCROC did not
decrease much, achieving good precision and high recall
was not possible.

Module 2 (children with phrase speech)
Reduced feature set
Our ability to build a stable classifier was limited in part
by the small size of the dataset available for module 2. We
derived two heatmaps formodule 2 using the one standard
error rule, both with or without L0 regularization (Fig. 6).
The full grid search results can be found in Table 8.
The L0 regularized heatmap shows A3, A5, B1, B2,

and B10 to be the most highly selected features, which
we denote as the module 2 reduced-5 feature set. The
non-regularized heatmap confirmed these features to be
top-ranked. Although age was selected quite often, we
decided not to add it to the larger feature set because
of the arbitrary age difference between the two classes

in our dataset. No other feature was selected consis-
tently, suggesting that five of the 29 total features captured
within module 2 may be sufficient to identify autism from
non-autism subjects. The categories and descriptions of
chosen features are summarized in Table 9.

Selected classifier
The best performing classifiers on the reduced-5 feature
set for module 2 were SVM, LDA, and logistic regres-
sion with AUCROC almost reaching 0.88. Each of the
three models were simple and interpretable. Although
polynomial kernel performed slightly better, for parsi-
mony reasons, an SVM with a linear kernel and L1
penalization proved to be optimal. For all classifiers,
AUCPRcontrols = 0.5 and AUCPRASD > 0.99. Considering
their similar performance and interpretability, we elected
to test all of these models on the test set.
On the full training set (all subjects excluding the 20%

held out from the test set), the optimal logistic regres-
sion model found in the grid search used L2 penalization
and C = 0.05, the optimal LDA model used shrink-
age = 0.8, and the optimal SVM C = 0.5. On the
final test set, the LDA model exhibited AUCROC = 0.93,
BalAcc = 0.74, and the SVM 0.93 and 0.80 and the
logistic regression model 0.92 and 0.78, respectively. All
statistics can be found in Table 5. Figure 7 shows the
distribution of predicted probabilities from LDA, SVM,
and logistic regression models. The small number of con-
trols in the data set decreased the accuracy of the curve.
We found high recall on detecting ASD using SVM and
higher specificity using logistic regression. However, the
ability of these classifiers to generalize to new data may be
limited.
As for module 3 (and perhaps more so in the case of

gender for module 2), there is a concern that imbalance
between classes with age and gender limits these results.

Table 7 Correlations between used features and age and gender for module 3

Feature A2 A4 A8 B2 B7 B8 D4 Age_months Male ASD B3_miss D3_miss

A2 1.000 0.391 0.307 0.295 0.369 0.346 0.220 0.161 0.112 0.343 0.295 − 0.096

A4 0.391 1.000 0.214 0.149 0.274 0.317 0.306 0.024 0.150 0.309 0.220 0.017

A8 0.307 0.214 1.000 0.332 0.468 0.496 0.161 0.006 0.102 0.348 0.304 − 0.041

B2 0.295 0.149 0.332 1.000 0.367 0.328 0.084 0.133 0.106 0.315 0.354 − 0.023

B7 0.369 0.274 0.468 0.367 1.000 0.464 0.195 0.090 0.113 0.371 0.318 − 0.053

B8 0.346 0.317 0.496 0.328 0.464 1.000 0.216 0.008 0.103 0.350 0.281 − 0.041

D4 0.220 0.306 0.161 0.084 0.195 0.216 1.000 − 0.006 0.155 0.172 0.157 − 0.246

Age_months 0.161 0.024 0.006 0.133 0.090 0.008 − 0.006 1.000 0.010 0.054 0.070 − 0.061

Gender 0.112 0.150 0.102 0.106 0.113 0.103 0.155 0.010 1.000 0.164 0.157 0.016

ASD 0.343 0.309 0.348 0.315 0.371 0.350 0.172 0.054 0.164 1.000 0.338 0.090

B3_miss 0.295 0.220 0.304 0.354 0.318 0.281 0.157 0.070 0.157 0.338 1.000 − 0.075

D3_miss − 0.096 0.017 − 0.041 − 0.023 − 0.053 − 0.041 − 0.246 − 0.061 0.016 0.090 − 0.075 1.000
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Fig. 5 Precision-recall curve of controls for logistic regression with L2 penalization on the test set with only five features. Above 0.4 of recall, we
reach 0.8 of precision. After 0.7, the precision decreases drastically

We computed the correlation matrix between age, gender,
and chosen features; please see Table 10.

Discussion
In this study, we aimed to identify a core subset of behav-
ioral features from the gold-standard ADOS examination
that can reliably discriminate between ASD and non-ASD
cases. By considering the implication of missing answers
as well as employing robust sparsity-enforcing feature
selection methods during the first phase of our machine
learning pipeline, we arrived at a novel subset of fea-
tures from modules 2 and 3 that consistently optimized
performance both within and across classifiers. Once the
reduced feature sets were identified for each module, we
fit each of our models to the reduced feature data set
without any sparsifying coefficients and evaluated their
performance on our dedicated test set. When choosing
our final model for each module, we considered sim-
plicity and interpretability in addition to overall classi-
fication performance. We found that logistic regression
with L2 regularization performed best on the module 3
(AUCROC = 0.93) and, depending on the task, logis-
tic regression or SVM performed best on the module 2
(AUCROC = 0.92 and 0.93). The full results are reported
in Table 5. These results not only indicate that there
is a stable subset of questions that contains the neces-
sary information to distinguish ASD from non-ASD cases,
but also points to an underlying linearity in the ADOS,
since most top-performing models are linear. Table 11
shows the correlation between these chosen features and

the others for module 3. Except for E1, E2, D2, and D3,
most features are highly correlated with at least one cho-
sen feature. This suggests that the feature set we selected
is composed of the least number of features containing
a majority of the useful information for the classifica-
tion task, but that some features could be replaced by
one or more of those not chosen. This in turn may pro-
vide additional flexibility for screening, for example, in
instances where a particular behavior is not exhibited by
the child during a video clip or short observation session.
We hypothesized that including a binary encoding of

whether the data is missing, instead of coding the miss-
ing values as a mean of the data or as other values in
the same features as existing data, would be useful in this
classification task. That a data point is missing might be
informative (e.g., it might, in some circumstances, indicate
some behavioral trait that led to the item not to be filled
out). Given the use of fairly simple (e.g., linear) classifiers,
the coding of missing data within a feature that other-
wise represents the severity of some trait is undesirable.
We found that, in the case of module 3, missing features
ranked among the most informative of the top 10 features
for classification.
Although somewhat counterintuitive, we found ASD

classes no more difficult to classify than classic autism
cases and, in some cases, error rates were higher for classic
autism cases. This could be due to the particular fea-
ture set we extracted. It is possible that the difficulty to
label cases is not correlated to severity but type of autism.
Our models were selected for performance on the task
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Fig. 6 Heatmap of features used on the different folds for module 2. The darker the color of the cell, the more the feature was used in the different
folds of the feature selection CV. Classifiers were sorted along the y-axis such that those with the highest AUCROC function appear at the top. Color
intensity of each cell denotes how often that feature was selected in all folds of the feature selection CV for that model. The top figure (a) shows
results with L0 regularization, and the bottom figure (b) shows results without regularization. In both analyses, we used the one standard error rule

of separating ASD and classic autism from typical devel-
opment without distinguishing the former two. While it
might be the case that it is easier to distinguish classic
autism from controls than it is to distinguish ASD from
controls, models that perform as such on both tasks simul-
taneously may require more complexity and, with that,
likely larger amounts of data to distinguish them. Sup-
porting this, we found that a regression task optimized to

assign 0 to neurotypical, 1 to ASD (not classic autism), and
2 to classic autism sacrificed accuracy as a two-class (0 vs
1 or 2) thresholding.
The differences in performance for modules 2 and 3

are perhaps due to the numbers of controls, with mod-
ule 3 having four times more controls than module 2.
The low area under the PR curve (when controls are
considered positive) seems to support this hypothesis.
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Table 8 Grid search results of the classifiers for module 2, with and without L0 penalization

Classifier Linear reg Lasso Ridge Elastic net Relaxed Lasso L1 logreg L2 logreg LDA

L0 penalized ROC AUC 73.7 84.1 75.4 84.6 84.3 83.3 75.4 86.5

Associated real ROC AUC 80.0 84.9 81.5 85.5 85.1 84.2 85.4 87.4

Features used with L0 36.5 4.4 35.7 5.3 4.4 5.4 58.0 5.0

Not penalized ROC AUC 79.3 85.1 81.2 86.3 85.3 85.9 85.3 87.4

Features used without L0 35.4 4.5 34.6 10.7 4.5 4.0 58.0 5.0

Classifier pSVM rSVM eSVM L1 lSVM Grad Boost AdaBoost Rand Forest Tree

L0 penalized ROC AUC 86.8 86.1 49.3 81.2 85.7 85.7 86.3 82.4

Associated real ROC AUC 87.7 86.6 0.50 81.6 86.6 86.6 86.2 83.0

Features used with L0 5.0 5.0 4.0 2.4 5.0 5.0 5.0 3.0

Not penalized ROC AUC 87.6 85.9 50.0 83.0 86.6 86.6 88.4 83.0

Features used without L0 5.0 12.0 4.0 29.4 5.0 5.0 28.9 3.0

pSVM, rSVM, eSVM, and lSVM correspond to different kernels for SVM (polynomial, radial, exponential, and linear) and logreg to logistic regression. Italicized data points
highlight the worst performing models (too many features used and/or poor performance)

Good scores for other metrics could also be due to sig-
nificant age difference between ASD and non-ASD in
module 2. The use of reduced feature set of sizes 5 and 10
yielded similar performance. The model with 5 features
was simpler and therefore limits overfitting, but a true test
of generalization power requires further data collection
efforts.
Despite strong evidence for the significant role genetics

play in autism risk, there are still no molecular meth-
ods for diagnosing ASD. Until reliable biomarkers for
autism are identified, behavioral evaluation will necessar-
ily remain the standard for autism diagnosis. However,
as the incidence of ASD continues to increase, more and
more strain will be placed on diagnostic centers, which
often do not have the resources to meet the demand
for evaluation of children at risk. This can translate to
long wait times for appointments and missed windows of
opportunity for beneficial early interventions.
The ADOS [5] has long been found useful, both as a way

to gather qualitative observations with which clinicians
can make an informed diagnosis and as a standalone scor-
ingmechanism. However, ADOS can present clinical chal-
lenges; the full ADOS measure can be time-consuming
to apply, and as found in [17], its standard scoring mech-
anisms can have low specificity, in particular in cohorts

Table 9 Summarized description of the features chosen by the
feature reduction process for module 2

Feature Category

A3 Language (echolalia)

A5 Language (conversation)

B1 Social interaction (amount of maladjusted eye contact)

B2 Social interaction (facial expressions)

B10 Social interaction (social responses)

with several developmental issues and with cases that are
on the spectrum but do not qualify for a classical autism
diagnosis.
As a step towards reducing waiting lists at diagnos-

tic clinics, strides have been made to develop mobile
screening systems for risk of ASD and other related
disorders [9–13]. If such a mobile system could accu-
rately detect ASD from children at risk for developmental
delays in general, it would provide utility both for triag-
ing patients in need of more formal clinical evaluations as
well as for providing feedback to parents during the often
long and arduous process of diagnosis. The classification
experiments performed here supports the claim that accu-
rate ASD detection can be performed using the responses
to a small set of behavioral features. Previously, we have
shown that the behavioral features captured in the ADOS
evaluation can be measured in short, unstructured home
videos [18]. Considering this result, the classification sys-
tem described here has potential for utility in shorter for-
mat approaches potentially including video-based home
screening using mobile devices.

Conclusions & limitations
This study was limited by the contents of available data
sets. The phenotype data used here were obtained from
publicly available autism research data repositories, which
have relatively few ADOS examinations for non-ASD
control subjects. However, it is important to note that
the control subjects who did receive an ADOS examina-
tion were initially suspected of having autism and later
failed to meet the cutoffs for formal diagnosis. There-
fore, although the number of controls available for model
training was minimal, the controls used may represent
challenging “edge” cases that help the classifier create a
robust boundary between actual ASD cases and cases that
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Fig. 7 Histogram of predicted probabilities for LDA (a), logistic regression with L2 penalization (b), and linear SVM with L1 penalization (c) on the test
set. The x-axis denotes the predicted probabilities (or decision function for SVM), and the y-axis shows the number of subjects. Each subplot
corresponds to a different label
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Table 10 Correlations between used features and age and
gender for module 2

Feature A3 A5 B1 B2 B10 Age_months Gender

A3 1.000 0.405 0.272 0.322 0.329 0.350 0.049

A5 0.405 1.000 0.229 0.257 0.313 0.227 0.024

B1 0.272 0.229 1.000 0.283 0.257 0.105 0.057

B2 0.322 0.257 0.283 1.000 0.426 0.258 0.032

B10 0.329 0.313 0.257 0.426 1.000 0.286 0.023

Age_months 0.350 0.227 0.105 0.258 0.286 1.000 0.025

Gender 0.049 0.024 0.057 0.032 0.023 0.025 1.000

exhibit some ASD-like characteristics but who may have
another underlying condition. Considering that ASD-
specific screening using ADOS is most often performed
for children that are suspected of having ASD, the high
accuracy of our classifier on this control set is a good rep-
resentation of its performance in the actual population
that requires ASD screening. Of course, more training
data points would improve the overall accuracy of the
classification system.We plan to conduct future studies to
tune the classifiers as more control data become available.

The data for modules 2 and 3 contained balance con-
cerns. Namely, in module 2, age and gender were not
well balanced between ASD and non-ASD, and in the
module 3 data, gender was not well balanced. Gender
appeared as the lowest of the top 10 ranked features from
the module 3 analysis, suggesting a limited role in classi-
fication. In our module 2 analysis, neither gender nor age
appeared in our top 5 ranked feature set. While the low
ranking of these imbalanced features provides some con-
fidence that they do not negatively impact classification,
the possibility remains that the classifier could be cap-
turing correlations with these features, and thus could be
performing in a way that would not generalize to the full
population. To understand this potential limitation better,
we retrained with age and gender features removed and
achieved comparable results. We also computed correla-
tionmatrices (Tables 7 and 10) of selected features and age
and gender and found correlation of age and gender with
selected features to be negligible. While these results sug-
gest that the imbalance within these features did not have
a biasing effect, data collected with better balance will be
an important next step to determine the generalization of
our classifiers.

Table 11 Correlations between used features and not used non-indicator features for module 3

Feature A2 A4 A8 B3_miss B2 B7 B8 D4 D3_miss Male

B10 0.641 0.270 0.422 − 0.07 0.425 0.172 0.554 0.228 − 0.07 0.023

B11 0.487 0.195 0.317 − 0.06 0.324 0.171 0.521 0.362 − 0.06 0.061

A1 0.387 0.293 0.328 − 0.03 0.189 0.163 0.343 0.037 − 0.00 − 0.03

Age_months 0.308 0.119 0.085 0.006 0.257 − 0.01 0.334 0.095 − 0.00 0.024

A3 0.335 0.252 0.167 − 0.09 0.321 0.087 0.361 0.273 − 0.09 0.048

A5 0.231 0.285 0.173 − 0.07 0.256 0.071 0.341 0.294 − 0.08 0.023

A7 0.366 0.086 0.274 − 0.05 0.222 0.122 0.320 0.052 − 0.06 0.025

A6 0.481 0.346 0.385 − 0.12 0.338 0.165 0.495 0.246 − 0.14 0.054

C2 0.365 0.184 0.408 − 0.06 0.250 0.157 0.388 0.168 − 0.05 0.126

C1 0.347 0.147 0.370 − 0.03 0.271 0.125 0.369 0.127 − 0.04 0.099

E1 0.133 0.076 0.171 − 0.03 0.103 0.133 0.149 0.155 − 0.03 0.059

E3 0.029 0.100 0.075 − 0.02 0.101 0.033 0.062 0.068 − 0.02 0.001

E2 0.254 0.078 0.230 − 0.02 0.122 0.108 0.218 0.243 − 0.03 0.031

B9 0.455 0.271 0.329 − 0.09 0.381 0.188 0.518 0.337 − 0.08 0.041

B4 0.180 0.113 0.138 − 0.02 0.116 0.170 0.170 0.139 − 0.02 0.011

B5 0.476 0.147 0.255 − 0.07 0.345 0.105 0.406 0.079 − 0.06 0.033

B6 0.369 0.101 0.267 − 0.07 0.237 0.087 0.287 0.125 − 0.06 0.023

B1 0.261 0.141 0.141 − 0.11 0.283 0.064 0.278 0.221 − 0.09 0.057

B3 0.507 0.171 0.320 − 0.04 0.480 0.090 0.502 0.184 − 0.04 0.017

D2 0.059 0.148 0.075 − 0.04 0.108 0.092 0.087 0.180 − 0.03 0.026

D3 0.105 0.051 0.117 − 0.00 0.044 − 0.00 0.140 0.073 − 0.00 0.039

D1 0.261 0.216 0.171 − 0.06 0.215 0.020 0.255 0.312 − 0.04 0.116

This shows the high correlations between features and so, the need for a robust feature selection technique and classification
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