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Atypical sympathetic arousal in children
with autism spectrum disorder and its
association with anxiety symptomatology
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Abstract

Background: Autism spectrum disorder (ASD) has been associated with autonomic atypicalities, although the
nature of these differences remains largely unknown. Moreover, existing literature suggests large variability in
autonomic function in ASD, motivating the need to examine the existence of subgroups that exhibit more
homogeneous autonomic features.

Methods: Electrodermal activity (EDA), a non-invasive physiological indicator of autonomic activity, was measured
in typically developing children (n = 33) and those with ASD (n = 38) as participants performed tasks that elicit
anxiety, attention, response inhibition, and social cognition processes. The ASD group was divided into low- (n = 18)
and high-anxiety (n = 20) participants, and the groups were compared to mean EDA level and electrodermal
reactions frequency (EDR).

Results: The ASD group had a significantly blunted mean EDA response to the anxiety tasks (p < 0.004). The EDR
response to all tasks, except response inhibition, was also blunted in the ASD group (p < 0.04). For this group, EDR
frequency during the anxiety and social cognition tasks was negatively correlated with behavioral scores in the domains
that were probed by each task (p < 0.002). The high-anxiety ASD group showed significantly decreased mean EDA
compared to both the low-anxiety ASD group (p = 0.02) and the typically developing control group (p = 0.04).
The high-anxiety ASD group also had significantly more severe symptoms than the low-anxiety ASD group on
domains related to anxiety, attention, rule breaking, aggression, obsessions and compulsions, and depression.

Conclusions: Our results suggest atypical autonomic function in children with ASD, specifically with respect to
sympathetic activity. Moreover, anxiety symptomatology defined subgroups with distinct physiological and
behavioral profiles. Overall, the results add to the body of literature supporting autonomic dysfunction in ASD
and highlight the role of anxiety and autonomic features in explaining the variability in the autism spectrum.
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Background
There is growing evidence that autism spectrum disorder
(ASD) is associated with dysregulation of the autonomic
nervous system (ANS). The ANS is responsible for main-
taining allostasis and regulating visceral functions through
efferent and afferent connections to the central nervous
system. The ANS is divided into three divisions namely,
sympathetic, parasympathetic, and enteric branches.

Sympathetic and parasympathetic outflows originate in
the preganglionic neurons located in the spinal cord
(intermediolateral cell column of the first thoracic to
second lumbar segments) and the brainstem and sacral
spinal regions (second to fourth sacral segments),
respectively [1]. The sympathetic branch of the ANS is
activated in response to stress to modulate the “fight”
or “flight” response. Physiological changes accompany-
ing this response include increased blood flow in the
skeletal muscles, increased heart rate, blood pressure,
and perspiration, and pupillary dilation. Activation of
the parasympathetic branch is associated with the
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restoration and conservation of energy, with physiological
effects generally opposite to that of the fight or flight
response. The two branches of the ANS interact in a com-
plex manner to maintain allostasis. Although existing
evidence on ANS function in ASD is mixed [2, 3], an emer-
ging body of literature suggests that ASD may be associated
with hyper-arousal of the ANS. Evidence supporting this
notion includes increased cardiac activity (elevated heart
rate [4–8], decreased parasympathetic tone [5–7, 9], and
larger tonic pupil size [10, 11]). In addition to these
findings, altered ANS response to environmental challenges
has also been reported in ASD [2, 3, 8]. Most notably, these
findings include atypically blunted ANS activity in response
to anxiety and psychosocial challenges [4, 12–15].
ANS hyper-arousal may be related to sympathetic

hyper-arousal, parasympathetic undertone, or atypical
interaction of the two systems. These possibilities can be
tested using different measures of ANS function that
quantify the individual effects of its two branches or
their combined effects. Most ASD research to date has
focused on either combined ANS function (e.g., heart
rate, pupil size) or parasympathetic activity (e.g., heart
rate variability). The latter has been of special interest
due to its potential role in regulating emotional and
behavioral functions [16]. The findings in this area are
inconsistent and include both decreased and unaltered
parasympathetic tone [2, 3]. Decreased parasympathetic
tone, measured by respiratory sinus arrhythmia, has also
been associated with social and emotional difficulties in
ASD [9]. Given that the ANS output depends on the
complex interplay of both its branches, it is critical to
better understand sympathetic function in this popula-
tion [3]. However, research on sympathetic function in
ASD has been very limited.
To address the gap in characterizing sympathetic func-

tion in ASD, the first objective of the present study was
to compare measures of electrodermal activity (EDA)
between typically developing children and those with
ASD. EDA is a non-invasive measure of the electrical
conductance of the skin, which is affected by the activity
of the eccrine sweat glands. These glands have predom-
inantly sympathetic cholinergic innervation; therefore,
skin conductance is suggested to provide a relatively
“undiluted” measure of sympathetic activity [17]. Exist-
ing studies in this area are sparse and have reported
mixed findings. These include both increased [18] and
unaltered [19–22] basal skin conductance levels and de-
creased number of EDA reactions to affective images
[23] and at rest [19], as well as atypical EDA reactivity to
faces [20, 24], emotional judgment tasks [25], eye con-
tact [26], and auditory stimuli [18]. Two studies [22, 27]
studied EDA reactivity to anxiogenic stimuli and did not
find significant differences between children with ASD
and their typically developing peers in skin conductance

levels, but an atypical pattern of electrodermal reaction
frequency in the ASD group was reported [27].
The discrepancies in existing literature on ANS function

in ASD suggest large heterogeneity in this population,
though specific variables that can explain the variability in
these physiological findings remain to be explored [2]. A
recent study [15] suggested that anxiety symptomatology
may explain some of this variability. This study showed
that a sample of children with ASD and anxiety had atyp-
ically blunted cardiac and cortisol responses to psycho-
social stress compared to children with only ASD and to
typical controls. The second objective of this paper is to
replicate the results of [15] in terms of the role of anxiety
symptomatology in ANS function in ASD but with a
specific focus on sympathetic activity measured by
electrodermal activity. To our knowledge, this association
has not been previously investigated.

Methods
For this study, we used data from a sample of children
with ASD (n = 47) and typically developing (TD) children
(n = 37). The data from this sample were previously
reported in [4] with respect to cardiac activity. Participants
in the TD group did not have a diagnosis of ASD or any
other developmental, neurological, or psychiatric disorders
and were not born prematurely (>35-week gestational
age). Participants in the ASD group had a primary clinical
diagnosis of ASD supported by the Autism Diagnostic
Observation Schedule (ADOS) [28] and the Autism Diag-
nostic Interview-Revised (ADI-R) [29]. All participants
had a full-scale IQ greater than 50.
The Holland Bloorview research ethics board approved

the study. Participants deemed to have capacity for consent,
provided written consent. For all other participants, assent
and written consent were obtained from the children and
their legal guardians, respectively.

Procedures
This experimental protocol is described in detail in [4]
and summarized in Table 1. Participants completed five
tasks eliciting performance anxiety (Stroop Word-Color
Interference task [30]), social anxiety (public speaking
task [12, 22]), attention (Rapid Visual Information Pro-
cessing task [31, 32]), response inhibition (Stop Signal

Table 1 Outline of tasks performed during experimental session

Task Target domain

Stroop Word Color Interference task Anxiety

Public speaking Anxiety

Rapid Visual Information
Processing (CANTLAB)

Attention, working memory

Stop Signal Response inhibition

Reading the Mind in the Eyes Social cognition

Panju et al. Molecular Autism  (2015) 6:64 Page 2 of 10



task [33]), and social cognition (Reading the Mind in the
Eyes task [34, 35]). The Stroop task requires participants
to name the color of words that spell out names of
colors. For the public speaking task, participants were
given 3 min to prepare a 3-min talk and deliver the talk
to a panel of three people. Both the Stroop [27] and
public speaking tasks [12, 15] have been used success-
fully in the literature as anxiogenic stimuli in this popu-
lation. The Rapid Visual Information Processing task
required participants to detect pre-defined sequences of
three numbers in a series of randomly presented digits.
For the Stop Signal Task, participants were asked to
press the left and right buttons on a gamepad in re-
sponse to X’s and O’s presented on a computer screen
and to inhibit the response when an auditory tone was
heard. Finally, participants viewed a set of 28 photos of
human eyes and were asked to choose one of four words
that best described what the pictured person was feeling
or thinking. Each of the five tasks described above was
preceded and followed by a baseline activity (movie-
watching). For the baseline activity, participants watched
clips from five animated movies (Toy Story, Lion King,
Ice Age, Finding Nemo, and Happy Feet). Each task,
except for public speaking, was also preceded by a prac-
tice period during which the participants were trained
on the task and asked to demonstrate their comprehen-
sion of the task in a trial run.

Measures
Intellectual functioning was assessed in both groups
using the Wechsler Scales of Intelligence (Wechsler
Abbreviated Scale of Intelligence (I and II) and the
Wechsler Intelligence Scale for Children 4). For one
participant in the TD group, an existing intelligence
score from the Stanford–Binet Intelligence Scale was
used. ASD symptom severity and anxiety was measured
using the Social Communication Questionnaire. To assess
emotional and behavioral characteristics of participants, the
Child Behavior Checklist (CBCL/6-18) was used. Anxiety
symptoms were assessed using the CBCL and the Revised
Children's Anxiety and Depression Scale (RCADS).
EDA was measured using a wearable sensor from

Shimmer Research. EDA was measured as skin conduct-
ance using a pair of 10-mm-diameter dry Ag-AgCl elec-
trodes secured to the palmar surface of the proximal
phalanges of the third and fourth digits of the non-
dominant hand. Skin temperature was measured using a
thermistor fastened to the palmar surface of the distal
phalanx of the fifth digit of the hand. Hand movement
was measured using an onboard triaxial accelerometer.
The EDA time series was sampled at 256 Hz, transmitted
over bluetooth to a laptop computer, and analyzed offline
using MATLAB. To remove artifacts, EDA signals were
filtered using a tenth order lowpass Butterworth filter with

cutoff frequency of 1 Hz. The cutoff frequency was chosen
in consideration of postganglionic sudomotor fiber firing
rate of 0.62Hz [36] as well as existing literature [37, 38].
The signals were then detrended to eliminate linear
increases in EDA due to improved adhesion of sensors
over the course of the experiment. Signal peaks that did
not show typical electrodermal response characteristics
(rise time of 1–3 s, half-recovery time of 2–10 s, and an
amplitude of 0.1–1.0 μs [18]) were identified as outliers
and removed. Electrodermal responses (EDR) were identi-
fied as peaks in the signal with a minimum height of
0.05 μs [18] and inter-peak distance of 1 s. EDA values
were log transformed to reduce data skewness [17]. Mean
EDA level and frequency of EDRs were computed for each
task and baseline interval. To ensure comparability of
tasks and to minimize carryover effects, the analyses were
performed using the first and last 3 min of each task and
baseline interval, respectively.
Statistical analyses were performed using SAS version 9.4

(SAS Institute, Cary, NC). The effects of group and group x
task interaction on EDA mean were examined using re-
peated measures multiple linear regression analysis. For
EDR frequency, poisson regression with a log-linear model
was employed to investigate the group and group x task
interaction effects. To examine the effect of anxiety symp-
tomatology on EDA, the ASD participants were divided
into low- and high-anxiety groups based on their t-score on
the CBCL anxiety problems subscale (low anxiety <65, high
anxiety ≥ 65). The t-score of 65 was used as this is the
cutoff for the borderline clinical range for the CBCL
anxiety problems subscale. In all models, full-scale IQ
and sex were included to account for group differences
on these variables. Age, mean skin temperature, and
medication status were also used as covariates as they
are known to affect EDA signals [17, 27]. Contrast
statements were conducted to examine group differ-
ences in task reactivity.

Results
Participants
The demographic information for the participants is
shown in Table 2. Data for four participants in each
group were excluded from analysis due to technical diffi-
culties during data collection. Three participants from
the ASD group were further excluded because they did
not comply with the study protocol. Two more partici-
pants from this group were excluded due to excessive
movement artifact and a fire alarm that disrupted the
session. Compared to the TD group, the ASD group had
significantly lower full-scale IQ (p < 0.0001) and signifi-
cantly higher male to female proportion (p = 0.0176).
Of the 38 resulting participants in the ASD group, 8

were taking medications at the time of the study. These
included serotonin norepinephrine reuptake inhibitors
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(SNRIs) (Strattrera), selective serotonin reuptake inhibi-
tors (SSRIs) (Prozac, Zoloft, Citalopram), stimulants
(Ritalin, Biphentin, Concerta), and atypical antipsy-
chotics (Risperidone, Abilify).
The demographic information for the two ASD groups

(low and high anxiety) is shown in Table 3. The groups
did not differ significantly on age, IQ, or sex proportions.

However, the high-anxiety group had significantly higher
scores than the low-anxiety group on the Social Commu-
nication Questionnaire (SCQ), CBCL syndrome subscales
of anxious/depressed, social problems, thought problems,
attention problems, rule breaking, and aggressive behav-
iors, as well as all RCAD subscales.

Movements
Total acceleration, computed as the norm of the acceler-
ation vector, did not differ significantly between the ASD
and TD groups.

EDA measures
Repeated measures analysis revealed a significant
group x task interaction effect on mean EDA (F(10,690) =
3.14, p = 0.0006; Fig. 1). Post hoc analysis showed blunted
reactivity (task-preceding baseline) to the Stroop (estimated
group difference = 0.25 ± 0.06, t(690) = 4.44, p < 0.0001) and
public speaking tasks (estimated group difference = 0.18 ±
0.06, t(690) = 2.94, p = 0.0034) in the ASD group. For both
groups, mean EDA increased significantly from the preced-
ing baseline in response to all tasks (p < 0.0001), except for

Table 2 Participant characteristics (typically developing and
ASD groups)

TD (n = 33) ASD (n = 38) Group difference

(p value)

Age 12.5 ± 2.9 12.1 ± 2.9 n.s.

(range 8–18) (range 7–17)

Full-scale IQ 113.1 ± 14.1 94.3 ± 20.2 <0.0001

(range 85–140) (range 53–146)

Sex
(male to female)

19:14 32:6 Fisher’s exact test

0.0176

SCQ 18.1 ± 8.1

SCQ Social Communication Questionnaire
n.s not significant

Table 3 Participant characteristics (low- and high-anxiety groups)

Low-anx. ASD (n = 18) High-anx. ASD (n = 20) Group difference (p value)

Demographics

Age 11.7 (10.3, 13.1) 12.5 (11.2, 13.8) 0.4144

Full-scale IQ 98.0 (88.4, 107.7) 91.0 (81.8, 100.2) 0.2929

Sex (m:f) 15:3 17:3 0.7206

Medication (off:on) 14:4 16:4 0.7142

SCQ 14.7 (10.9, 18.6) 20.8 (17.4, 24.2) 0.0232

CBCL syndrome scales

Anxious/depressed 55.6 (51.2, 60.0) 71.0 (66.9, 75.1) <0.0001a

Withdrawn/depressed 56.0 (49.7, 62.3) 63.2 (57.4, 69.0) 0.0832

Somatic complaints 54.6 (50.9, 58.4) 60.8 (57.3, 64.3) 0.0207

Social problems 59.1 (54.5, 63.6) 67.6 (63.4, 71.7) 0.0063

Thought problems 59.9 (56.4, 63.4) 70.1 (66.9, 73.3) 0.0001a

Attention problems 60.8 (57.1, 64.5) 69.0 (65.6, 72.4) 0.0021a

Rule breaking 51.3 (47.4, 55.2) 60.7 (57.0, 64.3) 0.0011a

Aggressive behavior 54.7 (49.9, 59.5) 65.3 (60.9, 69.7) 0.0023a

RCADS

Anxiety total 51.0 (44.1, 57.9) 65.1 (59.0, 71.1) 0.0040

Separation anxiety 54.2 (45.8, 62.6) 68.7 (61.4, 75.9) 0.0081

Generalized anxiety 52.2 (44.0, 60.4) 64.1 (57.0, 71.1) 0.0340

Panic disorder 50.6 (41.8, 59.4) 63.7 (56.0, 71.3) 0.0293

Social phobia 48.5 (43.0, 54.1) 57.5 (52.7, 62.3) 0.0176

Obsessive-compulsive 48.5 (43.5, 53.5) 58.9 (54.5,63.2) 0.0032

Depression 51.1 (44.2, 58.1) 65.0 (59.1, 71.1) 0.0021a

CBCL Child Behavior Checklist, RCADS Revised Children's Anxiety and Depression Scale, SCQ Social Communication Questionnaire
aSignificant at α = 0.0025 level after family-wise Bonferroni correction (20 tests)
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the Reading the Mind in the Eyes task. For the ASD group,
the increase in response to the Rapid Visual Information
Processing was also insignificant after correction for mul-
tiple comparisons (p = 0.0129).
EDR frequencies for the TD and ASD groups are

shown in Fig. 2. There was a marginally significant

group x task interaction on the EDR frequency
(χ2(10) = 18.5, p = 0.0469). Post hoc comparisons
showed that the ASD group had blunted reactivity
(task-preceding baseline) to all tasks (Stroop p = 0.0017,
public speaking p = 0.0112, Rapid Visual Information Pro-
cessing p = 0.0376, Reading the Mind in the Eyes p =

Fig. 1 Mean EDA across tasks for the TD and ASD groups. Error bars represent standard error. Reactivity to Stroop and public speaking tasks
(task—baseline) was significantly blunted in the ASD group (p < .0004)

Fig. 2 EDR frequency across tasks for the TD and ASD groups. Error bars represent standard error. ASD group had blunted reactivity
(task—baseline) to all tasks (p < 0.04), except for the Stop Signal task where the difference was marginally significant (p = 0.06)
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0.0086), except for the Stop Signal task where the difference
was marginally significant (p = 0.0632). For the TD group,
EDR frequency increased significantly from the preceding
baseline in response to all tasks (p < .0001). For the ASD
group, EDR frequency increased significantly from the
preceding baseline to all tasks (p < 0.0001), except for the
Rapid Visual Information Processing and the Reading the
Mind in the Eyes tasks.
Within the ASD group, EDR frequency during the

anxiety and social cognition tasks was negatively corre-
lated with the behavioral scores in the domains that
were probed by each task (Stroop/CBCL anxiety prob-
lems: regression coefficient estimate = −0.03, p = 0.0011;
public speaking/CBCL anxiety problems: regression
coefficient estimate = −0.02, p = 0.0249; Reading the
Mind in the Eyes task/CBCL Social: regression coeffi-
cient estimate = −0.03, p = 0.0046).

Anxiety group
Mean EDA for the TD, low-anxiety ASD, and high-
anxiety ASD groups is shown in Fig. 3. There was a
significant effect of anxiety group (low versus high) on
mean EDA, with the high-anxiety group showing signifi-
cantly decreased mean EDA overall (estimated group
difference = 0.46 ± 0.20, t(364) = 2.35, p = 0.0193). The
anxiety group x task interaction was not significant.
Comparing the anxiety groups to the typical controls
revealed a significant difference between the controls

and the high-anxiety group overall (estimated group
difference = 0.50 ± 0.24, t(700) = 2.02, p = 0.0436), but
not between the TD and the low-anxiety group. There
was no significant correlation between the EDA mea-
sures for the anxiety groups and scores on the SCQ,
CBCL, and RCADS.
EDR frequency was marginally higher in the low-anxiety

group (Fig. 4; low anxiety 3.77 ± 0.69, high anxiety 2.92 ±
0.54, z = 1.85, p = 0.0646), but the anxiety group x task
interaction term was not significant. EDR frequency was
not significantly different between the controls and either
anxiety group.
As exploratory analysis, we examined the effect of group

membership on the EDA measures when the groups were
created based on scores on other CBCL comorbidity
domains (somatic, attention, rule breaking, aggression).
No significant effects were found after correcting for mul-
tiple comparisons.

Discussion
The main findings in the current study were (1) atyp-
ical EDA in the ASD group characterized by a blunted
mean EDA reactivity to the anxiety tasks and
decreased EDR reactivity in all tasks, (2) negative
correlation between EDR frequency and behavioral
scores in the anxiety and social domains in the ASD
group, and (3) differential mean EDA and behavioral

Fig. 3 Mean EDA across tasks for the high- and low-anxiety groups. Error bars represent standard error. The high-anxiety ASD group had significantly
decreased mean EDA compared to the ASD-low anxiety and control groups (p = 0.04)
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patterns between the low- and high-anxiety subgroups
within the ASD group.

Atypical electrodermal activity in ASD
Given the findings in previous literature, we expected that
the ASD group would exhibit sympathetic hyperarousal
evidenced by atypically increased or decreased EDA level
and increased EDR frequency. Although a trend toward
decreased mean EDA was observed in the ASD group
overall, group differences did not reach statistical signifi-
cance for any of the EDA measures in our study collapsed
across conditions. This may be related to the large vari-
ability in autonomic function in this sample. As dis-
cussed in the next section, anxiety symptomatology
may explain some of this variance and could be used to
derive more homogeneous subgroups with respect to
electrodermal activity.
Our data also showed that ASD was associated with

blunted reactivity to tasks eliciting anxiety, attention,
response inhibition (marginally significant), and social
cognition. Blunted reactivity to psychosocial chal-
lenges in ASD has been previously reported in the
literature both in the context of autonomic cardiac
measures [4, 12, 15] and hypothalamic–pituitary–ad-
renal axis function [15]. The present study adds to this
literature by revealing a dampened response to other
mental and cognitive tasks. Such dampened reactivity
has also been reported across a number of psychiatric

and affective conditions including attention deficit/
hyperactivity and conduct disorder [39], alexithymia
[40], depression [41], and high trait anxiety [42, 43].
The inability to regulate physiological responses to environ-
mental stimuli may also be related to emotion regulation
difficulties. These difficulties, together with impaired atten-
tional control, may play a role in the early emergence of
ASD symptoms [44] (e.g., by hindering the experience of
positive associations from interactions with others). Inter-
estingly, markers of a well-regulated ANS have been associ-
ated with improved social function in children with ASD
[45]. Further research is needed to understand the associa-
tions between ANS atypicalities and ASD symptomatology.
It is important to note that the literature findings on mean

EDA reactivity to anxiogenic stimuli are mixed. Specifically,
two previous studies did not find atypical mean EDA re-
activity to anxiogenic stimuli in ASD during the Stroop [27]
and phychosocial challenges [22]. The discrepancies may be
related to differences in experimental conditions (e.g., nature
of baseline activity) or sample characteristics (e.g., age, IQ,
diagnosis status (ASD versus high-functioning autism), pres-
ence/exclusion of comorbid conditions) or may indicate a
need for larger sampler sizes to capture significant differ-
ences in mean EDA, which exhibits high variability in this
population.
Increased EDR frequency is generally associated with

increased sympathetic activity. Our results therefore suggest
decreased sympathetic reactivity in the ASD group. This

Fig. 4 EDR frequency across tasks for the high- and low-anxiety groups. Error bars represent standard error. EDR frequency was marginally higher
in the low-anxiety group (p = 0.06)

Panju et al. Molecular Autism  (2015) 6:64 Page 7 of 10



may be indicative of a deficit in sympathetic modulation to
meet task demands and associated with central/peripheral
neurobiological differences in ASD. While there is cur-
rently no evidence to support differences in peripheral
conduction, several neuroimaging/EDA studies suggest
central influences on sympathetic atypicalities in ASD.
In particular, a widespread network of regions, includ-
ing the amygdalae, and the prefrontal, anterior cingu-
late, and insular cortices, has been associated with
sympathetic modulation [46]. ASD has been associated
with differences in neuroanatomy, function, and con-
nectivity in these regions [47–49], which may affect
sympathetic function. These regions have also been
implicated in studies of social deficits in ASD [47] as
well as in neuro-circuitry of anxiety [50]. It is therefore
interesting that our results show a significant correl-
ation between behavioral scores in these domains and
decreased EDR frequency in the respective tasks. These
results are also consistent with those of [15] which sug-
gested a negative correlation between anxiety symptom
severity and heart rate responsiveness to social stress.
Further supporting atypical central autonomic process-

ing, a study of resting state activity in ASD [19] found that
the EDR signal was positively correlated with activity in sev-
eral regions involved in autonomic processing (e.g., anterior
insular and cingulate cortices) in neurotypical controls, but
not in the ASD group. In addition, the results of that paper
also suggest that weaker default mode network connectivity
in ASD may be partially explained by differences in EDA
activity. Future neuroimaging studies are needed to further
examine the relation among brain function, autonomic
differences, and behavior in these domains.
The blunted task reactivity observed herein may also

be related to compensatory down-regulation resulting
from chronic exposure to stress [15]. This would be con-
sistent with the high prevalence of comorbid anxiety in
ASD [51] and previous reports of hyper-arousal in this
population [5–8, 27]. In this context, reduced reactivity
may reflect inhibitory coping effects [42].
Finally, other mechanisms may have contributed to

decreased arousal during the tasks used in the study.
These include deficits in allocation of attentional re-
sources [39] or other executive functions as well as
lower levels of motivation to performance, engagement,
or interest in study tasks [40]. Future studies are needed
to further investigate these issues.

ASD subgroups
Our results show that when split based on anxiety symp-
tomatology, two different subgroups emerge within the
ASD group, with the high-anxiety group exhibiting
significantly decreased mean EDA relative to both the
low-anxiety ASD and TD groups. Our results also mirror
those reported in [15] in which a high-anxiety group

within ASD had lower heart rate than a low-anxiety ASD
group. Overall, these results indicate that anxiety symp-
tomatology may explain some of the variability in EDA
findings in existing literature.
Paradoxically, decreased EDA may suggest both hyper-

and hypo-arousal as the level of arousal input and physio-
logical output are thought to follow an inverted U-shaped
relation. In particular, arousal increases physiological output
to a certain point, beyond which the physiological response
decreases (a concept similar to Pavlov’s notion of transmar-
ginal inhibition) [52]. Consistent with this model, individ-
uals with high trait anxiety have been shown to exhibit
diminished EDA levels [52]. Given that our groups were
derived based on a measure of trait anxiety, our finding
of decreased EDA levels may reflect hyper-arousal in
this sample.
The pattern of decreased EDA was not task-specific in

our data and was evident even during baseline phases. This
may suggest that the observed EDA differences were likely
not related to differences in responding to any particular
task but to a more global physiological dysfunction or to
differences in the overall experience of the experimental
setting (e.g., coping with new environment and staff).
Decreased levels of EDA have previously been reported in
other populations with psychiatric difficulties including
depression [17], anti-social behavior [53], and externalizing
behavior disorders [54].
In addition to having distinct physiological profiles, the

high- and low-anxiety ASD groups differed significantly on
a number of behavioral domains. In particular, the high-
anxiety group showed more severe symptomatology on
measures of affective and psychological difficulties (CBCL
anxious/depressed, thought problems, attention problems,
rule breaking, and aggressive behavior; RCADS anxiety
total (marginally significant), obsessive-compulsive (margin-
ally significant), and depression subscales). These results
suggest a different behavioral profile between the two
anxiety groups. Our results complement those reported in
[54] where adults with ASD who exhibited low EDA also
showed poorer emotion recognition compared to those
with higher EDA levels. Given the high rates of comorbidity
in the high anxiety group, it remains possible that the
findings are driven by the presence of greater comorbid
symptoms overall (versus anxiety alone). Future research is
needed to further understand the relation between anxiety
and other comorbidities in this population.
Overall, our results suggest an interaction between sym-

pathetic function and anxiety and ASD symptomatology.
Future research is needed to further clarify the nature of
these associations.

Limitations
Some limitations of the present study are noteworthy.
First, in this study, sympathetic function as measured by

Panju et al. Molecular Autism  (2015) 6:64 Page 8 of 10



electrodermal activity was examined in isolation. The out-
put of the autonomic nervous system, however, is a result
of complex interactions among central and peripheral
mechanisms that include both the sympathetic and para-
sympathetic systems as well as the neuroendocrine system.
Further studies are needed to examine these systems
simultaneously and to pinpoint system-level differences in
this area.
The second limitation of this study was that the specific

measures of EDA such as the orienting response and
habituation were not examined. This was mainly due to
the continuous nature of tasks. Future studies designed
specifically for examining these measures (e.g., using
discrete stimuli) can further shed light on the nature of
EDA atypicalities in this population.
Our sample included participants who were receiving

psychopharmacological interventions which may affect
autonomic function. While we controlled for the effect
of medications on EDA measures in our analyses, future
studies with larger sample sizes are needed to quantify
these effects.
Finally, given the large variability in EDA measures in this

population, our sample size may have contributed to null
findings on both the physiological and behavioral domains.

Conclusions
In the present study, we examined sympathetic function
in ASD as measured by electrodermal activity. Our main
findings include (1) blunted electrodermal reactivity to
tasks eliciting anxiety, sustained attention, and social
cognition in ASD and (2) identification of two subgroups
within the ASD sample based on anxiety symptomatol-
ogy. The subgroups exhibited distinct physiological and
behavioral profiles characterized by low EDA level and
more severe symptoms in ASD, anxiety, attention, and
behavioral domains in the high-anxiety group. Overall,
the results add to the body of literature supporting auto-
nomic dysfunction in ASD and highlight the role of anx-
iety and autonomic features in explaining the variability
in the autism spectrum.
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