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Abstract

Background: A major goal of evolutionary biology is to understand the origins of phenotypic diversity. Changes

in development, for instance heterochrony, can be a potent source of phenotypic variation. On the other hand,
development can also constrain the spectrum of phenotypes that can be produced. In order to understand

these dual roles of development in evolution, we examined the developmental trajectory of a trait central to the
extensive adaptive radiation of East African cichlid fishes: craniofacial adaptations that allow optimal exploitation of
ecological niches. Specifically, we use geometric morphometric analysis to compare morphological ontogenies
among six species of Lake Malawi cichlids (n > 500 individuals) that span a major ecomorphological axis. We further
evaluate how modulation of Wnt signaling impacts the long-term developmental trajectory of facial development.

Results: We find that, despite drastic differences in adult craniofacial morphologies, there are general similarities in
the path of craniofacial ontogeny among species, suggesting that natural selection is working within a conserved
developmental program. However, we also detect species-specific differences in the timing, direction, and/or
duration of particular developmental trajectories, including evidence of heterochrony. Previous work in cichlids and
other systems suggests that species-specific differences in adult morphology are due to changes in molecular
signaling pathways that regulate early craniofacial development. In support of this, we demonstrate that modulation
of Wnt signaling at early stages can shift a developmental trajectory into morphospace normally occupied by
another species. However, without sustained modulation, craniofacial shape can recover by juvenile stages. This
underscores the idea that craniofacial development is robust and that adult head shapes are the product of many
molecular changes acting over extended periods of development.

Conclusions: Our results are consistent with the hypothesis that development acts to both constrain and promote
morphological diversity. They also illustrate the modular nature of the craniofacial skeleton and hence the ability of
selection to act upon distinct anatomical features in an independent manner. We propose that trophic diversity
among cichlids has been achieved via shifts in both specific (e.g., stage-specific changes in gene expression) and
global (e.g., heterochrony) ontogenetic processes acting within a conserved developmental program.
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Background

Development plays dual roles with respect to determining
evolutionary potential. On the one hand, natural selection
acts on phenotypic variation that is produced by heritable
alterations in development. Alternatively, the process of
development may act to constrain the types of phenotypes
that can evolve, specifically the direction and the amount
of variation that can be generated. Understanding how de-
velopment both produces and constrains phenotypic vari-
ation is central to understanding morphological evolution,
as well as evolvability, the capacity of an organism to
evolve in the future [1-5]. For instance, changes in devel-
opmental trajectories, including heterochrony [6-8], have
been implicated in evolutionary transitions between Nean-
derthals and modern humans [9], dinosaurs and birds
[10], and avian and non-avian amniotes [11] and in produ-
cing adaptive variation in limb length among lizards [12].

The development of complex morphological traits
involves the integration of multiple molecular and cel-
lular pathways, different tissues, distinct functional and
anatomical units, and environmental interactions over
an extended period of time [13, 14]. For instance, dur-
ing facial development, cranial neural crest cells, the
cellular origins of most of the facial skeleton in verte-
brates [15-21], must coordinate complex molecular
and morphogenetic patterns to properly form, migrate,
proliferate, and differentiate into cartilage and bone.
This involves multiple gene products and developmental
signaling pathways (reviewed in [22—24]), requires tissue-
tissue interactions (e.g., of neural and non-neural ectoderm
during induction [24] and ectoderm and mesenchyme dur-
ing facial outgrowth [25]), and is influenced by the devel-
opment of other anatomically distinct units (e.g., growth of
the brain [26, 27]). Alterations within any of these develop-
mental mechanisms can produce phenotypic variation. For
example, activity of the Wnt signaling pathway is critical
for multiple stages of facial [22] and bone development
[28]. Variation in the expression patterns and levels of this
pathway during early facial patterning and chondrogenesis
have been associated with microevolution of craniofacial
structures among birds [29] and fish [30], as well as
macroevolution of facial structures between birds and
mammals [31]. Finally, the craniofacial skeleton can be
remodeled over time to accommodate shifts in foraging
niches, and thus, its geometry is strongly influenced by
the environment (e.g., hardness of diet and feeding me-
chanics [30, 32, 33]).

East African cichlids exhibit one of the most impres-
sive adaptive radiations, with hundreds of species radiat-
ing within the last million years [34]. Pivotal to this
radiation are species-specific craniofacial features that
facilitate ecological specialization [35], making cichlids
an ideal model to address the role of development in the
production of phenotypic variation. The primary axis of
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craniofacial variation in cichlids, like many fish lineages,
distinguishes two primary feeding mechanisms [36]. Spe-
cies on one end of this axis are pelagic feeders that
forage on mobile prey, often from the water column via
suction feeding and are characterized by a long man-
dible, a shallow craniofacial profile, and isognathus jaws.
Species on the opposite end of this spectrum are benthic
feeders that forage by biting, crushing, scraping, and/or
picking prey from rocks and are characterized by a short
mandible, a rounded/steep craniofacial profile, and ven-
trally directed jaws [30, 36]. Note, our use of either “pe-
lagic” or “benthic” to describe species within this study
is meant to describe foraging mode (i.e., sucking or bit-
ing, respectively), not habitat preference.

Here, we assess craniofacial ontogenies for six species
of Lake Malawi cichlids that span the pelagic-benthic
ecomorphological axis [36]: Aulonocara sp. (Au), Trami-
tichromis sp. (Tra), Maylandia zebra (MZ), Tropheops
tropheops (TT), Tropheops sp. “red cheek” (TRC), and
Labeotropheus fuelleborni (LF), listed from the most pe-
lagic to the most benthic species (Table 1). The period
examined spans a wide window of craniofacial develop-
ment, from the establishment of craniofacial structures
as cartilaginous precursors through when fish begin to
forage, and includes larval and juvenile stages (Fig. 1).
We used geometric morphometrics to analyze shape vari-
ation for three functionally relevant aspects of the cranio-
facial skeleton: (1) the mandible, (2) the ventral view of
the pharyngeal skeleton including the mandible and bran-
chial cartilages/bones, and (3) the lateral view of most of
the craniofacial complex including the upper jaw, orbit,
and the brain case (Fig. 2).

We predicted that species-specific craniofacial shapes
may be generated by a combination of distinct develop-
mental mechanisms. For example, differences in morph-
ology may arise due to variation in early patterning
events such as neural crest cell development and/or chon-
drogenesis (e.g., [37]). These early differences would then
be elaborated into distinct adult forms via parallel devel-
opmental trajectories. Alternatively, craniofacial shapes
may be largely conserved early and diverge through on-
togeny via species-specific trajectories. Finally, divergence
in both early patterning events and long-term ontogenetic
trajectories may underlie variation in cichlid craniofacial
shape. A rigorous assessment of facial shape through on-
togeny will provide greater insights into how and when
development produces morphological variation on which
natural selection can act, as well as the dynamics of cra-
niofacial development.

Methods

Animals

All rock-dwelling cichlids were maintained and used
according to guidelines and protocols approved by the
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Table 1 Species examined span the benthic-pelagic ecomorphological axis. List of species and treatments used in analyses,

including habitat and feeding strategy based on [47]

Species (and treatment, as applicable) Habitat Feeding strategy Color in figures
‘-
o0 Aulonocara sp. (Au) Sand Sonar hunting
Rt
>
o wn
~ Tramitichromis sp. (Tra) Sand Sifting
Maylandia zebra (M2) Rock Suction/combing
Tropheops tropheops (TT) Rock Biting: nip and twist -
L a Tropheops sp. “red cheek” (TRC) Rock Biting: nip and twist -
=|(c
C =
Qa9
m g Labeotropheus fuelleborni (LF) Rock Biting: scraping
Maylandia zebra
8 mM LiCl, 6 hr at 5 dpf
Tropheops tropheops I
8 mM LiCl, 6 hr @ 5 dpf

Tropheops tropheops
8 mM LiCl, 6 hr @ 5,10,16 dpf

Tropheops tropheops
250 uM LiCl, continuously starting @ 5 dpf

"X
L W 1)

Institutional Animal Care and Use Committee, including
Ethical Committee, at the University of Massachusetts
Ambherst. LF, MZ (also called Metriaclima zebra), TT,
and TRC were maintained and bred at 28.5 °C in a 14-h
light/10-h dark cycle. Cichlid species were collected
from Lake Malawi and reared in 40-gal glass aquaria.
Larvae (F;- to Fs-derived from wild-caught stocks) were
obtained by natural matings and, following collection
from mouth-brooding females, were incubated in 1-L
flasks with system water plus 2—-3 drops of methylene
blue at 28.5 °C. The larvae were staged based on caudal
fin anatomy according to [38] and collected at 6 dpf (days
post fertilization, stage 18), 8 dpf (stage 22), and 10 dpf
(stage 24). The fish were moved to 10-gal glass aquaria
once yolk was absorbed (approximately 15 dpf) and raised
for approximately 1 month, until juveniles were a standard
length (SL, length from tip of the snout to the base of the
caudal fin rays) of 1.2—-1.6 cm (mean = 1.4 cm). These time
points were chosen because the larval stages (6—10 dpf)
represent a critical period of facial development, including
when the facial bones are initially established. By juvenile

stages (SL of 1.2—1.6 cm), a large portion of bone develop-
ment is complete and fish are eating independently. Sand-
dwelling cichlid (Aulonocara sp. and Tramitichromis sp.)
samples were raised in a similar manner, as described in
[39]. Number of specimens and families used are listed in
Additional file 1: Table S1; specimens were evenly sampled
from all families. Note that we did not have samples from
Tramitichromis sp. at 6 dpf.

Fixation and skeletal staining

The specimens were sacrificed by overdose with tricaine
methanesulfonate (MS-222, Aquatic Ecosystems Inc.),
fixed overnight at room temperature in 4 % paraformal-
dehyde (Sigma) in 1x phosphate-buffered saline (PBS),
and dehydrated to 70 % ethanol. Skeletal elements were
stained using Alcian Blue and Alizarin Red for cartilage
and bone, respectively, based on [40]. The larvae were
incubated at room temperature overnight in a solution
of 150 ul. 0.5 % Alizarin Red S (Sigma) in water plus
5 mL 0.02 % Alcian Blue 8GX (Sigma) and 60 mM
MgCl, in 70 % ethanol. The samples were bleached
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6 dpf

8 dpf

Lateral

Ventral

L T

Fig. 1 Time course of craniofacial development analyzed. a-d Lateral and e-h ventral views of time points analyzed. Scale =500 pm

10 dpf

Juvenile

__h

= -

using 3 % hydrogen peroxide and 2 % potassium hydrox-
ide (KOH) until melanocytes turned from black to brown;
any bubbles formed during this process were removed
manually. The tissues were cleared by transitioning
through the following series: 25 % glycerol and 0.25 %
KOH (>30 min), 50 % glycerol and 0.25 % KOH (>2 h),
and 80 % glycerol (>2 h and storage). The eyes were
manually removed to allow visualization of internal struc-
tures. The samples were positioned in 80 % glycerol and

photographed with a scale bar using a Leica DFC450 cam-
era mounted to a Leica MF15 stereomicroscope in both
lateral and ventral views. Three different aspects of the
craniofacial skeleton were analyzed for shape variation:
the ventral view (Fig. 2¢), including the mandible and
ceratobranchial cartilages/bones; the lateral view (Fig. 2a),
incorporating the upper jaw through the neurocranial
region; and the mandible (Fig. 2b), which was extracted
from the lateral image but analyzed independently to

Fig. 2 Landmarks and semilandmarks used in morphometric analysis. Representative larvae are shown with the location and description of
landmarks used to analyze a lateral, b mandible, and ¢ ventral development. For lateral development, eight semilandmarks (gray) were evenly
and 4 to capture the slope of the craniofacial complex

placed between landmarks 1

LATERAL

1. tip of snout/rostral edge of maxilla

2. lip of vomerine process

3. ventral edge of epiphyseal bar

4. dorsal edge of epiphyseal bar

5. intersection between skull and otic capsule
6. dorsal edge of otic capsule

7. juncture of cranium with vertebrae

8. plnl between oparcle and hyosyrnplactlc
9. joint yal and hyosy

10. articulation of palatoquadrate and mandible

MANDIBLE

1. rostral tip of Meckel's cartilage

2. dorsal tip of articular proces of Meckel's cartilage

3, articulation of palatoquadrate and mandible

4. caudal tip of retroarticular process of Meckel's cartilage
5. ventral tip of retroarticular process

VENTRAL

1. mandibular symphysis

2-3. lateral-most edges of manduble

4-5. articulations bet 1 and

6-7. caudal edge of ceratohyal

8-9. articulations of opercle and hyosymplectic
10. midline of ceratohyal

11. rostral edge of basihyal

jadrate
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eliminate variation introduced by degree of jaw opening
at fixation.

Geometric morphometrics

The position of homologous anatomical landmarks (LMs)
(Fig. 2) was collected from photos using the software
tpsDig2 [41]. For the lateral view, semilandmarks were
also collected as a curve that defined the slope of the
craniofacial profile (Fig. 2a). These data were reduced to
eight evenly spaced landmarks and subsequently defined
as semilandmarks using the software tpsUtil [41]. The
program tpsRelw [41] was used to conduct Procrustes
superimposition of landmarks and semilandmarks using
a chord-distance (Procrustes distance)-based “sliders”
method, which removed variation due to size, rotation,
and position, leaving only variation due to shape.
TpsRelw was also used to generate partial warps from
landmark data and perform a principal component ana-
lysis (PCA) on these variables. The samples were ana-
lyzed both through ontogeny (including samples at 6
dpf, 8 dpf, 10 dpf, and juveniles) and within a single
developmental time point (i.e., among individuals of the
same age). For mandible ontogeny, the 10-dpf time
point was omitted; at this point, the cartilage of the cor-
onoid process is being resorbed as the bone is formed,
resulting in unreliable placement of landmarks.

Comparison of developmental trajectories and statistics
The shape, length, and orientation of developmental tra-
jectories were quantified and statistically compared using
the trajectory analysis function in the geomorph package
for R [42, 43]. Pairwise differences were assessed using
10,000 residual randomization permutations, with and
without Bonferroni correction. We also conducted multi-
variate analysis of variance (MANOVA) tests on partial
warp scores (principal components [PC] 1-3 combined) to
test for effects of species, age, and their interaction using
the R statistical language. Analysis of variance (ANOVA)
tests with Tukey’s Honestly Significant Difference (HSD)
were also conducted in R.

Small molecule manipulation of Wnt signaling

Wnt signaling was chemically modulated starting at 5
dpf, a stage at which we detected differential expression
of the Wnt pathway effectors f-catenin and lefl [30].
MZ and TT larvae were incubated with a Wnt agonist
[44], lithium chloride (LiCl) (Sigma), to mimic the
increased levels of Wnt signaling observed in LF. Three
different treatments were conducted: (1) single treat-
ment of 8 mM LiCl for 6 h at 5 dpf (following [30]), (2)
long-term Wnt modulation with 8 mM LiCl for 6 h each
at 5, 10, and 16 dpf, and (3) long-term Wnt modulation
by continuous incubation in 250 pM LiCl (following
[45]), replacing the LiCl solution every 2-4 days.
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Untreated larvae from the same brood were collected as
controls. Following chemical treatment, the larvae were
washed 3-5 times in system water, placed into a clean
flask with fresh system water, and reared until the appro-
priate stage. Any dead fish (e.g., lockjaw phenotype [30])
were removed.

In a previous report, we also experimentally lowered
Wnt signaling in the benthic foraging species, LF, using
the chemical antagonist IWR-1 and were able to recap-
itulate a pelagic phenotype in larval fish [30]. Unfortu-
nately, such an experiment could not be performed here.
Mainly, this is because LEF, the species in which a Wnt
knockdown would be desirable, is highly sensitive to
Wnt manipulation (e.g., increased frequency of lethal
lockjaw phenotypes) [30]. This may reflect a more cana-
lized Wnt signaling network in this phenotypically de-
rived species, which results in a phenotype that is more
robust to environmental changes but more sensitive to
molecular changes [30]. Therefore, unlike other species,
LF does not survive over long periods of development
when treated with Wnt manipulators, rendering such
experiments untenable.

Results and discussion

Overall patterns of ontogeny

All three aspects of craniofacial development—mandible,
ventral, and lateral—share several notable characteristics.
First, species-specific shapes can be detected at the earli-
est stage of development examined, which suggests that
early developmental patterning events play an important
role in determining adult morphology in cichlids. Sec-
ond, the primary axis of shape variation for each aspect
is ontogeny. Thus, differences between developmental
stages exceed that between species. This finding suggests
that all species, despite morphological differences in
adults, share a common developmental trajectory. Third,
within this common trajectory, there are species-specific
developmental paths that differ in terms of orientation,
size (path length), and/or shape. Taken together, cichlid
craniofacial shapes appear to be determined early in
development and elaborated via species-specific trajec-
tories that represent variations on a common theme. We
describe these patterns in greater detail below.

Mandible development

Five LMs were used to describe variation in the shape of
the mandible (Fig. 2b). After removing variation not due
to shape (e.g., variation in size and orientation), data
were analyzed using a PCA. The majority of shape vari-
ation (98.1 % TSV [total shape variation]) in the man-
dible through ontogeny is described by three principal
axes: the relative length of the mandible relative to the
processes, particularly the coronoid process (LM2, Fig. 2b)
(PC1, 68.1 % TSV); the relative length of the retroarticular
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process (LMs 4-5 relative to LM3, Fig. 2b) (PC2, 12.9 %
TSV); and the angle of the coronoid process to the man-
dible (PC3, 109 % TSV) (Fig. 3, [see Additional file 1:
Figures S1 and S2]). MANOVA of PC1-3 scores shows a
highly significant effect of species (Wilks’ A = 0.56, F5 197 =
8.26, p<0.0001), day (Wilks' A=0.15 F;9;=357.45,
p<0.0001), and the species x day interaction (Wilks’
A =0.80, F5 197 = 3.00, p < 0.001) on mandibular shape.
Notably, the primary axis of variability (PC1) for each
developmental stage is similar to the primary axis (PC1)
of variation through ontogeny (see Additional file 1:
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Figure S2). Stated differently, the long/shallow and
short/deep mandibular phenotypes that distinguish pela-
gic and benthic fish, respectively, at each stage (e.g., [see
Additional file 1: Figure S3c and S3q]), also distinguish
younger and older mandibles, respectively, within each
species (e.g., [see Additional file 1: Figure S3a, c]). This
pattern suggests that shape differences among species
may be due to differences in the rate of development of
this trait (more on this below). This pattern of variation
also has important functional implications; all else being
equal, a relatively long mandible gives pelagic fish faster

‘a 6dpf @ € Au ]
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Fig. 3 Mandible developmental trajectories are species-specific. Mandible morphospace is described by mandible length relative to depth of the
processes (PC1) and the relative length of the retroarticular process (PC2). Differences in shape were analyzed either a-c within a single day or
e-g, i-k through ontogeny. Species is indicated by color and time point is indicated by symbol, as designed in panel headings. Ellipses encompass
all samples for the indicated species at a single time point, and mean PC scores are marked by large icon. Note that the plot is the same in

(e-g, i-k), but with a different species highlighted. d Landmarks (dots) used in morphometric analysis. h, | Variation in mandible shape described
by PC1 through ontogeny, depicted as deformation grids using thin-plate splines
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jaw opening and closing, while a relatively short man-
dible should confer greater bite force for benthic fish to
shear algae from rocks or crush hard prey [46]. Species
differ significantly in mandible shape at all stages but
become more distinct in shape through ontogeny
(MANOVA of PC1-3 scores, 6 dpf: Wilks A =0.54,
Fi64=3.61, p<0.0001; 8 dpf: Wilks’" 1=0.28, Fs5,6=
7.98, p<0.0001; juvenile: Wilks” A =0.11, Fs55,=11.58,
p <0.0001). Notably, at all developmental stages, the most
extreme benthic species (LF) has a shorter mandible with
deeper processes, while the most pelagic species (Au) has
a longer mandible with more shallow processes (Fig. 3e—k
[see Additional file 1: Figure S3r—t]).

At 6 dpf, all species occupy a similar region of morpho-
space (Fig. 3e-k) and have mandibles with relatively shal-
low processes (see Additional file 1: Figure S3a, f, i, |, 0).
Mandible development in all species then follows a com-
mon path, namely by extending the coronoid and retroar-
ticular processes. However, species extend these processes
to a different degree, producing significant species-specific
differences in this trajectory (see Additional file 1: Figure
S4). Even TRC and TT, species that have similar juvenile
morphologies (Fig. 3) and feeding strategies (Table 1,
[47]), have statistically distinct orientations in their devel-
opmental trajectories (see Additional file 1: Figure S4).
This demonstrates that there are multiple developmental
paths to produce similar phenotypes.

We also note a distinct heterochronic shift in mandible
development between pelagic and benthic fish. Specifically,
by 8 dpf, the extreme benthic species (LF) has developed a
deeper coronoid process than the most pelagic species (Au)
develops by juvenile stages (Fig. 3 and compare Additional
file 1: Figure S3p and S3c). That is, Au retains a larval man-
dible phenotype, consistent with paedomorphism. This ob-
served difference in the rate of development of mandibular
shape is reflected in the statistical differences in trajectory
size between species (see Additional file 1: Figure S4) and
underscores the importance of heterochrony in promoting
species-specific morphologies.

Ventral development

Eleven LMs were used to describe variation in shape for
the ventral aspect of the pharyngeal skeleton, including
the mandible, hyoid and ceratobranchial structures
(Fig. 2c). The majority of shape variation (82.3 % TSV)
in ventral ontogeny is captured by three principal axes
(Fig. 4 [see Additional file 1: Figures S5 and S6]). The
first axis (PC1, 63.2 % TSV) describes width of the man-
dible and pharyngeal skeleton (distance between LMs
2-3, LMs 4-5, LMs 6-7, and LMs 8-9, Fig. 2c) as well
as mandible length (distance from LM1 to LM4 and
LM1 to LMS5, Fig. 2¢). The second axis (PC2, 10.7 %
TSV) also includes some aspects of width but primarily
distinguishes the distance of the basihyal (LMs 10-11,
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Fig. 2¢) to the mandible (LM1). The third axis (PC3,
8.4 % TSV) distinguishes a wider, more trapezoid shaped
mandible (LMs 1-5, Fig. 2c) versus a narrower, more tri-
angular mandible shape (see Additional file 1: Figure S6).
MANOVA of PC1-3 scores shows a highly significant ef-
fect of species (Wilks’ A =0.18, Fs 175 =42.70, p <0.0001),
day (Wilks” A =0.20, Fi,75=357.25, p<0.0001), and the
species x day interaction (Wilks’ A =0.59, Fs,75=10.77,
p <0.0001) on ventral shape.

As with mandibular development, the primary axis of
variation in ventral shape (i.e., width) at each individual
developmental time point is the same axis of variation
through ontogeny (see Additional file 1: Figure S6),
which again points toward developmental rate as an im-
portant factor in determining adult shape difference.
Species differ significantly in ventral shape at all stages
of development, becoming increasingly distinct as devel-
opment progresses (MANOVA of PC1-3 scores, 6 dpf:
Wilks” A = 0.25, Fy60 = 8.89, p <0.0001; 8 dpf: Wilks’ A =
0.13, Fs574=14.66, p <0.0001; 10 dpf: Wilks’ A =0.036,
F579=33.07, p<0.0001; juvenile: Wilks" A=0.0013,
F551=92.49, p<0.0001). At 10 dpf and juvenile stages,
this is driven largely by shape variation in the most
benthic species (LF), which occupies a distinct, non-
overlapping aspect of shape space characterized by a wide
pharyngeal skeleton and short mandible (see Additional
file 1: Figure S7w). Meanwhile, pelagic fish develop
relatively long, narrow mandibles (LMs 2-5) that flare out
to a wider branchial region (LMs 6-9) (Fig. 2c, [see
Additional file 1: Figure S7d, g, k]). This triangular shape
of the pharyngeal skeleton, and hence the buccal cavity, in
pelagic fish should allow for a higher flow velocity during
suction feeding [48].

All species have relatively wide and short jaws at 6 dpf
(see Additional file 1: Figure S7a, h, |, p, t), which narrow
and lengthen over time. While all species share this gen-
eral ontogenetic trajectory, there are also species-specific
paths (see Additional file 1: Figure S4), including evidence
of heterochrony. Specifically, by 8 dpf, the pharyngeal
skeleton of the most pelagic species (Au) is narrower than
that of the most benthic species (LF) at juvenile stages
(Fig. 4 and compare Additional file 1: Figure S7b and w).
In other words, LF retains a larval ventral phenotype well
into juvenile stages of development and may be paedo-
morphic in terms of ventral shape (again, see highly
significant differences in trajectory size between LF and
Au) (see Additional file 1: Figure S4). Notably, this obser-
vation is opposite to what was observed for the mandible
in the lateral view, where LF exhibited accelerated devel-
opment relative to other species. These opposing trends
underscore the idea that different aspects of the facial
skeleton develop and evolve independently to one another
(i.e, are modular) even though they have considerable
functional interactions [49] (see Conclusions).
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Fig. 4 Ventral developmental trajectories are species-specific. Ventral morphospace is described by relative jaw width and mandible length (PCT)
and distance between the basihyal to the mandible (PC2). Differences in shape were analyzed either a-d within a single day or e-g, i-k through
ontogeny. Colors, symbols, and ellipses are as described in Fig. 3. Note that the plot is the same in (e-g, i-k), but with a different species
highlighted. h, I Variation in ventral shape described by PC1 through ontogeny, depicted as deformation grids using thin-plate splines

Lateral development

The lateral aspect of the craniofacial skeleton encom-
passes distinct developmental, anatomical, and func-
tional modules, including the primarily neural crest
cell-derived pre-orbital (ie., facial) region and the pri-
marily mesoderm-derived neurocranium [17]. The lat-
eral skeleton, including the brain case, was characterized
using ten landmarks. We also utilized eight evenly
spaced semilandmarks to define the slope of the pre-
orbital region (Fig. 2a), differences in which have been
shown in both cichlids [49] and finches [50] to impact
bite force. Three primary axes accounted for 78.9 % TSV
in lateral ontogeny. The primary axis of variation (PC1,
58.9 % TSV) describes differences in facial outgrowth,

particularly the pre-orbital region (distance between
LMs 1-2 and LMs 3, 5, 8, and 9, Fig. 2a), and commensur-
ate changes in the craniofacial slope. Additional shape
variation is due to differences in the relative proportions
of the facial region (LMs 1-5 and 8-10, Fig. 2a) and the
neurocranium (LMs 5-38, Fig. 2a), again with commensur-
ate changes in the craniofacial slope (PC2, 10.8 % TSV),
and outgrowth in the posterior region of the neurocra-
nium (particularly LM6, Fig. 2a) (PC3, 10.1 % TSV) (Fig. 5,
[see Additional file 1: Figures S4, S8-S10]). There is a
highly significant effect of species (Wilks’ A = 0.49, F5 g6 =
15.20, p <0.0001), day (Wilks" A =0.043, F g6 =2130.96,
»<0.0001), and the species x day interaction (Wilks’ A =
0.78, F5286 = 4.79, p < 0.0001) on lateral shape.
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As with mandibular and ventral shape development,
the primary axis of variation in lateral shape (i.e., cranio-
facial slope) at each individual stage is similar to the pri-
mary axis of variation through ontogeny (see Additional
file 1: Figure S9). This is consistent with the hypothesis
that shape differences among species are due to changes
in timing and/or rate of ontogeny. The species are sig-
nificantly different in lateral shape at all stages of
development (MANOVA of PC1-3 scores, 6 dpf: Wilks’
A =025, Fyu=9.21, p<0.0001; 8 dpf: Wilks” A =0.093,
Fs5,3=17.91, p<0.0001; 10 dpf: Wilks’ A = 0.085, F5g9 =
23.17, p <0.0001; juvenile: Wilks’ A = 0.052, F55;, = 17.33,

»<0.0001). Based on the MANOVA results, the species
are most distinct at 10 dpf (compare overlap of ellipses
in Fig. 5c to Fig. 5a—b), and this is primarily due to di-
vergence in shape between sand-dwelling pelagic fish
(Au and Tra) and rock-dwelling benthic fish (MZ, TT,
TRC, and LF). Notably, by juvenile stages, the most
pelagic rock-dwelling species (MZ) occupies the most
extreme position along PC1, which is consistent with
shifts in species-specific rates of development. However,
unlike mandibular and ventral shapes, we do not detect
obvious instances of heterochrony in the lateral view
(Fig. 5, [see Additional file 1: Figure S4]). Development
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in the lateral view is also distinct in that whereas the
ontogenetic morphospace for mandible and ventral
development is largely continuous across stages (e.g.,
Figs. 3e and 4e), lateral shape at juvenile stages occupies
a distinct region of the morphospace compared to larval
stages. This suggests that a large degree of craniofacial
development occurs in the lateral skeleton between 10
dpf and juvenile stages (approximately 1 month).

Early manipulation of Wnt signaling results in modest
shifts in larval morphology

With an appreciation for some of the similarities and
differences in normal craniofacial development among
cichlid species (Figs. 3, 4 and 5), we next sought to de-
termine the extent to which molecular manipulations
could affect species-specific developmental trajectories.
Namely, we wanted to ask if manipulation of a major
signal transduction pathway during early craniofacial de-
velopment was sufficient to shift a developmental trajec-
tory into morphospace normally occupied by another
species. We have previously shown that activity of the
Wnt signaling network is correlated with changes in cra-
niofacial slope [30], the primary variation observed in
the current analysis of lateral development (Fig. 5). Spe-
cifically, the obligate benthic species LF demonstrates in-
creased levels of Wnt signaling relative to more pelagic
fish at the onset of craniofacial bone development (i.e.,
5-6 dpf) [30]. Further, artificial up-regulation of Wnt ac-
tivity in a pelagic fish at 5 dpf resulted in a more benthic
phenotype at 8 dpf [30]. However, what remains un-
known is whether the effect of such molecular modula-
tion is limited to short-term shifts in shape, or if these
shifts will be maintained over longer periods of develop-
ment. Therefore, we artificially increased levels of Wnt
signaling with the small molecule agonist LiCl (which
up-regulates that pathway through inhibition of GSK3
[44]) in species toward the pelagic end of the spectrum
(MZ and TT) to mimic the increased Wnt activity ob-
served in the most benthic species, LF [30].

Wnt signaling was induced by incubating the larvae in
8 mM LiCl for 6 h at 5 dpf, a stage at which we detected
differential expression of the Wnt pathway effectors -
catenin and lefl [30]. Resultant phenotypic effects (Fig. 6,
[see Additional file 1: Figures S4 and S11]) were assessed
through the time course of development described above
(Fig. 1). As expected, by 10 dpf, the more pelagic species
MZ and TT treated with LiCl developed lateral craniofa-
cial skeletons that were statistically indistinguishable
from that of LF, effectively phenocopying the benthic
eco-type (Fig. 6d, p =0.969 for MZ with LiCl versus LF;
p=0977 for TT with LiCl versus LF, ANOVA with
Tukey’s HSD of PC1 scores). However, while this early
change in molecular signaling shifted a developmental
trajectory into morphospace normally occupied by
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another species at 10 dpf, craniofacial shape recovers by
juvenile stages (Fig. 6e). Specifically, juvenile TT treated
with 8 mM LiCl for 6 h at 5 dpf do not differ in lateral
shape compared to the untreated TT samples (p = 0.999).
MZ treated with LiCl still possess a significantly steeper
(i.e., more benthic) craniofacial profile relative to the un-
treated MZ samples (p < 0.0001) and phenocopy untreated
TT samples (p =0.438) at juvenile stages (p values from
ANOVA with Tukey’s HSD of PC1 scores). However, lat-
eral shape has recovered relative to LF. In other words,
early and relatively brief modulation of Wnt signaling is
sufficient to shift an MZ developmental trajectory to that
normally occupied by another species (T'T). However, this
short-term treatment is insufficient to result in the ex-
treme benthic morphology of LF [36].

Sustained modulation of Wnt signaling is sufficient for
extreme and sustained shifts in craniofacial morphology
Given that an early change in development was not suf-
ficient to develop the extreme, derived morphology of
the most benthic species, LF [36] (Fig. 6e), we hypothe-
sized that signaling changes might need to be reinforced
throughout development. This makes sense within the
context of Wnt signaling and bone development, as this
pathway regulates bone cell differentiation [28], and our
previous work in cichlids and zebrafish suggests that
higher levels of Wnt signaling mediate shifts in craniofa-
cial shape by accelerating rates of bone deposition [30].
Relative to the mandible and the ventral pharyngeal
skeleton, the lateral aspect of the craniofacial skeleton
undergoes significant amounts of bone development be-
tween larval and juvenile stages (Fig. 1). Indeed, very lit-
tle of the cranium or upper jaw apparatus have begun to
mineralize at 10 dpf. We therefore hypothesized that
sustained Wnt modulation is required to affect craniofa-
cial shape through early juvenile stages, and specifically
to shift the TT developmental trajectory to that of the
most benthic species, LF.

In order to test this hypothesis, we altered Wnt signal-
ing over extended periods of development in TT by ei-
ther (1) incubating the larvae in 8 mM LiCl for 6 h each
at 5, 10, and 16 dpf or (2) continuously raising the larvae
in 250 uM LiCl (following [45]). Not only did these
treatments in TT phenocopy an LF-like morphology at
10 dpf (Fig. 6d, p=0.800 for TT with 250 pM LiCl
versus LF; p=0.999 for TT with 8 mM LiCl at 5,10, and
16 dpf versus LE, ANOVA with Tukey’s HSD of PC1
scores), but they also resulted in fish that retained a ben-
thic phenotype at juvenile stages (Fig. 6e). Specifically,
the TT samples with sustained modulation of Wnt sig-
naling (either continuously treated with 250 pM LiCl or
treated with pulses of 8 mM LiCl at 5, 10, and 16 dpf)
possessed juvenile craniofacial shapes that were statisti-
cally indistinguishable from LF along PC1, which
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Fig. 6 Continued modulation of Wnt signaling shifts lateral developmental trajectory. a, b Variation in lateral shape described by PC1 at juvenile
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d Lateral morphospace at 10 dpf. e Lateral morphospace at juvenile stages. Bars underneath plots indicate range of PC1 scores for each species/
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describes variation in the craniofacial slope (p = 0.115 for
TT with 250 uM LiCl versus LF; p=0.992 for TT with
8 mM LiCl at 5, 10, and 16 dpf versus LF, ANOVA with
Tukey’s HSD). Overall, these data suggest that the evolu-
tion of progressively more extreme craniofacial morph-
ologies may have occurred through sustained alterations
in molecular signaling over extended periods of craniofa-
cial skeletal development.

Modulation of Wnt signaling does not affect other
aspects of craniofacial shape in a predictable fashion

LiCl treatment in pelagic species did not result in the
development of a benthic-like mandible or ventral phe-
notypes (see Additional file 1: Figure S11). This is not to
say that Wnt signaling is not involved in the develop-
ment of species-specific mandibular or ventral shapes.
The possibility remains that it does, but at an earlier
stage in development. Nevertheless, upon treatment with
LiCl, the mandibular, ventral, and lateral aspects of the
craniofacial skeleton are not responding in a coordinated
manner. This observation underscores the modular na-
ture of craniofacial development (see Conclusions) and
is consistent with the hypothesis that adult craniofacial
shape is a compilation of variation in multiple molecular
and developmental pathways that act during distinct pe-
riods of time.

Conclusions

Variations on a theme: species-specific phenotypes within
a conserved developmental program

Overall, we find that for all three aspects of craniofacial
development—mandibular, lateral, and ventral—species
have a similar path of ontogeny, despite drastic differences
in adult morphologies. This conservation of ontogenetic
trajectories suggests that developmental processes con-
strain craniofacial evolution in cichlids. This is similar to
what was previously observed in amniotes, where devia-
tions from the developmental bauplan resulted in maladap-
tive facial clefting [11]. While teleosts lack the conspicuous
facial prominences that characterize early craniofacial de-
velopment in amniotes, their development also requires
the coordinated outgrowth and fusion of distinct skeletal
elements in the head. Thus, the conserved pattern of
craniofacial development we observe in cichlids (Figs. 3, 4
and 5) may similarly be the result of selection against non-
viable facial malformations. However, we also have evi-
dence that alterations within this common developmental
program can produce phenotypic variation. We detect
significant species-specific differences in the timing (e.g.,
heterochrony) and/or direction of developmental trajector-
ies, indicating that both specific (e.g., alteration of Wnt
signaling during bone development) and general (e.g., het-
erochrony) changes in development contribute to pheno-
typic variation.
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The importance of ontogeny in producing phenotypic
variation

A common, often implicit, assumption in evolutionary
developmental biology (evo-devo) is that phenotypic
variation is the result of early developmental changes
that are elaborated to produce adult morphologies.
However, here, we demonstrate that craniofacial devel-
opment is robust and such early changes may not be
sufficient to elicit long-lasting effects—i.e., that pheno-
typic changes may be compensated by later ontogenetic
events. In particular, while early, short-term modulation
of Wnt signaling produced phenotypic variation in larval
stages, these were largely counteracted by juvenile stages.
This observation underscores the importance of post-
embryonic development in evolutionary change [51]. Fur-
ther, it emphasizes that adult morphologies are the result
of many molecular changes that act over extended periods
of development [13] and on distinct tissues, for instance
Ibh during neural crest cell development [37] and Wnt
signaling during bone deposition [30]. A significant future
challenge facing practitioners of evo-devo is to reconstruct
the totality of molecular and developmental shifts that re-
sult in species-specific adult morphologies.

Modularity in craniofacial development and evolution
Two lines of evidence suggest that mandibular, ventral,
and lateral skeletal structures are independent develop-
mental modules within the craniofacial complex. The
first involves patterns of developmental rate. Juvenile in-
dividuals of the most pelagic species (Au) retain larval
mandibular phenotypes but exhibit accelerated rates of
development with respect to the ventral pharyngeal skel-
eton. On the other hand, the extreme benthic species
(LF) demonstrates the opposite pattern and retains a
larval phenotype as juveniles for the ventral view but ex-
hibits accelerated rates of mandibular development. In
other words, the mandibular and ventral skeletons are
developmentally independent and a single species does
not simply retain the larval phenotype for all aspects of
craniofacial skeleton. Second, modulation of Wnt signal-
ing has a significant and largely predictable impact on
lateral craniofacial development (e.g., craniofacial slope),
but not on the mandible or ventral pharyngeal skeleton.
This is similar to what has been proposed in finches
[52-54], where changes in different signaling pathways
independently regulate different dimensions of the beak.
This pattern of modularity should have important in-
fluences on the direction and/or speed of evolutionary
change (i.e., evolvability) [3, 55-60]. A significant chal-
lenge of future research will be to determine how the
de-coupling of mandibular, ventral, and lateral develop-
ment in the cichlid craniofacial skeleton has impacted
evolutionary constraints in this group. For instance, it
has been proposed [61] that new patterns of modularity
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may contribute to the extensive morphological adaptations
in this lineage, effectively serving as a “key innovation”
[62, 63]. Overall, this work demonstrates the dual role of
development in promoting and constraining phenotypic
variation and illustrates the role of ontogeny in the evolu-
tion of complex shapes [13, 14].
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