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The STAT6 inhibitor AS1517499 
reduces the risk of asthma in mice 
with 2,4‑dinitrochlorobenzene‑induced atopic 
dermatitis by blocking the STAT6 signaling 
pathway
Xueying Li1†, Zhaoqing Han1†, Feng Wang2* and Jianou Qiao1* 

Abstract 

Background:  Epidemiological studies have revealed a link between atopic dermatitis (AD) and asthma. AS1517499, a 
selective signal transducer and activation of transcription 6 (STAT6) inhibitor, has been shown to effectively block this 
connection. In this study, we further explored the underlying mechanism by constructing an AD mouse model.

Methods:  Female BALB/c mice were randomly divided into four groups (n = 10/group). The AD mouse model was 
established by 2,4-dinitrochlorobenzene induction with repeated ovalbumin challenge. AS1517499 and corn oil were 
used as treatment interventions. The features of airway inflammation, remodeling, and hyperactivity were analyzed.

Results:  Active use of AS1517499 in AD mice effectively reduced Th2-related cytokine levels, alleviated airway 
eosinophil and lymphocyte infiltration, and regulated GATA3/Foxp3 levels and subepithelial collagen deposition. 
These changes might be due to specific blockade of the STAT6 signaling pathway.

Conclusion:  AS1517499 could partially block the association between AD and asthma by specifically inhibiting the 
STAT6 signaling pathway.
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Background
Asthma is a complex chronic airway inflammatory 
disease characterized by airway inflammation and 
hyperresponsiveness. It is the result of genetic 
susceptibility and environmental factors and has obvious 

seasonal influence [1]. The prevalence of childhood 
asthma increased annually between 1999 and 2001 and 
gradually reached a plateau in 2013 [2]. According to the 
National Review of Asthma Deaths, 28 children died of 
asthma between February 2012 and January 2013 in the 
UK alone [3].

Atopic dermatitis (AD) is a chronic inflammatory skin 
disease, once known as atopic eczema, and is the most 
common form of chronic skin inflammation in children 
[4]. The worldwide prevalence of AD is between 1 and 
20%, and the majority of cases reported onset before the 
age of 2  years [5]. Epidemiological studies have shown 
that the prevalence of allergic asthma and allergic rhinitis 
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are increased in children if they suffer from AD before 
5  years of age [6]. This disease progression from AD in 
infants to allergic asthma or asthma in children is termed 
the “allergic march.” The early onset and severity of AD 
are closely related to the development of an allergic 
march [7, 8]. In recent years, researchers have made 
increasing efforts for clarifying the possible pathogenesis 
of the allergic march, from nutritional factors and 
environmental factors to genes [9, 10], but to no avail.

AS1517499, a novel low molecular weight compound, 
is a derivative of 2-{[2-(4-hydroxyphenyl)ethyl]amino}
pyrimidine-5-carboxamide and has been reported to 
be the most potent inhibitor of signal transducer and 
activator of transcription 6 (STAT6) [11]. AS1517499 
might be useful for the treatment of various allergic 
conditions caused by an excess Th2 response, such as 
asthma and atopic diseases [11]. Additionally, studies 
have confirmed the effectiveness of STAT6 inhibition in 
asthmatic mice [12]. A study by Chiba et al. [13] showed 
that AS1517499 could ameliorate antigen-induced 
bronchial hypercontractility in mice by inhibiting the 
upregulation of RhoA and IL-13 production induced by 
antigens, thus having potential use for asthma treatment. 
Another study indicated that the novel STAT6 inhibitor 
AS1517499 could reduce the preventive effects of 
apoptotic cell instillation on bleomycin-induced lung 
fibrosis by suppressing PPARγ expression [14]. All of 
these reports showed that this novel STAT6 inhibitor 
can enter cells and suppress STAT6 signaling. STAT6 is 
a member of the signal transduction activator family. The 
cytokines interleukin (IL)-4 and IL-13 activate STAT6 
phosphorylation and promote Th2 cell differentiation 
[15]. In addition, STAT6 can regulate the expression 
of GATA-binding protein 3 (GATA3), and GATA3, in 
turn, can reactivate the development of a Th2 response 
in STAT6-deficient T cells, making it a key factor in 
the differentiation and function of Th2 cells [16, 17]. 
Research on STAT6-deficient mice found that the Th2 
immune response, and consequently airway eosinophilia 
and airway hyperresponsiveness (AHR), do not develop 
with allergen stimulation [18]. Furthermore, a study on 
mice with 2,4-dinitrochlorobenzene (DNCB)-induced 
AD has also found a remarkable increase in STAT6 
protein levels [13]. These results suggest that AS1517499 
might reduce the risk of asthma in mice with AD by 
blocking the STAT6 signaling pathway.

In previous experiments, we successfully established a 
mouse model to verify the associations between AD and 
asthma [19]. In the present study, DNCB and ovalbumin 
(OVA) were used to construct a mouse model of AD. 
Moreover, the possible mechanisms by which AS1517499 
reduces the risk of asthma were explored.

Methods
Animals
Specific pathogen-free female BALB/c mice (4–6-week-
old, 16–20  g) were provided by the Shanghai Slake 
Laboratory Animal Company (Shanghai, China). The 
mice were fed standard laboratory rat food and drinking 
water in a timely manner and were housed at room 
temperature (23  °C) with relative humidity of 40%, with 
a 12:12 h light–dark cycle. The experimental scheme was 
approved by the Animal Ethics Committee of Shanghai 
Ninth People’s Hospital (No. HKDL [2018]504).

Grouping
Forty female BALB/c mice were fed adaptively for 
1 week and were then randomly divided into four groups 
(n = 10/group) as follows: vehicle control (VC), AD, 
corn oil treatment (COTR), and AS1517499 treatment 
(AS) groups. The mice in all groups except the VC 
group received the identical DNCB and OVA treatment; 
specifically, DNCB (Shenzhen Chemical Co., Ltd., 
Guangdong, China) and OVA (Sigma V grade) were 
applied onto the back and abdomen to induce AD-like 
immunity and skin damage as described previously [19]. 
Briefly, a 2 × 2-cm area of abdominal hair was removed, 
and 25 μL of 7% DNCB solution was applied on days 
1 and 2. From day 6 to 18, 40 μg of 1% DNCB solution 
and 40 μg of phosphate-buffered saline containing OVA 
(OVA-PBS solution, 40  μg OVA) were applied onto the 
exposed back skin every 4 days (four times; days 6, 10, 14, 
and 18). The VC group was treated similarly with acetone 
and OVA. Seventy-two hours after sensitization, the mice 
were placed in a transparent container of 15 × 20 × 20 cm 
and were challenged with 1% OVA aerosol daily for 
30 min from day 21 to 27. At the same time, the mice in 
the AS and COTR groups were intraperitoneally injected 
with AS1517499 (100 nM; MCE, USA) and corn oil (200 
μL), respectively, 1  h before aerosol inhalation (dose: 
10  mg/kg) on days 21, 23, 25, and 27. The mice in the 
AD and VC groups were injected with acetone. AHR was 
assessed 72 h after the last aerosol inhalation. Tissues and 
cells were collected for further experimental analyses. 
The scheme for model construction is displayed in Fig. 1.

Assessment of dermatitis severity
Severity scores were given for the following items, with 
scores comprising 0 (none), 1 (light), 2 (medium), and 
3 (heavy): hemorrhagic erythema, scars, scratches, 
erosion, dryness, exfoliation, and swelling. The severity of 
dermatitis of the back and abdomen was scored twice per 
week. The total dermatitis severity score of mice in each 
group was calculated by summarizing the scores of each 
item [20].
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Airway compliance test
Whole body plethysmography was used to evaluate 
AHR in terms of changes in airway function after 
acetylcholine (ACH; Sigma) stimulation [21]. The 
plethysmograph consisted of a main chamber, which 
contained the conscious, spontaneous breathing 
animal, and a reference chamber. The pressure 
differences between the two chambers (box pressure 
signals) were measured. After baseline measurements 
with aerosolized saline, the mice were challenged with 
ACH (4, 8, 16, 32, and 64  mg/mL) for 3  min, and the 
average readings from each group were recorded. The 
dimensionless parameter enhanced pause (Penh) was 
used to represent the data.

Sample preparation
The mice were anesthetized via intraperitoneal 
injection of 1% pentobarbital sodium. Blood samples 
were collected by eyeball extraction and centrifuged 
for 10  min at 3000  rpm. The upper serum layer was 
collected and stored at − 80  °C. With the mice supine, 
the bronchoalveolar lavage fluid (BALF) was collected 
and was then centrifuged at 4  °C for 10  min, at 
2000 rpm. The supernatant was discarded and the pellet 
was precipitated with white blood cell diluent. The skin 
lesions and the right upper lung were dissected and 
fixed in formalin with 4% paraformaldehyde for 24  h. 
They were then paraffin-embedded for histological 
analyses. The remaining right lung tissues were placed 
in a cryopreservation tube and stored in liquid nitrogen 
for future use.

BALF cell collection and counting
The BALF precipitate was resuspended in 0.5  mL of 
PBS. To perform the cell counts, a 10-μL cell sample 
was transferred to a hemocytometer, and the number 
of cells in four squares was counted. The total number 
of cells was calculated according to the following 
formula: cell number/mL = [(number of cells in 
four squares/4) × 104]. The smears were dried and 
stained with Wright-Giemsa stain (Wuhan Servicebio 
Co., Ltd., Hubei, China). The eosinophils (Eos), 
lymphocytes (Lyms), macrophages, and neutrophils 
(Neus) recovered from 300 cases were counted blindly 
according to morphological criteria [22]. The final 
results are expressed in absolute cell numbers.

Histopathological measurements
After the paraffin-embedded skin tissues were 
sectioned and stained with hemoxylin-eosin 
(H&E), the inflammatory changes were observed at 
20 × magnification. Similarly, the right lung tissue was 
stained with H&E and Masson trichrome (Wuhan 
Servicebio Biological Technology Co., Ltd, Hubei, 
China) to observe the features of lung tissue structure, 
inflammatory cell infiltration, and collagen proliferation.

Serum cytokine measurement
The serum aliquots were stored at − 80 °C until cytokine 
analysis, during which the concentrations of IL-10 and 
IL-33 were measured using the corresponding ELISA Kit 
(Elabscience, Houston, TX, USA).

Fig. 1  Experimental timeline of mouse model establishment and intervention. Forty female BALB/c mice were randomly divided into four groups 
(n = 10/group). The abdomens and backs of the mice were exposed to 20 μL of 7% 2,4-dinitrochlorobenzene (DNCB) for 2 consecutive days, and 
the back skin was additionally challenged with 40 μL of 1% DNCB and 40 μL of ovalbumin (OVA)-PBS solution every 3 days, for a total of four rounds. 
The control group was treated in the same manner with acetone solution. On day 21, the mice were challenged via inhalation of aerosolized 1% 
OVA solution for 30 min every day for 7 consecutive days. Intraperitoneal injection of AS1517499 (10 mg/kg; dissolved in corn oil) and corn oil were 
administered to the AD and control groups, respectively, 1 h before aerosol inhalation (days 21, 23, 25, and 27). On day 30, the mice were sacrificed, 
and the required samples were collected
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Detection of mRNA levels of STAT6, GATA3, and Foxp3 using 
RT‑PCR
TRIzol (Takara, Japan) was used to extract RNA from 
tissues. The concentration and purity of total RNA was 
determined, and the RNA was reverse-transcribed to 
cDNA. Primers (Shanghai Boshan Biotechnology Co., 
Ltd, Shanghai, China) were chosen based on the gene 
sequences published by GenBank and other related 
literature. The primers were amplified with the SYBR 
Green II fluorescence kit (Takara, Japan), and an ABI7500 
real-time PCR system (Thermo Fisher) was used for this 
experiment. GAPDH was used as the internal reference 
gene. The cycle threshold (CT) value (inflection point 
of amplified power curve) was obtained. The relative 
expression of target genes was then calculated using the 
2−ΔΔCT method [23].

Detection of protein levels of STAT6, GATA3, and Foxp3 
using western blotting
Protein was extracted from lung tissues and its 
concentration was determined using a bicinchoninic 
acid kit. The tissue was added into sample buffer 
and boiled for 10  min. Protein separation was then 
achieved by 10% polyacrylamide gel electrophoresis, 
conducted at 80  V for 30  min and at 120  V thereafter. 
The protein was then transferred to a polyvinylidene 
fluoride membrane with a current of 250  mA for 2  h 
and incubated at room temperature with 5% milk for 2 h 
and with a primary antibody (1:2000) overnight at 4  °C. 
The blots were washed thrice (10  min each) with tris-
buffered saline Tween-20 (TBST) and incubated with 
a secondary antibody (1:10,000). Following incubation 
at room temperature for 1  h, the blot was rinsed three 
times (10  min each) with TBST and developed using 
chemiluminescence reagents. GAPDH was used as 
the internal reference. The target protein signals were 
analyzed using Image J.

Data analysis
All data are expressed as the mean ± standard deviation 
(SD) and were analyzed using the SPSS23.0 software. 
Comparisons among groups were assessed using one-
way ANOVA and the Student–Newman–Keuls test. 
Statistical significance was considered when P < 0.05.

Results
AD‑like skin lesions in BALB/c mice
The dermatitis severity scores of the AD and control 
groups before and after treatment are listed in Table  1. 
After DNCB sensitization, the total score in the AD 
group (16.2 ± 1.38) was significantly higher than that in 
the control group (0, P < 0.05). Hemorrhagic erythema, 

scars, dryness, edema, exfoliation, and erosion of the 
skin were observed in the AD group. Furthermore, the 
severity scores were significantly lower after treatment 
with AS1517499 (9.2 ± 1.73) compared to those with 
corn oil (15.8 ± 1.5).

AD‑like histopathological changes
Compared with the observations in the control group, 
the pathological sections of skin tissues in the AD mice 
showed marked hyperkeratosis and hypertrophy of 
the spinous layer, as well as increased infiltration of 
inflammatory cells, such as mast cells and Eos, in the 
dermis (Fig.  2). These skin lesions were significantly 
alleviated after treatment with AS1517499, and no 
significant changes were observed between the COTR 
and AD groups (Fig. 2).

Detection of airway responsiveness in BALB/c mice
During aerosol inhalation, mice in the AD and COTR 
groups had apparent frontal impatience, and nose 
scratches were more frequent relative to the numbers 
in the other two groups. After initiation of ACH 
aerosolization, the average Penh in the AD group 
showed a dose-dependent increase with increasing 
ACH exposure, and the overall increase was significantly 
higher than that in the control group (P = 0.026, Fig. 3). 
The extent of the increase from baseline Penh with 
AS1517499 treatment was lower than that in the AD 
group (P = 0.033), but the average increase was still 
significantly higher than that in the control group 
(P = 0.019, Fig.  3). There was no significant difference 
between the COTR and control groups (P = 0.416, Fig. 3).

Number of inflammatory cells in BALF
Compared with those in the control group, the total 
leucocyte numbers in the BALF of the AD group were 

Table 1  Evaluation of the AD-like dermatitis scoring system

The total score involved the sum of seven clinical items: hemorrhagic erythema, 
scars, scratches, erosion, dryness, exfoliation, and swelling

The degree of each symptom was scored 0 (none), 1 (mild), 2 (moderate) or 3 
(severe)

Scoring was done twice a week

The results are expressed as mean ± SD (n = 5)

*P < 0.05 indicates significant difference between the AD group and vehicle 
control (VC) groups

**P < 0.05 indicates significant difference between the AS and AD groups

Group Number of mice Score

VC 10 0

AD 10 16.2 ± 1.38*

COTR 10 15.8 ± 1.5*

AS 10 9.2 ± 1.73**
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significantly increased (P ≤ 0.0001); the number of Neus 
(P ≤ 0.0001), Lyms (P ≤ 0.0001), monocytes (P ≤ 0.0001), 
and Eos (P ≤ 0.0001) were also significantly increased 
(Fig.  4). These numbers decreased significantly after 
AS1517499 treatment (P ≤ 0.0001), but changes were not 
significant in the COTR group (Fig. 4).

Histopathology of the lung
H&E staining showed that compared to that in the control 
mice, infiltration of inflammatory cells around the alveoli 
and alveolar septum in AD mice increased; meanwhile, 
that around the bronchioles and alveolar septum in AS 
mice decreased compared with the levels in AD mice 
(Fig.  5). Additionally, Masson staining showed that the 
collagen content in the AD group was significantly higher 
than that in the VC group (Fig. 5). Collagen agglutination 
bundles and visible protein content in the AS group were 
significantly decreased relative to those in the AD group, 
whereas no significant changes in these pathological 
features were found between the COTR and AD groups 
(Fig. 5).

ELISA of serum IL‑10, IL‑13, and IL‑33 levels
There were no significant differences in IL-10 and 
IL-33 levels between the AD and COTR groups (Fig. 6). 
Compared with levels in the VC group, serum IL-10 level 
was significantly reduced in the AD group (P < 0.05), 
and after AS1517499 treatment, its level was evidently 
increased (P ≤ 0.0001, Fig.  6A). Serum IL-33 level was 
significantly higher in the AD mice than in the control 
mice (P ≤ 0.0001); meanwhile, AS1517499 administration 

Fig. 2  Effects of AS1517499 on the severity of skin and histopathological characteristics of 2,4-dinitrochlorobenzene (DNCB)-induced atopic 
dermatitis (AD) in BALB/c mice. Representative images acquired after treatment (upper panel), and AD-like histopathological changes revealed by 
H&E staining under a light microscope (20 × magnification) in mouse skin samples (below panel). The images are representatives of the following 
four groups (n = 10 per group): A\E vehicle control (VC), B\F AD, C\G corn oil treatment (COTR), and D\H AS1517499 treatment (AS) groups

Fig. 3  Measurement of airway hyperresponsiveness in acetylcholine 
(ACH)-challenged mice. The Penh values of the four groups were 
measured. The results are expressed as the mean ± SD. Vehicle 
control (VC), atopic dermatitis (AD), corn oil treatment (COTR), and 
AS1517499 treatment (AS) groups (n = 10 per group). *P < 0.05
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markedly ameliorated this increase caused by DNCB 
(P ≤ 0.0001, Fig. 6B). All of the results indicated that the 
repeated administration of DNCB increased the IL-33 
level but inhibited IL-10 production, whereas the STAT6 
inhibitor (AS1517499) significantly restored these levels.

mRNA and protein levels of STAT6, GATA3, and Foxp3
The protein expression of STAT6 and GATA3 in the AD 
group was significantly higher, whereas that of Foxp3 
was significantly lower, relative to levels in the VC group 
(P ≤ 0.0001, Fig. 7A, B). The trend in Foxp3, GATA3, and 

STAT6 mRNA expression in different groups, determined 
using RT-qPCR, was similar to that detected for the 
corresponding protein expression using western blotting 
(Fig. 7C).

Discussion
Epidemiological investigations have shown that 
approximately 30–60% of children with AD eventually 
develop asthma or seasonal allergy disease [20]. However, 
the specific mechanism is not yet clear. Previously, 
we successfully established an AD mouse model for 

Fig. 4  Cellular profile of bronchoalveolar lavage fluid. Leukocyte classification counting with Wright-Giemsa staining: A Total leukocyte count (Leu), 
B neutrophil (Neu), C lymphocyte (Lym), D monocyte (Mon), and E eosinophil (Eos) counts. The results are expressed as the mean ± SD (n = 10 per 
group). *P < 0.05

Fig. 5  Histopathological analysis of airway structure and collagen distribution. Images of pathological sections of the lung tissues following H&E 
staining (upper panel) and Masson staining (lower panel) when observed under electron microscopy (100 × magnification). VC, vehicle control; 
COTR, corn oil treatment; AS, AS1517499 treatment (n = 10 per group)
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the study of asthma and detected elevated levels of 
IL-4, IL-5, and IgE, confirming the involvement of Th2 
inflammation in the progression from AD to asthma 
[19]. Previous murine studies have shown that the 
main pathophysiological characteristics of asthmatic 
lungs are airway inflammation, AHR, and airway 
remodeling [24, 25]. Furthermore, Eos in the BALF are 
significantly increased in asthmatic mouse models [26]. 
Our results showed that BALF Neus, Lyms, Eos, and 
other inflammatory cells were significantly increased 
in the AD group. The lung tissue sections of AD mice 
also showed significant changes in lung tissue structure, 
with significantly higher collagen content than that 
in VC mice. After treatment with the STAT6 protein 
antagonist AS1517499, the skin lesions of mice were 
significantly alleviated and inflammatory cell infiltration 
and collagen content in lung tissues also significantly 
decreased. Therefore, it is reasonable to speculate that 

STAT6-related signaling pathways might be involved in 
the pathogenesis of AD and asthma.

IL-33 is a member of the IL family, localized in the 
nucleus of producing cells and secreted after cellular 
destruction [27]. It plays a biological role by binding 
to ST2 receptors [28]. IL-33 levels in the skin of 
patients with AD are increased significantly [29]. In 
keratinocytes, interferon (IFN)-R can stimulate the 
expression of IL-33 and its corresponding receptor 
ST2 [30]. IL-33 can further bind to ILC2S receptors 
and synergistically induce the production of IL-13 [31]. 
IL-13 is an important promoter of the STAT6 signaling 
pathway; it binds to IL-13R alpha 1 (IL-13Rα1) 
receptors, consequently leading to activated STAT6 
proteins entering the nucleus and binding to target 
genes, inducing target gene expression [32]. A study by 
Yokozeki et  al. showed that STAT6 proteins activated 
by IL-13 are crucial in the pathogenesis of AD [33]. 

Fig. 6  Serum levels of IL-10 and IL-33. ELISA results of A IL-10 and B IL-33 levels in the serum. The results are expressed as the mean ± SD (n = 10 per 
group). *P < 0.05

Fig. 7  Expression of GATA3, Foxp3, and STAT-6 in lung tissues. The right lung tissue was obtained from the four groups of mice and analyzed using 
RT-qPCR and western blotting. A Protein expression analysis of Foxp3, GATA3, and STAT6 in mouse lung tissues; B Image J quantitative analysis of 
the western blot results. C Quantitative mRNA expression of Foxp3, GATA3, and STAT6. The levels of FOXP3, GATA3, and STAT6 were measured relative 
to those of GAPDH. All data are expressed as the mean ± SD (n = 10 per group). *P < 0.05



Page 8 of 9Li et al. Allergy, Asthma & Clinical Immunology           (2022) 18:12 

Another study indicated that IL-33 from house dust 
mite extract-treated alveolar epithelial cells stimulates 
CD146 expression, promoting epithelial–mesenchymal 
transition during airway remodeling in chronic allergic 
inflammation [34]. Combined with our results, it can be 
inferred that AS1517499 could improve the symptoms 
of AD by regulating IL-33 expression, thus having an 
important effect on asthma.

A Treg/Th2 imbalance is one of the important 
mechanisms underlying asthma [35]. GATA3 and 
Foxp3 are specific transcription factors of Th2 and Treg 
cells, respectively [36]. GATA3 can bind directly to the 
promoter region of Foxp3 and inhibit induction of the 
promoter gene, thereby reducing expression of the Treg 
cell-specific transcription factor Foxp3, in turn reducing 
the number of Treg cells and creating a Th2-dominated 
immune environment [37, 38]. STAT6 − / − mice are 
resistant to airway inflammation, with significantly 
increased Treg cells in  vivo. The STAT6 signaling 
pathway also participates in the differentiation of Th2 
cells mediated by IL-13 [39]. STAT6 also regulates the 
differentiation of Th2 cells and Treg cells by regulating the 
expression level of the Th2-specific transcription factor 
GATA3 [40]. Our data showed that GATA3 expression 
in the lungs of AD mice was increased significantly, 
whereas Foxp3 expression was decreased, alongside 
a decrease in Treg-related IL-10 levels. After the 
intraperitoneal injection of AS1517499, the expression 
of GATA3 decreased significantly, whereas Foxp3 and 
IL-10 expression increased. The severity of skin lesions 
was relieved, which was accompanied by significant 
alleviation of airway inflammation, hyperresponsiveness, 
and remodeling.

Conclusions
The STAT6 signaling pathway might be involved in the 
pathogenesis of asthma development associated with 
AD. Our results provide insights into the underlying 
molecular mechanisms of asthma development in the 
context of AD. However, our findings have not been 
validated in humans and they have not been further 
analyzed at the cellular level.
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