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Co‑fitness analysis identifies a diversity 
of signal proteins involved in the utilization 
of specific c‑type cytochromes
De‑wu Ding1*, Wei‑fan Huang1, Li‑lan Lei1 and Pu Wu2* 

Abstract 

Purpose:  c-Type cytochromes are essential for extracellular electron transfer (EET) in electroactive microorganisms. 
The expression of appropriate c-type cytochromes is an important feature of these microorganisms in response to 
different extracellular electron acceptors. However, how these diverse c-type cytochromes are tightly regulated is still 
poorly understood.

Methods:  In this study, we identified the high co-fitness genes that potentially work with different c-type 
cytochromes by using genome-wide co-fitness analysis. We also constructed and studied the co-fitness networks that 
composed of c-type cytochromes and the top 20 high co-fitness genes of them.

Results:  We found that high co-fitness genes of c-type cytochromes were enriched in signal transduction pro‑
cesses in Shewanella oneidensis MR-1 cells. We then checked the top 20 co-fitness proteins for each of the 41 c-type 
cytochromes and identified the corresponding signal proteins for different c-type cytochromes. In particular, through 
the analysis of the high co-fitness signal protein for CymA, we further confirmed the cooperation between signal 
proteins and c-type cytochromes and identified a novel signal protein that is putatively involved in the regulation of 
CymA. In addition, we showed that these signal proteins form two signal transduction modules.

Conclusion:  Taken together, these findings provide novel insights into the coordinated utilization of different c-type 
cytochromes under diverse conditions.
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Introduction
The respiratory diversity of electroactive microorgan-
isms such as Shewanella or Geobacter has been widely 
studied, and such diverse respiratory capability is mainly 
due to the abundant c-type cytochromes of these spe-
cies (Lovley 2012; Logan et  al. 2019). Generally, these 
microorganisms can respond to different (extracellu-
lar) electron receptors by the expression of different 

c-type cytochromes (Shi et al. 2016; Ishii et al. 2018). For 
example, Shewanella oneidensis MR-1 can use MtrCAB-
OmcA to reduce extracellular iron/manganese oxides 
and DmsEFAB to reduce dimethyl sulfoxide (DMSO) 
(Gralnick et al. 2006; Coursolle and Gralnick 2010); they 
can also reduce nitrite, nitrate, and fumarate by using 
NrfA (Gao et al. 2009), NapAB (Simpson et al. 2010), and 
FccA/IfcA (Maier et al. 2003), respectively. Furthermore, 
inner membrane c-type cytochrome CymA is critical 
for these numerous (extracellular) respiratory processes 
(Myers and Myers 1997). Nonetheless, how these micro-
organisms coordinate the differential expression of the 
various c-type cytochromes, as well as their cooperation 
(e.g., with CymA), are not well understood.
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With the development of transposon sequencing 
(TnSeq) technology, researchers can quantitatively ana-
lyze fitness profiles for thousands of mutants in bacte-
ria, establish a direct relationship between genes and 
cell phenotypes, and provide new clues for gene func-
tion inference and regulatory relationship verification 
(Wetmore et  al. 2015; Cain et  al. 2020). For example, 
genome-scale co-fitness analysis has been used to reveal 
a functional connection between HsbR and RpoE in 
Pseudomonas stutzeri RCH2; that is, HsbR acts as an 
antisigma factor for the sigma factor RpoE (Vaccaro et al. 
2015). The utility of co-fitness also helps to identify that 
BT3761 serves as an N-acetylglutamate synthase that is 
required for arginine biosynthesis in the gut microor-
ganism Bacteroides thetaiotaomicron (Liu et  al. 2019). 
Recently, Price et  al. provided genome-scale fitness 
data of Shewanella under 176 experimental conditions 
(Price et al. 2018), which not only allows us to examine 
the functional importance of c-type cytochromes in dif-
ferent environments (Ding et  al. 2021) but also makes 
it possible to learn the functionally related genes, espe-
cially to explore the coordinated expression of c-type 
cytochromes and related genes.

Therefore, we explored the potential triggering con-
ditions of c-type cytochromes by genome-scale co-
fitness analysis in this paper. First, we found that high 
co-fitness genes of c-type cytochromes were enriched 
in signal transduction processes in Shewanella cells. 
Then, with an emphasis on the inner membrane c-type 
cytochrome CymA, we identified a diversity of signal 
proteins that involved in the utilization of different c-type 
cytochromes. Finally, co-fitness protein network analysis 
showed that these signal proteins would form two signal 
transduction modules. In summary, this finding provides 
novel insights into the coordinated expression of differ-
ent c-type cytochromes under diverse conditions.

Materials and methods
c‑Type cytochrome
c-Type cytochromes are the main electron transfer pro-
teins in Shewanella. In general, they can covalently bind 
heme through two cysteine (c) residues, and the sequence 
feature of the heme binding site is the CXXCH motif. 
Meyer et  al. identified 42 candidate c-type cytochrome 
genes in Shewanella oneidensis MR-1 through pat-
tern matching (Meyer et  al. 2004), and the follow-up 
reports (Jin et  al. 2013; Ding et  al. 2016) confirmed 41 
c-type cytochrome genes in this species (Supplementary 
Table 1).

Co‑fitness data
Genome-scale transposon sequencing for Shewanella 
oneidensis MR-1 under 176 different conditions has been 

performed recently, and the resulting genome-wide fit-
ness data can be obtained from Fitness Browser (https://​
fit.​genom​ics.​lbl.​gov/) (Price et al. 2018).

Here, a fitness value of a gene in a given experiment 
is defined as the log2 change in abundance of the corre-
sponding gene mutant, and the co-fitness value of two 
genes is the Pearson correlation of all fitness values for the 
two genes across all experimental conditions (Wetmore 
et al. 2015; Cain et al. 2020).

Enrichment analysis
The functional annotation tool DAVID (https://​david.​
ncifc​rf.​gov/) was employed to perform GO molecular 
function enrichment and KEGG pathway enrichment 
(Huang et al. 2009). The p-value is adjusted for multiple 
testing using the false discovery rate controlling proce-
dure from Benjamini and Hochberg (1995), and the cut-
off for the p-value is routinely set to 0.05.

Signal proteins
The microbial signal transduction (MiST; https://​mistdb.​
com/) database was used to obtain all signal proteins in 
Shewanella oneidensis MR-1. This database was estab-
lished as a comprehensive signal transduction classi-
fication system, which used more than 300 signaling 
domains from Pfam, Agfam, and ECF to identify and 
classify signal proteins (Gumerov et al. 2020).

Protein structure
Since protein function is mainly determined by its struc-
ture, we employed the SWISS-MODEL (https://​swiss​
model.​expasy.​org/) server to predict protein structure 
(Bienert et al. 2017). The resulting models were evaluated 
by using the qualitative model energy analysis (QMEAN) 
z score, which could indicate whether a model is com-
parable to what one would expect from experimental 
structures of similar size, and are usually used as a global 
evaluation measurement (Waterhouse et al. 2018).

Protein interaction network
The protein interaction information was obtained from 
the STRING database (http://​string-​db.​org/) (Szklarczyk 
et al. 2015; Szklarczyk et al. 2019) and analyzed by using 
the igraph package (Csardi and Nepusz 2006). Note each 
interaction in STRING is annotated with multiple confi-
dence scores according to different evidence, and a com-
bined score (0 ~ 1000) is computed by combining all of 
these evidences. To evaluate the effects of different confi-
dence scores, we used 400, 500, 600, 700, 800, and 900 as 
the filtered thresholds for the combined scores.

https://fit.genomics.lbl.gov/
https://fit.genomics.lbl.gov/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://mistdb.com/
https://mistdb.com/
https://swissmodel.expasy.org/
https://swissmodel.expasy.org/
http://string-db.org/
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Community structure
Analysis of communities (or modules) is widely used 
to uncover the biological function units that underlie 
biological processes of interest (Saelens et  al. 2018). 
Generally, such communities can be identified by maxi-
mizing the modularity function introduced by New-
man (Newman 2006). For a presumptive partition of a 
network into several communities, the modularity M of 
this partition is defined as follows:

where r is the number of communities, ls is the number 
of edges between nodes in communities, ds is the sum 
of the degrees of the nodes in community s, and L is the 
total number of edges in the network.

We employed four methods (edge betweenness, fast 
greedy, infomap, and propagating labels) to study the 
communities and then compared the corresponding 
modularity. The igraph package is also used in this pro-
cess (Csardi and Nepusz 2006).

(1)M ≡

r

s=1

ls

L
−

ds

2L

2

Results and discussion
High co‑fitness genes of c‑type cytochromes are enriched 
in signal transduction
Since mutant fitness data measure the importance of each 
gene across many conditions, highly co-fitness gene pairs 
can therefore reflect the functional relevance between 
the pair of genes (Wetmore et al. 2015; Cain et al. 2020). 
To explore the cooperation between c-type cytochromes 
and other genes, we first obtained the top 20 genes with 
high co-fitness values to each c-type cytochrome. For 
robustness purposes, we also considered the top 15, top 
10, and top 5 genes with high co-fitness values to each 
c-type cytochrome.

Then, we performed molecular function (Fig.  1A) 
and KEGG pathway (Fig.  1B) enrichment analyses for 
these genes. As shown in Fig.  1, the most common 
enriched molecular functions included heme binding 
(GO:0020037), electron carrier activity (GO:0009055), 
cytochrome-c oxidase activity (GO:0004129), and iron 
ion binding (GO:0005506), which were present in all 
four cases. These electron transfer-related enrich-
ments are mainly due to the cooperation between c-type 
cytochromes and other cytochromes, and thereby, the 

Fig. 1  Enrichments for the co-fitness genes for all 41 c-type cytochromes. A Molecular function enrichment and B KEGG pathway enrichment. 
Note: the corrected p-value < 0.05 (Benjamini correction)
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co-fitness gene list contains a large number of c-type 
cytochromes. There were also several enriched molecu-
lar functions presented in three cases, including recep-
tor activity (GO:0004872), signal transducer activity 
(GO:0004871), sulfate transmembrane-transporting 
ATPase activity (GO:0015419), succinate dehydroge-
nase activity (GO:0000104), and disulfide oxidoreduc-
tase activity (GO:0015036). The enrichments of genes 
in receptor activity and signal transducer activity clearly 
show that there are many genes related to signal trans-
duction in the co-fitness gene list.

The enrichment of signal transduction proteins was 
further confirmed by the enrichment of two-component 
system (son02020) and bacterial chemotaxis (son02030) 
in KEGG pathway enrichment analysis. The other 
KEGG pathway enrichments mainly included oxida-
tive phosphorylation (son00190) and ABC transporters 
(son02010), as well as butanoate metabolism (son00650) 
and sulfur metabolism (son00920). This is consistent with 
the molecular function enrichment mentioned above, 
which mainly includes biological pathways related to 
energy or oxidoreductase activity.

Therefore, both molecular function and KEGG pathway 
analyses suggest the enrichment of signal transduction 
proteins in the co-fitness genes of c-type cytochromes. 
Although the complex regulatory mechanism and a lot of 
signal proteins involved in the EET process of Shewanella 
have been widely discussed (Fredrickson et  al. 2008; 
Rodionov et al. 2011; Sundararajan et al. 2011; Ding et al. 
2020), systematic study of signal proteins related to all 
c-type cytochrome in Shewanella has not been reported. 
These results can be further used to explain why a diverse 
set of c-type cytochromes is responsible for the diversity 
of Shewanella respiration, as well as how these c-type 
cytochromes are appropriately triggered under differ-
ent conditions. The results also show that the number 
of selected genes (i.e., 5, 10, 15, or 20) has no significant 
effect on the enrichment results. To obtain more compre-
hensive information, we chose the top 20 genes with high 
co-fitness values for each c-type cytochrome and further 
studied the cooperative relationship of these high co-fit-
ness genes in the following sections.

Most c‑type cytochromes are linked to diversified signal 
proteins
To examine how Shewanella used these signal proteins to 
deal with various electron transfer processes, we checked 
the top 20 co-fitness proteins for each of the 41 c-type 
cytochromes and identified the corresponding signal 
proteins for them. As a result, we found that most c-type 
cytochromes (32 in 41) were related to at least one sig-
nal protein (Supplementary Table  1), which raises the 

hypothesis that c-type cytochromes need specific signal-
ing proteins to be involved in their utilization.

To examine this hypothesis, we investigated the func-
tion of signal proteins that are associated with CymA 
(SO_4591), which is the most thoroughly studied 
c-type cytochrome involved in the EET process of She-
wanella (Myers and Myers 1997). This tetraheme c-type 
cytochrome serves as an entry point for electrons and 
is commonly used in several electron transfer systems 
in Shewanella, e.g., the MtrCAB pathway for iron and 
manganese oxides reduction and the DMSO pathway for 
dimethyl sulfoxide reduction (Gralnick et al. 2006; Cour-
solle and Gralnick 2010).

These signal proteins are as follows: SO_0141, 
SO_0437, SO_1385, SO_2240, SO_4454, and SO_4557. 
At first glance, most of them are chemotaxis proteins, 
which is consistent with several recent reports. For exam-
ple, Tai and collaborator found links between chemot-
axis proteins and the classical MtrCAB electron transfer 
pathway that starts from the inner membrane CymA (Tai 
et al. 2010). Harris et al. also showed that cell congrega-
tion in response to minerals requires both chemotaxis 
proteins and extracellular electron transfer cytochromes 
in S. oneidensis MR-1 (Harris et al. 2018).

Therefore, the high co-fitness between CymA and these 
six signal proteins can be well related to the fact that 
CymA is necessary for the reduction of many anaero-
bic electron acceptors, and specific signaling proteins 
(chemotaxis proteins here) are needed to participate in 
these processes. First, SO_2240 is a cache domain-con-
taining methyl-accepting chemotaxis protein (MCP), and 
SO_1385 is a PAS (Per/Arnt/Sim) domain-containing 
MCP. It has been shown that deletion mutants of these 
MCPs or the critical EET cytochrome CymA will strongly 
affect Shewanella to congregate to the vicinity of insolu-
ble electron acceptors (Harris et  al. 2010; Harris et  al. 
2012). More specifically, the SO_2240 or cymA mutant 
showed nonmotile around MnO2, Fe (OH)3, or poised 
electrodes, whereas the SO_1385 mutant exhibited 
wild-type levels of motility and reversals around MnO2 
but irregularity to Fe (OH)3 or poised electrodes (Har-
ris et al. 2012). Second, SO_2240 has also been shown to 
be the major MCP, and SO_4454 is a minor MCP that is 
involved in energy taxis in Shewanella. Meanwhile, the 
major MCP SO_2240 is necessary for the responses to a 
number of anaerobic electron acceptors (Baraquet et al. 
2009). Third, SO_0141 is a nitrate/nitrite-responsive 
bifunctional diguanylate cyclase/phosphodiesterase with 
a PAS sensory domain, which might be used in nitrate/
nitrite as electron acceptor conditions, while SO_0437 
has been identified as a c-di-GMP-hydrolyzing enzyme 
PdeB, which was linked to the regulation of sulfate uptake 
and assimilation in S. oneidensis MR-1 (Chao et al. 2013).
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Overall, five of the six signal proteins have known 
links to (or are closely related to) the electron transfer 
of Shewanella. Among them, the major MCP SO_2240 
is related to the sensing of many kinds of extracellular 
electron acceptors, and the others seem to have strong 
specificity.

On the other hand, for the signal protein SO_4557, 
which has not been reported previously, we predicted a 
3D structure for this protein. A total of 1357 templates 
were found to match the protein SO_4557 sequence by 
using the SWISS-MODEL server. We filtered the top 
5 models and ranked them following the qualitative 
model energy analysis (QMEAN) z score (Table 1). Here, 
QMEAN is a composite estimator that uses several dif-
ferent geometrical properties, which is shown to be able 
to provide both global and local quality estimates for the 
predicted model (Bienert et  al. 2017; Waterhouse et  al. 
2018). The QMEAN z score is usually used as a global 
estimation measurement, and a z score of approximately 
zero indicates good agreement between the model 

structure and experimental structures of similar size. 
Therefore, among the final predicted models, we choose 
the model with the highest QMEAN z score (−0.12). The 
local quality estimate of this model (Fig.  2A) also sug-
gested the high reliability of this prediction structure, 
as most residues showed a per residue score > 0.6, and 
this threshold is used to distinguish high vs. low quality 
for local model evaluation in SWISS-MODEL. Figure 2B 
further shows the comparison of model quality scores of 
individual models to the scores obtained from experi-
mental structures of similar size.

In summary, the predicted best model is CheA kinase 
in Escherichia coli (PDB code: 3ja6); in fact, most (4 out 
of 5) of these filtered models all match this CheA kinase 
(Table  1). This Escherichia coli CheA kinase has been 
shown to deal with multifunctional chemotaxis sign-
aling through conformational changes (Cassidy et  al. 
2015). Therefore, based on such a high confidence of the 
QMEAN estimations (both global and local quality esti-
mates, as mentioned above), it is rational to speculate 

Table 1  The top 5 predicted models by using the SWISS-MODEL server

(1) GMQE (global model quality estimation) combines properties from the target-template alignment and the template structure, (2) QMEAN (qualitative model 
energy analysis) composed the major geometrical properties of protein structures

Rank Template GMQE QMEAN Seq. identity Coverage Protein description

1 3ja6.1.J 0.20 −0.12 15.94% 0.44 Methyl-accepting chemotaxis protein 2

2 3ja6.1.M 0.19 −0.93 30.68% 0.40 Methyl-accepting chemotaxis protein 2

3 3ja6.1.K 0.20 −2.84 12.86% 0.45 Methyl-accepting chemotaxis protein 2

4 3zx6.1.A 0.29 −3.79 30.13% 0.48 Hamp, methyl-accepting chemotaxis protein 1

5 3ja6.1.N 0.21 −4.72 13.43% 0.45 Methyl-accepting chemotaxis protein 2

Fig. 2  Further evaluation of the selection model. A Local quality estimate of the predicted model, the figure shows each residue of the model 
(x-axis) and the expected similarity to the native structure (y-axis). B Comparison of model quality scores of individual models to the scores obtained 
from experimental structures of similar size; the x-axis is protein length, the y-axis is the normalized QMEAN score, and every dot represents one 
experimental structure
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that the signal protein SO_4557 also takes such a mul-
tifunctional role that is involved in the sensing of many 
kinds of extracellular electron acceptors in S. oneidensis 
MR-1, just as the major MCP SO_2240 is.

Co‑fitness protein network analysis reveals two signal 
transduction modules
Since proteins need to interact with each other to per-
form their functions, the protein-protein interaction 
(PPI) network can provide insights into the organization 
and function of biological systems (Typas and Sourjik 
2015). We first obtained the background PPI networks 
of Shewanella from the STRING database. Note: for 
robustness purposes, we considered multiple STRING 
confidence scores, which range from 400 (medium confi-
dence) to 900 (very high confidence). Then, we extracted 
the protein interaction information for all 41 c-type 
cytochromes and their top 20 high co-fitness genes to 
construct the co-fitness protein networks.

Community structure analysis of PPI networks and 
the resulting communities (or network modules) usually 
contains groups of proteins that are functionally coor-
dinated or perform special biological processes, such as 
protein degradation and signal transduction (Lin et  al. 
2015; Saelens et al. 2018). Therefore, the identified com-
munities can facilitate understanding of the proteins 
within the communities from a phenotype perspective. 

The basic principle of identifying communities is that 
there are relatively dense connections within the com-
munities, while the connections between them are rela-
tively sparse. The classical modularity metric function M 
is an important parameter related to community detec-
tion. We thereby employed four frequently used methods 
(edge betweenness, fast greedy, infomap, and propagat-
ing labels) to study the communities in the co-fitness 
protein networks and compared their modularity. The 
results show that the modularity scores for the network 
with a STRING confidence score of 700 are much better 
(Fig. 3). As high modularity reflects high-dense connec-
tions within communities and sparse connections across 
them, we will thereby choose the result with the largest 
modularity value and the corresponding co-fitness pro-
tein network. As a result, we obtained 11 communities 
from this network (Supplementary file 1). We then fur-
ther performed GO molecular function enrichment anal-
ysis for the proteins in these communities (Table 2).

As shown in Table 2, only two communities presented 
no statistically significant results (communities 6 and 
11). The electron transfer-related enrichment terms (e.g., 
heme binding, iron ion binding, electron carrier activ-
ity, etc.) in communities 1, 8, and 9 are mainly due to the 
co-fitness gene list containing many c-type cytochromes. 
The enrichment of flavin adenine dinucleotide bind-
ing in community 2 and FMN binding in community 7 

Fig. 3  Comparison of the modularity of the four community structure detection algorithms: edge betweenness, fast greedy, infomap, and 
propagating labels
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is consistent with experimental reports: (1) self-secreted 
flavins such as flavin mononucleotide (FMN) can serve 
as redox mediators to facilitate indirect electron trans-
fer between c-type cytochromes and extracellular elec-
tron acceptors (Marsili et  al. 2008; Glasser et  al. 2017), 
(2) the flavins can also act as cofactors that binding to 
outer-membrane c-type cytochromes and then help to 
transfer electrons through direct contact of these fla-
vin-cytochrome complexes with extracellular electron 
acceptors (Okamoto et al. 2013), and (3) Shewanella use 
a distinct flavin transporter that can provide the nonco-
valently bound flavin adenine dinucleotide cofactor to 
mediate electron transfer (Kees et  al. 2019; Light et  al. 
2019). The remaining four communities (especially com-
munities 4 and 5) show that the co-fitness gene list not 
only contains a large number of signal proteins (the “High 
co-fitness genes of c-type cytochromes are enriched in 
signal transduction”) but also forms functional modules 
that are used for signal transduction.

As shown in Fig. 4, there are 17 signal proteins in mod-
ule 4 (SO_1144, SO_1385, SO_1434, SO_1989, SO_2119, 
SO_2120, SO_2123, SO_2125, SO_2240, SO_2323, 
SO_2327, SO_3203, SO_3209, SO_3252, SO_4454, 

SO_4466, and SO_4557), which are mainly chemotaxis 
signal transduction system proteins; the remaining 12 
proteins in this module are mostly flagellar-associated 
proteins (10 proteins, including flagella biosynthesis, fila-
ment assembly, flagella motor, and flagella hook). This is 
consistent with the fact that chemotaxis is closely related 
to the EET process (Tai et al. 2010; Harris et al. 2018), as 
well as the fact that flagella can function as an environ-
mental sensor (Kuhn et al. 2018). All 16 proteins in mod-
ule 5 are signal proteins (SO_0141, SO_0437, SO_1500, 
SO_1558, SO_1946, SO_2366, SO_2538, SO_2543, 
SO_2544, SO_3305, SO_3306, SO_3337, SO_3556, 
SO_3700, SO_3988 and SO_4445), which contain five 
one-component proteins and ten two-component pro-
teins (response regulator, histidine kinase, hybrid his-
tidine kinase, etc.). Further examination showed that 
there were 39 signal proteins in this 203-node co-fitness 
network, and the ratio (~19.2%; 39/203) of signal pro-
teins was far higher than that of the Shewanella genome 
(~9.8%). These results are consistent with our previous 
studies on electron transfer pathways using transcrip-
tional regulation modules (TRMs); that is, Shewanella 
needs a large number of signal transduction proteins to 

Table 2  The communities identified from the co-fitness protein network in this study and the corresponding GO molecular functions

Community Proteins p value Benjamini GO molecular function

1 30 2.16E-08 4.96E-07 Heme binding

9.40E-05 0.001080277 Iron ion binding

0.001139293 0.008701481 Electron carrier activity

0.002121235 0.012135814 Cytochrome-c oxidase activity

0.022744537 0.100425179 NADH dehydrogenase (ubiquinone) activity

2 22 0.00970885 0.35 Flavin adenine dinucleotide binding

3 20 4.88E-04 0.018387353 Sulfate transmembrane-transporting ATPase activity

0.004176498 0.076440107 Pyridoxal phosphate binding

4 29 3.35E-10 4.03E-09 Signal transducer activity

3.40E-05 2.04E-04 Receptor activity

1.84E-04 7.37E-04 Structural molecule activity

5 16 2.21E-07 1.76E-06 Phosphorelay response regulator activity

1.99E-05 7.95E-05 Phosphorelay sensor kinase activity

0.009690909 0.025634178 DNA binding

6 16 —— —— No statistically significant result

7 10 6.91E-05 3.45E-04 NADH dehydrogenase (ubiquinone) activity

0.001796762 0.004485852 Succinate dehydrogenase activity

0.001796762 0.004485852 FMN binding

8 42 8.54E-08 2.65E-06 Electron carrier activity

6.22E-05 9.63E-04 Metal ion binding

9 11 0.001306437 0.02197882 Catalytic activity

0.001306437 0.02197882 Heme transporter activity

0.016843589 0.134449855 Protein disulfide oxidoreductase activity

10 3 0.022988506 0.022988506 Diguanylate cyclase activity

11 4 —— —— No statistically significant result
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deal with its most important electron transfer process 
(Ding et al. 2020).

Conclusion
In this paper, we identified the high co-fitness sig-
nal proteins that potentially work with different c-type 
cytochromes in Shewanella by using genome-wide co-
fitness analysis. Further co-fitness protein network anal-
ysis showed that these signal proteins would form two 
signal transduction modules. Taken together, the present 
results not only help us to understand how these c-type 
cytochromes are properly triggered but also can be used 
to explore the coordinated utilization of different c-type 
cytochromes under diverse conditions in Shewanella 
cells. For example, our results suggested that the sig-
nal protein SO_4557 could work with a critical c-type 
cytochrome CymA and should have the ability to sense a 
variety of extracellular electron acceptors. Further exper-
imental investigation is needed to elucidate such a pos-
sible role of this signal protein.
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