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Abstract 

Background  Retinal microvascular signs are accessible measures of early alterations in microvascular dysregulation 
and have been associated with dementia; it is unclear if they are associated with AD (Alzheimer’s disease) pathogen-
esis as a potential mechanistic link. This study aimed to test the association of retinal microvascular abnormalities 
in mid and late life and late life cerebral amyloid.

Methods  Participants from the ARIC‐PET (Atherosclerosis Risk in Communities‐Positron Emission Tomography) study 
with a valid retinal measure (N = 285) were included. The associations of mid- and late-life retinal signs with late-life 
amyloid-β (Aβ) by florbetapir PET were tested. Two different measures of Aβ burden were included: (1) elevated 
amyloid (SUVR > 1.2) and (2) continuous amyloid SUVR. The retinal measures’ association with Aβ burden was assessed 
using logistic and robust linear regression models. A newly created retinal score, incorporating multiple markers 
of retinal abnormalities, was also evaluated in association with greater Aβ burden.

Results  Retinopathy in midlife (OR (95% CI) = 0.36 (0.08, 1.40)) was not significantly associated with elevated amyloid 
burden. In late life, retinopathy was associated with increased continuous amyloid standardized value uptake ratio 
(SUVR) (β (95%CI) = 0.16 (0.02, 0.32)) but not elevated amyloid burden (OR (95%CI) = 2.37 (0.66, 9.88)) when accounting 
for demographic, genetic and clinical risk factors. A high retinal score in late life, indicating a higher burden of retinal 
abnormalities, was also significantly associated with increased continuous amyloid SUVR (β (95% CI) = 0.16 (0.04, 0.32)) 
independent of vascular risk factors.

Conclusions  Retinopathy in late life may be an easily obtainable marker to help evaluate the mechanistic vascular 
pathway between retinal measures and dementia, perhaps acting via AD pathogenesis. Well-powered future studies 
with a greater number of retinal features and other microvascular signs are needed to test these findings.
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Background
Alzheimer’s disease (AD) is a global health problem, 
and the pathology of β-amyloid (Aβ) is a key feature in 
the brain triggering its pathogenesis [1]. Recent imaging 
advances such as positron emission tomography (PET) 
enables the detection of Aβ in individuals years before 
the onset of clinical symptoms [2]. It has also been sug-
gested that Aβ burden may be preceded, likely by years, 
by alterations in cerebrovascular regulation [3]. This con-
cept is supported by previous studies showing that vas-
cular risk factors in midlife and markers of cerebral small 
vessel disease were significantly associated with Aβ accu-
mulation in AD and in the general population [4–7].

The retinal microvasculature is both anatomically and 
physiologically similar to the small vessels in the brain, 
and retinal microvascular markers have been significantly 
associated with incident clinical stroke, radiological 
markers of cerebral small vessel disease, and with demen-
tia [8–12]. It is not well understood, however, if retinal 
microvasculature alters dementia risk via direct impacts 
on AD pathogenesis. Differences in retinal microvascu-
lar network alterations have been observed in associa-
tion with AD; a recent meta-analysis found significant yet 
inconsistent pathologic changes in fractal dimension, 
vessel caliber, and tortuosity in AD patients [13]. Stud-
ies employing advanced retinal imaging techniques such 
as OCT and OCT-A have furthermore shown reduced 
choroidal thickness in AD patients and an increase in 
foveal avascular zone in individuals with amyloid-posi-
tive pre-clinical AD [14, 15]. A recent study with a retinal 
photograph-based deep learning algorithm has addition-
ally demonstrated a high accuracy rate in distinguishing 
between individuals with vs. without a clinical diagnosis 
of AD and with high vs. low amyloid burden [16]. While 
the results look promising, these advanced technologies 
may be less suitable for routine clinical practice in iden-
tifying people at risk for the neurodegenerative disease. 
An alternative approach would be an easily comput-
able retinal score for each patient that comprises well-
understood vascular features. It would also allow for a 
more mechanistic interpretation of the associations with 
amyloid-beta.

This study evaluates the mid- and late-life independent 
retinal microvascular contributions to brain amyloid bur-
den in a biracial population-based ancillary study with-
out dementia in late life. It furthermore explores a new 
approach to summarize four main retinal microvascular 
signs (i.e., retinopathy, arteriovenous nicking, focal arte-
riolar narrowing, and generalized retinal arteriolar nar-
rowing) into a single score for each participant. The goal 
of the study is to explore if retinal measures are linked 
to AD pathogenesis specifically, defined with the use of 
amyloid PET imaging.

Methods
Study population
The Atherosclerosis Risk in Communities (ARIC) study is 
a population-based prospective study of 15,792 men and 
women aged 45–64  years at baseline (1987–1989) from 
four U.S. communities: Washington County, Maryland; 
Forsyth County, North Carolina; Jackson, Mississippi; 
and Minneapolis, Minnesota. Between baseline and the 
year 2013, participants completed 4 additional in-person 
visits. These visits were scheduled between midlife, in the 
years 1990–92 (visit 2), 1993–95 (visit 3) and 1996–98 
(visit 4), and late life in the years 2011–13 (visit 5).

At visit 5 (late-life; ages 69–89  years), 6538 surviving 
participants underwent an extensive neuropsychological 
battery, as part of the ARIC Neurocognitive Study, and 
individuals were categorized as having normal cognitive 
function, mild cognitive impairment, or dementia [17]. A 
subset of the cohort was also selected for research brain 
MRI. Of those participants included in the MRI imaging 
sub study, 346 participants from 3 ARIC sites (Jackson, 
Mississippi; Washington County, Maryland; and For-
syth County, North Carolina) were also recruited for the 
ancillary ARIC-PET study as previously described [18]. 
Only individuals without an initial dementia diagnosis, 
heavy alcohol use, renal dysfunction or prolonged QT-c 
interval were included. 289 and 226 individuals had suf-
ficient high-quality retinal imaging data to characterize 
the primary retinal measure of interest, i.e., retinopathy 
vs. no retinopathy, at visit 3 and visit 5 respectively. Addi-
tional participants at visit 3 (N = 4) and visit 5 (N = 6) 
were excluded if the diabetes or hypertension measure 
was missing (Fig. 1). Study procedures were approved by 
the Institutional Review Board for each field center.

Neuroimaging
Brain MRIs performed on a 3  T magnet and Florbeta-
pir PET scans were carried out at each ARIC site, within 
12 months but ideally within 6 months of each other. Par-
ticipants without a contraindication of MRI were eligible 
for the MRI imaging substudy when meeting one of the 
following criteria: [1] prior brain MRI during an earlier 
ARIC brain MRI ancillary visit; [2] low scores of cogni-
tive function on an extensive neuropsychological bat-
tery or a marked decline on cognition on tests repeated 
at ARIC visits 2, 4, and 5; or [3] an age-stratified ran-
dom sample of individuals with normal cognitive func-
tion [17]. For the florbetapir PET scans, an isotope was 
injected through a butterfly needle and images were 
obtained from 50–70 min for a 20-min uptake scan. PET 
scans were centrally reviewed and quantified at the PET 
image analysis center (Johns Hopkins); brain MRI scans, 
all performed on a 3  T magnet at facilities associated 
with each field center, were centrally reviewed at the MRI 
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reading center (Mayo Clinic). PET scans were quantified 
for standardized uptake value ratios (SUVRs) in distinct 
regions of interest, and co-registered to the MRI images. 
A global cortical measure of Aβ was acquired by comput-
ing the weighted average of the following brain regions: 
orbitofrontal, prefrontal, and superior frontal cortices, 
lateral temporal, parietal, and occipital lobes, precuneus, 
and anterior and posterior cingulate. Based on the sam-
ple median, the SUVR was dichotomized at a value of 
1.2. Elevated Aβ burden was defined as a global cortical 
SUVR greater than 1.2.

Retinal exposures
45° non-stereoscopic color retinal photographs of 2 
fields (one centered on the optic nerve and one on the 
macula) in a single randomly selected eye at visit 3 and 
in both eyes at visit 5 were acquired by trained tech-
nicians using nonmydriatic fundus cameras (Canon 
CR-45UAF; Canon CR-1 Mark II). At both visits, pho-
tographs were graded by certified graders masked to the 
participants’ characteristics at the Ocular Epidemiology 
Reading Center (OREC) at the University of Wisconsin-
Madison based on written standardized protocol and 
digital photographic standards. Further details on the 
retinal image acquisition have been described previ-
ously [19, 20]. Four measures of retinal microvascular 

abnormalities were included: [1] retinopathy; [2] arte-
riovenous nicking; [3] focal arteriolar narrowing; [4] 
generalized arteriolar narrowing. The presence of retin-
opathy  was determined employing the modified Airlie 
House classification, as used in the Early Treatment 
Diabetic Retinopathy Study (ETDRS) [19]. Retinopa-
thy was classified as present (level of 14–87) vs. absent 
[10–13]. Retinopathy levels between 14–87 refer to 
a wide spectrum of vascular abnormalities in the eye 
which include microaneurysms, hemorrhages, soft and 
hard exudates, venous beading, neovascularization, and 
fibrosis. Arteriovenous nicking was seen as “definite” in 
case at least one venous blood column was tapered on 
both sides of its crossing underneath an arteriole. Focal 
arteriolar narrowing was determined as “definite” based 
on the grading and number of arterioles estimated to 
be ≥ 50 μm in diameter with a constricted area ≤ 2/3 the 
width of proximal and distal vessel segments. General-
ized arteriolar narrowing was defined as lowest quar-
tile of the central retinal arteriolar equivalent (CRAE). 
CRAE is quantified on the arteriolar diameters within 
a pre-specified zone surrounding the optic nerve [21]. 
The reproducibility of the retinal measures was mod-
erate to good (Cohen’s kappa = 0.45–0.89) [19]. The 
individual reproducibility estimates were as follows: 
arteriovenous nicking, kappa = 0.61; focal arteriolar 

Fig. 1  Flow diagram for inclusion in the ARIC-PET retinopathy analytic sample. Cases with a valid retinopathy measure but with missing 
arteriovenous nicking and generalized arteriolar narrowing measures were imputed. At visit 5, the missing APOE-4 status (N = 2) was imputed 
to retain the maximum number of positive retinopathy cases. aCases imputed at visit 3: Arteriovenous nicking: N = 2; Generalized arteriolar 
narrowing: N = 16. bCases imputed at visit 5: Arteriovenous nicking: N = 2; Generalized arteriolar narrowing: N = 16; APOE-4 status: N = 2
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narrowing, kappa = 0.45; retinopathy, kappa = 0.89, 
CRAE, correlation coefficient = 0.74.

Other variables
Demographic information such as age, sex, race, and 
education were self-reported and collected at study base-
line (1987–1989). Other variables included in this study 
were APOE-4 genotype (TaqMan assay; Applied Biosys-
tems, Foster City, CA) as well as status of hypertension 
(measured systolic blood pressure > 140  mm Hg, dias-
tolic blood pressure > 90 mm Hg or use of antihyperten-
sive medications) and of diabetes (fasting glucose > 125, 
non-fasting > 200, or self-report of diabetes, diagnosed by 
a physician, or use of antidiabetic medication) at visit 3 
and 5. Cognitive status was classified according to expert-
adjudicated cognitive outcomes as described previously 
in detail [17]. Cognitive functions were categorized into 
normal, mild cognitive impairment, or dementia by a 
panel of experts according to standardized criteria [17]. 
As described previously in detail, a battery of neuropsy-
chological test scores was used to compute a global cog-
nition factor score at visit 5 [22].

Statistical analysis
The statistical analysis was carried out using R (version 
3.6.2). The cohort’s characteristics were summarized by 
descriptive analysis overall and stratified by retinopathy 
for visit 3 and visit 5. Using multivariate imputation by 
chained equations (MICE), missing measures of arte-
riovenous nicking and generalized retinal arteriolar nar-
rowing at both visits were imputed in those cases where 
a participant had a valid retinopathy measure, but these 
other measures were missing. APOE-4 status were 
imputed in 2 cases at visit 5 to retain the maximum num-
ber of positive retinopathy cases for the analysis [23].

A comprehensive retinal scoring system was created 
that summarizes the progressive manifestations of reti-
nal abnormalities in the vasoconstrictive, sclerotic, and 
exudative phases into a single measure. Whereas general-
ized arteriolar narrowing, focal arteriolar narrowing and 
arteriovenous nicking can be seen as early as in the vaso-
constrictive and sclerotic phases, features of retinopathy 
such as tissue ischemia, microaneurysms, hemorrhages 
and exudates are observed only in the more advanced 
exudative phase [24]. The scoring system ranged from 
0–3. A score of 3 was given to a participant if retinopa-
thy as assessed by the modified Airlie House classifi-
cation was evident or all other three retinal signs (i.e., 
arteriovenous nicking, focal arteriolar narrowing, gen-
eralized arteriolar narrowing) were present. Individuals 
were assigned a score of 2 or 1 when two or one retinal 
sign(s) other than retinopathy were present, respectively. 

Participants received a score of 0 if they had none of the 4 
retinal microvascular features.

Recognizing that a retinal score version that assumes 
equivalent weighting of these microvascular retinal 
abnormalities may not be the optimal measure for assess-
ing greater amyloid burden at visit 5, we also created a 
weighted score version in a sensitivity analysis in which 
the four retinal measures received different weights 
based on their association with amyloid burden. To 
derive the weights, a ridge logistic regression model was 
employed with the retinal measures as predictors and 
elevated amyloid burden (SUVR > 1.2) as the dichoto-
mous outcome. To generalize the weights beyond the 
sample of the ARIC-PET study, the optimal lambda value 
of the regularized method was selected that minimized 
the cross-validation prediction error rate for elevated 
amyloid burden. The weighted score distribution was 
normalized and transformed to a whole number score 
range of 0–3 and these numbers  were then assigned to 
each participant.

In the main analysis, the associations between the reti-
nal measures and elevated Aβ burden were tested using 
separate logistic regression models. A two-step model 
building process for adjustment was employed. Covari-
ates in model 1 included age, sex, education, APOE4 sta-
tus and race. In model 2, the presence of hypertension 
and diabetes was added as additional confounders. We 
also ran a statistical power analysis to assess the prob-
ability of detecting a significant effect of the retinal meas-
ures on amyloid burden in the ARIC-PET study if it truly 
exists in the population.

To assess whether a significant survival bias exists 
among individuals with retinopathy, the proportions of 
retinopathy vs. no retinopathy cases at visit 3 stratified 
by mortality and dementia conversion by visit 5 were 
computed in the overall ARIC cohort seen at visit 3. It 
was furthermore tested whether participants who were 
later enrolled in the ARIC-PET study at visit 5, which 
specifically excluded individuals with dementia, had a 
healthier profile at visit 3 than those participants not 
being recruited for the ancillary study. This was done by 
comparing the clinical and demographic characteristics 
between the 2 groups using the Wilcoxon rank sum and 
Pearson’s Chi-squared tests.

In a secondary analysis employing a robust linear 
regression analysis with 2000 bootstrap replicates, we 
also assessed whether retinal signs and the composite 
scores at visit 5 were associated with increased amyloid 
SUVR, defined as a continuous outcome measure. The 
model was adjusted by the covariates age, sex, educa-
tion, race, and APOE-4 status in model 1. In model 2, 
the clinical risk factors hypertension and diabetes were 
further added to the model. Grouped boxplots were also 
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employed to visualize the distributions of amyloid SUVR 
by retinal signs and scores. We furthermore assessed 
the association between continuous CRAE and amyloid 
SUVR.

Results
Characteristics of the study population
285 participants with a median age of 57 years at visit 3 
had either a high school or equivalent level of education 
(44%) or some education more than high school (41%) 
(Table  1). The proportion of females (57%) included in 
the study was higher than of males (43%) and a minority 
had a positive APOE-4 carrier status (at least one allele) 
(31%). Only a small proportion of participants had diabe-
tes (9.5%) or hypertension (35%) at visit 3. This contrasts 

with visit 5, where participants with a median of 76 years 
of age were more likely to have diabetes (34%) or hyper-
tension (69%). Only a few participants had retinopathy at 
visit 3 (N = 11) or at visit 5 (N = 14) (Table 1). Participants 
with retinopathy across all visits showed no or few sec-
ondary retinal signs such as arteriovenous nicking, focal 
arteriolar narrowing or generalized arteriolar narrowing. 
67 participants (30%) at visit 5 had mild cognitive impair-
ment (Table 1).

Association between retinal signs and scores at visit 3 
and elevated Aβ burden
Retinopathy at visit 3 was not significantly associated 
with elevated Aβ burden at visit 5 in model 1 (OR (95% 
CI) = 0.36 (0.08, 1.40)) or in model 2 (OR (95% CI) = 0.33 

Table 1  Demographic and clinical characteristics stratified by retinopathy for visit 3 and visit 5, for ARIC-PET participants

a Median (Q1, Q3); N(%); bSUVR for global cortical region > 1.2; ccognition score missing for 1 individual

Retinopathy measure available at visit 3 (N = 285) Retinopathy measure available at visit 5 (N = 220)

Overalla

(N = 285)
Retinopathya

(N = 11)
No 
retinopathya

(N = 274)

Overalla

(N = 220)
Retinopathya

(N = 14)
No retinopathya

(N = 206)

Age (years) 57 (54, 61) 55 (52, 62) 57 (54, 62) 76 (71, 80) 78 (72, 79) 76 (71, 81)

Education

  Less than high school 42 (15%) 4 (36%) 38 (14%) 25 (11%) 0 (0%) 25 (12%)

  High school or comparable 126 (44%) 4 (36%) 122 (45%) 102 (46%) 9 (64%) 93 (45%)

  At least some college 117 (41%) 3 (27%) 114 (42%) 93 (42%) 5 (36%) 88 (43%)

Sex

  Female 162 (57%) 5 (45%) 157 (57%) 117 (53%) 9 (64%) 108 (52%)

APOE-4

  Positive 89 (31%) 5 (45%) 84 (31%) 66 (30%) 6 (43%) 60 (29%)

Race

  Black 113 (40%) 7 (64%) 106 (39%) 64 (29%) 3 (21%) 61 (30%)

Diabetes

  Present 27 (9.5%) 3 (27%) 24 (8.8%) 74 (34%) 12 (86%) 62 (30%)

Hypertension

  Present 99 (35%) 5 (45%) 94 (34%) 152 (69%) 11 (79%) 141 (68%)

Arteriovenous nicking

  Present 19 (6.7%) 0 (0%) 19 (6.9%) 10 (4.5%) 1 (7.1%) 9 (4.4%)

Focal arteriolar narrowing

  Present 53 (19%) 0 (0%) 53 (19%) 16 (7.3%) 1 (7.1%) 15 (7.3%)

Generalized arteriolar narrowing

  Present 66 (23%) 3 (27%) 63 (23%) 59 (27%) 4 (29%) 55 (27%)

Mild cognitive impairment

  Present - - - 67 (30%) 8 (57%) 59 (29%)

  Global cognitive function - - - -0.69
(-1.39, -0.11)

-0.61
(-1.44, -0.01)

-0.69c

(-1.38, -0.13)

Elevated amyloid burden

  Present b 144 (51%) 4 (36%) 140 (51%) 110 (50%) 10 (71%) 100 (49%)

  Amyloid SUVR 1.20
(1.12, 1.37)

1.18
(1.09, 1.35)

1.20
(1.12, 1.38)

1.20
(1.11, 1.40)

1.29
(1.19, 1.68)

1.19
(1.11, 1.40)
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(0.07, 1.35)) (Fig. 2). No other retinal signs had a signifi-
cant association with elevated Aβ burden in either model 
(Fig. 2).

A total of 164 participants had a composite midlife reti-
nal score of 0, meaning that they showed no retinal signs 
at visit 3. 87 and 21 individuals had retinal scores of 1 or 
2 respectively. In 13 participants, the highest possible 
retinal score of 3 was given. No significant associations 
were found when testing whether the retinal scores of 1, 
2, or 3 from midlife were related to elevated Aβ burden 
than a retinal score of 0 (Fig. 3). The full logistic regres-
sion models can be found in Supplementary Table 1 and 
Supplementary Table 2.

Determining survival bias in the ARIC‑PET study
The low prevalence of retinopathy at visit 3 (N = 11) 
as well as the non-significant association with amy-
loid burden raised the question of a survival bias. The 
survival bias was therefore tested in the overall ARIC 
cohort and participants were included when they had 
a valid retinopathy measure at visit 3 (N = 11,011). 

The results showed that individuals with retinopathy 
had a more than twice as high risk of mortality (46% 
vs. 23.1%) and a significantly higher risk of demen-
tia conversion (14.7% vs. 9.4%) by visit 5 than those 
participants without the retinal sign (Fig.  4); of note, 
ARIC-PET participants not only needed to have sur-
vived to visit 5 but were excluded if they had prevalent 
dementia. Differences between participants at visit 3 
who were later enrolled in the ARIC-PET and those 
who were not included in the ancillary study were also 
found for age and diabetes (Supplementary Table  3). 
Participants in ARIC-PET were significantly younger 
and had a lower proportion of diabetes diagnoses at 
visit 3 than participants who did not enroll in ARIC-
PET. A higher proportion of Black participants and a 
lower proportion of White participants were enrolled 
in the ARIC-PET study. This difference was primarily 
driven by the omission of one of the ARIC sites. One 
field center with predominantly White individuals was 
not included in the ancillary ARIC-PET study.

Fig. 2  The association between retinal signs in midlife (A-B), retinal signs in late life (C-D) and elevated Aβ burden in late life. aLogistic regression 
model between retinal signs and elevated Aβ burden adjusted by age, sex, education, APOE-4 status, and race. bLogistic regression model 
between retinal signs and elevated Aβ burden adjusted by age, sex, education, race, APOE-4 status, diabetes, and hypertension
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Associations between retinal signs and scores at visit 5 
and elevated Aβ burden
The association between retinopathy at visit 5 and ele-
vated Aβ burden was also not significant in model 1 (OR 

(95% CI) = 2.87 (0.84, 11.5)) (Fig. 2). The trend remained 
constant but not significant when accounting for dia-
betes and hypertension in model 2 (OR (95% CI) = 2.37 
(0.66, 9.88)) (Fig.  2; Supplementary Table  4). There was 

Fig. 3  The association between retinal score in midlife (A-B), retinal score in late life (C-D) and elevated Aβ burden in late life. aLogistic regression 
model between retinal signs and elevated Aβ burden adjusted by age, sex, education, APOE-4 status, and race. bLogistic regression model 
between retinal signs and elevated Aβ burden adjusted by age, sex, education, race, APOE-4 status, diabetes, and hypertension

Fig. 4  Proportion of participants with retinopathy vs. without retinopathy in midlife being dead or converting to dementia in late life in the overall 
ARIC cohort (N = 11,011)
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no significant association with elevated Aβ burden for 
arteriovenous nicking, focal arteriolar narrowing and 
generalized arteriolar narrowing (Fig.  2; Supplementary 
Table  4). The statistical power analysis (δ = 1– β) indi-
cated that retinopathy (δ = 0.762), arteriovenous nicking 
(δ = 0.231), focal arteriolar narrowing (δ = 0.050), or gen-
eralized arteriolar narrowing (δ = 0.284) as predictors did 
not have sufficient power (δ < 0.80) to detect a significant 
effect with elevated amyloid burden in the ARIC-PET 
study if the effect truly exists in the population (Supple-
mentary Table 5).

139 individuals had a late-life retinal score of 0 indicat-
ing that they showed no retinal signs at visit 5 (Fig.  3). 
Among participants with retinal signs, the majority 
(N = 57; 70.4%) had a score of 1, with 8 having a score of 
2 and 16 with a score of 3. When testing whether reti-
nal scores of 1, 2, or 3 in late-life were related to elevated 
Aβ burden, only the highest retinal score [3] was signifi-
cantly associated with elevated Aβ burden in model 1 
(OR (95% CI) = 3.58 (1.09, 14.2)) but not in model 2 (OR 
(95% CI) = 3.02 (0.88, 12.3)) (Fig.  3), compared to indi-
viduals with a retinal score of 0 (no retinal signs). The full 
logistic regression models can be found in Supplemen-
tary Table 6.

In the sensitivity analysis, different weights were 
assigned to the retinal measures to form a weighted 
retinal score range (retinopathy, w = 1.78; arteriovenous 
nicking, w = -0.02; focal arteriolar narrowing, w = 0.51; 
generalized arteriolar narrowing, w = 0.63) (Supplemen-
tary Table 7). We did not find a significant association of 
the weighted retinal scores (1, 2, or 3) in late life with ele-
vated Aβ burden in model 1 or in model 2 (Supplemen-
tary Table 8).

Associations between retinal signs and scores at visit 5 
and increased continuous amyloid
The continuous amyloid SUVR stratified by the four 
microvascular measures can be found in Supplementary 
Table  9. The amyloid SUVR was higher in those par-
ticipants with retinopathy and focal arteriolar narrow-
ing, but not with arteriovenous nicking or generalized 
arteriolar narrowing. We did not observe a linear trend 
between CRAE and increased amyloid SUVR (Supple-
mentary Fig. 1).

Having retinopathy was significantly associated with an 
increased amyloid SUVR measured continuously when 
accounting for demographic and genetic covariates in 
model 1 (β (95% CI) = 0.18 (0.07, 0.36)) and when fur-
ther adding the clinical risk factors to the regression in 
model 2 (β (95% CI) = 0.16 (0.02, 0.32)) (Fig.  5). Similar 
associations were not seen for the other 3 retinal signs 
(Fig.  5; Supplementary Table  10; Fig.  6). Arteriovenous 
nicking (β (95% CI) = 0.01 (-0.10, 0.12), focal arteriolar 

narrowing (β (95% CI) = 0.06 (-0.09, 0.18)), and general-
ized arteriolar narrowing (β (95% CI) = -0.01 (-0.08, 0.06)) 
were not associated with increased amyloid SUVR. The 
statistical power analysis (δ = 1– β) indicated that none of 
the retinal signs were sufficiently powered as predictors 
(δ < 0.80) to detect a significant effect with continuous 
amyloid SUVR (Supplementary Table 5).

A high retinal score of 3 vs. 0 was also significantly 
associated with an increased continuous amyloid SUVR 
in model 1 (β (95% CI) = 0.19 (0.07, 0.34)) and model 2 
(β (95% CI) = 0.16 (0.04, 0.32)) (Fig.  7; Supplementary 
Table  11; Supplementary Fig.  2). Similar results were 
found for the weighted retinal score. A high weighted 
retinal score of 3 vs. 0 was associated with an increased 
amyloid SUVR in model 1 (β (95% CI) = 0.18 (0.07, 0.39)) 
and model 2 (β (95% CI) = 0.16 (0.03, 0.34)) (Supplemen-
tary Table 12).

Discussion
Contrary to the study’s main hypothesis, retinopathy in 
midlife was not significantly associated with elevated Aβ 
burden in late life in this study of individuals without 
dementia in three U.S. communities. In late life, however, 
retinopathy was associated with increased amyloid SUVR 
when analyzed continuously (and independent of existing 
vascular risk factors hypertension and diabetes), but not 
associated with an elevated amyloid burden, defined as a 
SUVR cutoff > 1.2. The results from the exploratory anal-
ysis furthermore highlighted a composite retinal score, 
which incorporates multiple measures of retinal micro-
vascular disease, as a potential risk indicator for elevated 
and increased Aβ burden in the general population.

Previous evidence has highlighted the role of micro-
vascular retinal lesions relevant to cognitive decline and 
dementia. Specifically, it has been shown that retinopathy 
was associated with accelerated rates of 20-year cognitive 
decline [25]. A more recent study has furthermore dem-
onstrated an association of retinopathy and generalized 
arteriolar narrowing with all-cause dementia [12]. Multi-
ple mechanisms might link retinal microvascular disease 
to dementia and cognitive decline, which could include 
brain microvascular disease, but also might include more 
direct influences on AD pathogenesis. Retinal microvas-
cular disease is well known to be associated with vascular 
risk factors such as hypertension and diabetes [24, 26], 
and it has been suggested that vascular disease burden 
is a critical factor in the early pathogenesis of AD [3, 7, 
27, 28]. Previous studies have demonstrated that vascu-
lar risk factors, particularly in midlife, and radiological 
markers of small cerebral vascular disease (SVD) were 
significantly associated with higher Aβ burden [4, 5]. 
Several pathological studies further demonstrated that a 
large proportion of patients with dementia have mixed 
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Fig. 5  The association between retinal signs in late life and continuous amyloid SUVR in late life in model 1 (A) and model 2 (B). aRobust linear 
regression with 2000 bootstrap replicates between retinal signs and SUVR amyloid adjusted by age, sex, education, APOE-4 status, and race. bRobust 
linear regression with 2000 bootstrap replicates between retinal signs and SUVR amyloid adjusted by age, sex, education, race, APOE-4 status, 
diabetes, and hypertension

Fig. 6  Grouped Boxplot showing the distribution of continuous amyloid SUVR by retinal sign in late life. SUVR- standardized value uptake ratio
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vascular and Aβ pathology in the brain [29, 30]. Interest-
ingly, more recent evidence has shown that the vascular 
and AD pathways may be temporally distinct indepen-
dently and not synergically contributing to a higher risk 
of dementia conversion [31–33]. Thus, the considera-
tion of a vascular contribution as evidenced by the retina 
should include not only its potential impact on AD path-
ways but also, in future studies, its independent contri-
bution to cognitive outcomes. This study provides some 
evidence that retinal microvascular disease may be linked 
to Aβ as a direct (but not only) marker of AD pathogen-
esis, but overall, we cannot provide conclusive evidence 
for this association.

This study demonstrates that associations might be 
best observed when considering a composite measure of 
overall microvascular disease burden. The idea of sum-
marizing the various vascular lesion types and features 
occurring at different stages of the disease based on a 
single score is not new, having been previously applied 
to cerebral microvascular diseases. A scoring system as 
we’ve described may be more easily implementable in 
routine clinical practice than a more complex approach 
based on deep-learning technology [16]. In cerebral 
SVD, a high score comprising of the four main MRI 
radiological features of the disease has been shown to be 

significantly associated with cognitive impairment and 
a higher dementia risk in patients with lacunar stroke, 
with non-symptomatic SVD and in individuals from 
community-based cohorts [34–36]. It has therefore been 
suggested that a high SVD score may assist in finding the 
right target population for a clinical trial [36, 37]. We see 
similar potential in the retinal field. A high retinal score 
in late life was the only measure in our study which was 
significantly associated with both elevated Aβ burden 
(SUVR > 1.2) as well as increased amyloid SUVR. How-
ever, to be more confident about the clinical utility of the 
retinal scoring system, more studies are needed to inde-
pendently verify the study’s findings.

The study has several strength and limitations. It is 
important to highlight the diverse population of Black 
and White participants from communities in the U.S. as 
a key strength in this study. One significant limitation, 
however, is that the number of cases with retinopathy or 
other retinal signs was low in the ARIC-PET study which 
likely decreased the statistical power in the analysis. We 
also recognize that the retinal findings at visit 3 may have 
suffered from substantial survival bias. Participants were 
significantly more likely to die or to be diagnosed with 
dementia in late life when having retinopathy in midlife. 
As a result, they were less likely to be enrolled in the 

Fig. 7  The association between retinal score in late life and continuous amyloid SUVR in late life in model 1 (A) and model 2 (B). aRobust linear 
regression with 2000 bootstrap replicates between retinal scores and SUVR amyloid adjusted by age, sex, education, APOE-4 status, and race. 
bRobust linear regression with 2000 bootstrap replicates between retinal scores and SUVR amyloid adjusted by age, sex, education, race, APOE-4 
status, diabetes, and hypertension
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ancillary ARIC-PET study at visit 5 which is also reflected 
in the low prevalence of midlife retinopathy.

We also understand that several other confounding 
factors such as smoking or body mass index may have 
affected the associations with Aβ burden. Due to the 
small proportion of retinopathy cases in the ARIC-PET 
study, we chose not to include these additional covariates 
in our statistical models. We furthermore acknowledge 
that using more recently developed software analysis 
tools such as the Singapore Vessel Analysis (SIVA) would 
have allowed us to assess a wider spectrum of promising 
retinal microvascular measures such as fractal dimension 
of the retinal vessels [38, 39]. Another limitation is that 
some of the measures had to be imputed in some partici-
pants due to some missing retinal variables. Finally, we 
acknowledge the lack of validation regarding the retinal 
scoring system used in this study. Future studies may fur-
ther test its potential value as a measure of overall retinal 
microvascular health.

In conclusion, this study shows that retinopathy and a 
high retinal score in late life was significantly associated 
with increased continuous but not elevated dichoto-
mized Aβ burden above and beyond vascular risk factors 
in adults without dementia. Retinal microvascular signs 
in late life may be an easily obtainable marker helping to 
evaluate the mechanistic vascular pathway between reti-
nal measures and AD pathogenesis. Well-powered future 
studies with a greater number of participants with retin-
opathy and other microvascular signs are needed to test 
these findings and to assess the role of retinal microvas-
cular signs on Aβ burden above and beyond vascular risk 
factors, and also to evaluate other mechanisms linking 
retinal microvascular disease with cognitive change and 
dementia.
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