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Abstract 

Background  Secondary prevention clinical trials for Alzheimer’s disease (AD) target amyloid accumulation in asymp‑
tomatic, amyloid-positive individuals, but it is unclear to what extent other pathophysiological processes, such 
as small vessel cerebrovascular disease, account for participant performance on the primary cognitive outcomes 
in those trials. White matter hyperintensities are areas of increased signal on T2-weighted magnetic resonance imag‑
ing (MRI) that reflect small vessel cerebrovascular disease. They are associated with cognitive functioning in older 
adults and with clinical presentation and course of AD, particularly when distributed in posterior brain regions. 
The purpose of this study was to examine to what degree regional WMH volume is associated with performance 
on the primary cognitive outcome measure in the Anti-Amyloid Treatment in Asymptomatic Alzheimer’s Disease (A4) 
study, a secondary prevention trial.

Methods  Data from 1791 participants (59.5% women, mean age (SD) 71.6 (4.74)) in the A4 study and the Longi‑
tudinal Evaluation of Amyloid Risk and Neurodegeneration (LEARN) companion study at the screening visit were 
used to quantify WMH volumes on T2-weighted fluid-attenuated inversion recovery (FLAIR) MR images. Cogni‑
tion was assessed with the preclinical Alzheimer cognitive composite (PACC). We tested the association of total 
and regional WMH volumes with PACC performance, adjusting for age, education, and amyloid positivity status, 
with general linear models. We also considered interactions between WMH and amyloid positivity status.

Results  Increased frontal and parietal lobe WMH volume was associated with poorer performance on the PACC. 
While amyloid positivity was also associated with lower cognitive test scores, WMH volumes did not interact 
with amyloid positivity status.

Conclusion  These results highlight the potential of small vessel cerebrovascular disease to drive AD-related cognitive 
profiles. Measures of small vessel cerebrovascular disease should be considered when evaluating outcome in trials, 
both as potential effect modifiers and as a possible target for intervention or prevention.
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Background
Pathogenic models of Alzheimer’s disease (AD) empha-
size a biological cascade that begins with amyloid accu-
mulation, followed by tau pathology, neurodegeneration, 
and subsequent cognitive decline and dementia [1, 2]. 
While this “amyloid cascade hypothesis” remains quite 
controversial, it has defined both diagnostic frameworks 
[3] and strategies for disease treatment and prevention 
[4]. Observational research from individuals with auto-
somal dominant, fully penetrant, mutations for AD sug-
gests that amyloid accumulation initiates years, perhaps 
decades, prior to the onset of clinical symptoms [5]. With 
the development of neuroimaging and fluidic diagnostic 
biomarkers for AD, it is now possible to characterize AD 
pathophysiology in these early, presymptomatic phases of 
the disease.

Monoclonal antibodies that target the accumulation 
of amyloid protein remain the primary experimental 
approach towards disease treatment. Two distinct views 
have resulted from several clinical antibody trials that 
failed to show clinical efficacy or modest effects despite 
evidence of target engagement [6]. The first argues that 
amyloid pathology is not linked causally to the develop-
ment and progression of clinical symptoms in AD and 
questions the fundamental basis of the amyloid cascade 
hypothesis [7]. The second argues that amyloid removal 
is still a viable treatment for AD but will only be effec-
tive in very early stages of disease pathogenesis [8]. 
Indeed, among myriad failed trials, three phase 3 tri-
als that included patients with very mild or presympto-
matic disease suggest some degree of clinical efficacy in 
primary [9, 10] or post hoc [11] analyses, which led to 
FDA approval of lecanemab and aducanumab. Despite 
the unambiguous ability to clear amyloid from the brain 
based on changes in biomarker profiles, these medica-
tions provide only the mildest clinical benefit to patients, 
suggesting that amyloid may be one of the factors impli-
cated in AD pathophysiology, but its removal is not a 
panacea.

Most treatment or secondary prevention clinical tri-
als for AD that target beta-amyloid require that par-
ticipants have pathophysiological evidence of AD via 
positron emission tomography (PET) or cerebrospinal 
fluid biomarkers and have exclusion criteria for signifi-
cant comorbidities, including suspected cerebrovascu-
lar disease. Although there are often other practical or 
methodological justifications for excluding one pathology 
in a trial to study another, the primary argument is that 
in order to determine whether a medication is helpful to 
individuals suffering from or at risk for a disease, only 
those with the “purest” forms should be included in trials 
to ensure that the potential therapeutic outcome of tar-
get engagement is not confounded or masked by another 

disease process. This approach has likely contributed to 
systematic exclusion of minoritized groups from clinical 
trials for AD because of differential base rates in comor-
bidities [12] and otherwise might not be a valid strategy 
towards evaluating treatment efficacy. Indeed, pathologi-
cal and neuroimaging data confirm that the majority of 
symptomatic individuals with AD have evidence of cer-
ebrovascular disease, which cerebrovascular disease pre-
cedes symptom onset in AD even in autosomal dominant 
forms, and that cerebrovascular disease contributes to 
symptom onset and progression [13–18]. Taken together, 
the evidence suggests that cerebrovascular disease is a 
core feature of AD, and imposing exclusion criteria in 
clinical trials that leave out individuals with suspected 
or peripheral risk factors for cerebrovascular disease 
may attenuate but not eliminate its impact on clinical 
outcomes.

In the current study, we tested the hypothesis that 
small vessel cerebrovascular disease, operationally 
defined as white matter hyperintensity (WMH) volume 
on T2-weighted magnetic resonance imaging (MRI), 
contributes to primary cognitive outcome performance 
in a secondary prevention trial for AD. We used screen-
ing data from the Anti-Amyloid Treatment in Asymp-
tomatic Alzheimer’s (A4) study, a secondary prevention 
trial of solanezumab in preclinical AD, and the Longitu-
dinal Evaluation of Amyloid Risk and Neurodegeneration 
(LEARN) companion study. A unique aspect of A4 and 
LEARN is that individuals with vascular risk factors were 
not systematically excluded from participation, allowing 
us to examine the role of a range of cerebrovascular dis-
ease severity in typical prospective AD trial participants.

Methods
Participants
Data for the current analyses came from participants 
who were included in the screening visit for the A4 
study, a multicenter clinical trial enrolling cognitively 
unimpaired older adults (ages 65 to 85) with evidence of 
increased amyloid accumulation in the brain [8, 19]. This 
secondary prevention trial evaluated the impact of solan-
ezumab, a monoclonal antibody targeting beta amyloid’s 
mid-peptide domain, on cognitive progression in individ-
uals characterized as having preclinical AD [19]. Major 
inclusion criteria for participants in the A4 study were 
the evidence of elevated brain amyloid levels determined 
by amyloid PET imaging, the classification of cognitively 
unimpaired at study enrollment, and access to a study 
partner willing to participate and provide information on 
participants’ daily life cognitive function. Major exclu-
sion criteria included receiving treatment for AD with 
acetylcholinesterase inhibitors; serious or unstable medi-
cal, psychiatric, or neurological conditions; suicidality; or 



Page 3 of 10Morales et al. Alzheimer’s Research & Therapy           (2024) 16:25 	

recent history of alcohol or substance abuse or depend-
ence [8]. The screening procedure involved an initial cog-
nitive assessment followed by PET imaging to determine 
amyloid status. After amyloid status was determined, 
participants with elevated amyloid received structural 
MRI. Participants determined to be amyloid negative 
were referred to the Longitudinal Evaluation of Amyloid 
Risk and Neurodegeneration (LEARN) study [8]. The 
LEARN study was run in parallel with the A4 clinical trial 
to act as a comparison group and further characterize 
preclinical AD vis-à-vis normal aging. LEARN partici-
pants received the same longitudinal imaging and clinical 
assessments as participants in the A4 clinical trial. Imag-
ing data for a total of 1791 screening participants were 
included in these analyses; Table  1 displays the demo-
graphic characteristics of these participants. The enroll-
ment outcome for these participants was not known at 

the time of our analysis, but all participants underwent 
cognitive assessment, amyloid PET imaging, and MRI 
scanning and met inclusion criteria for either the A4 or 
LEARN studies.

Cognitive assessment
Cognitive testing took place before PET imaging eligi-
bility was determined. The primary cognitive outcome 
measure used in the A4 study is the preclinical Alzheimer 
cognitive composite (PACC) [20]. The PACC is derived 
from four cognitive measures: Free and Cued Selective 
Reminding Test [21], Logical Memory Test delayed recall 
(LMDR-IIa) [22], Digit Symbol Substitution Test [23], 
and Mini-mental State Examination (MMSE) [24]. Scores 
from each of the four components were normalized using 
the mean and standard deviation of the sample group; 
the standardized z scores were then summed to give the 

Table 1  Demographic features of participants included in the current study

A4
(elevated amyloid)

LEARN
(non-elevated 
amyloid)

Total Test statistic

n 1250 541 1791 ––

Sex/gender
  Women, n (%) 735 (58.5%) 331 (61.2%) 1066 (59.5%) χ2 = 0.79

p = 0.37

Age
  Mean (SD), years 72.0 (4.85) 70.5 (4.30) 71.6 (4.74) t = 6.63

p < 0.001

Ethnicity
  Hispanic or Latinx, n (%) 36 (2.9%) 18 (3.3%) 54 (3.0%) χ2 = 0.45

p = 0.79  Not Hispanic or Latinx, n (%) 1202 (96.2%) 519 (95.9%) 1721 (96.1%)

  Unknown, n (%) 12 (1.0%) 4 (0.7%) 16 (0.9%)

Race
  American Indian or Alaskan Native, n (%) 2 (0.2%) 5 (0.9%) 7 (0.4%) χ2 = 5.75

p = 0.21  Asian, n (%) 27 (2.2%) 12 (2.2%) 39 (2.2%)

  Black or African American, n (%) 32 (2.6%) 14 (2.6%) 46 (2.6%)

  White, n (%) 1173 (93.8%) 504 (93.2%) 1677 (93.6%)

  Unknown, n (%) 16 (1.3%) 6 (1.1%) 22 (1.2%)

Education
  Mean (SD), years 16.6 (2.81) 16.8 (2.63) 16.6 (2.76 t = 1.64

p = 0.10

WMH volume
  Total, mean (SD), cm3 12.27 (9.47) 11.91 (9.05) 12.16 (9.35) t = 0.78

p = 0.43

  Frontal lobe, mean (SD), cm3 4.76 (4.92) 4.47 (4.52) 4.67 (4.81) t = 1.23
p = 0.21

  Temporal lobe, mean (SD), cm3 1.25 (1.17) 1.38 (1.21) 1.29 (1.18) t = 2.00
p = 0.04

  Parietal lobe, mean (SD), cm3 2.67 (3.11) 2.53 (2.91) 2.63 (3.05) t = 0.93
p = 0.35

  Occipital lobe, mean (SD), cm3 2.29 (1.48) 2.14 (1.48) 2.25 (1.48) t = 2.01
p = 0.04
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composite score used in these analyses [20]. Participants 
scoring very high (1.5 SD above the norm) or very low 
(1.5 SD below the norm) on LMDR-IIa were excluded 
after the first screening visit, before imaging data were 
collected, in hopes of increasing the likelihood of enroll-
ing participants with a higher risk of imminent cognitive 
decline associated with AD pathophysiology and remov-
ing those with mild cognitive impairment (MCI) [8]. Par-
ticipants with MMSE scores of 25 to 30, LMDR-IIa scores 
of 6 to 18, and a Clinical Dementia Ratings of 0 were eli-
gible for further screening with an amyloid PET scan.

Amyloid PET imaging
Florbetapir PET imaging was used to assess amyloid bur-
den. Images were acquired 50 to 70 min post-injection of 
10 mCi of florbetapir F18 and analyzed using a mean cor-
tical standardized uptake value ratio (SUVR) calculated 
with the whole cerebellum as a reference region [25]. A 
subset of participants’ amyloid eligibility assessments was 
verified by two-reader visual consensus before the deci-
sion to implement automatic inclusion of participants 
meeting a composite SUVR of 1.15 or greater at screening 
[8]. This change led to amyloid positive eligibility assess-
ment outcomes for some individuals with a composite 
summary SUVR below the threshold (137 subjects, 11%, 
of the amyloid positive group included in these analyses). 

Amyloid positivity status for the analyses included here is 
based on the eligibility assessment outcomes.

MRI acquisition and WMH quantification
Axial T2-weighted fluid-attenuated inversion recovery 
(FLAIR) MRI images (resolution, 0.86  mm, 0.86  mm, 
5  mm; field of view, 256 × 256 × 35) were acquired for a 
majority of A4 and LEARN screening participants on 
study-approved 3T scanners with harmonized proto-
cols after PET eligibility was determined. White matter 
hyperintensity volume was quantified with an automated 
algorithm with manual corrections (Fig.  1) [26]. Briefly, 
the method involves preprocessing the FLAIR images to 
remove non-brain tissue, correcting for intensity bias, 
and implementing a high-pass filter to remove voxels 
with intensity values equal to or below the mode. Inten-
sity values of the preprocessed FLAIR images are then log 
transformed and fit to a half-Gaussian mixture model, in 
which the histogram containing an upper Gaussian curve 
captures image voxels within the distribution of WMH. 
The voxels within this range are labeled, and the mask 
is visually inspected and manually edited to remove any 
false-positive errors. We calculated total WMH volume 
and regional (frontal, temporal, parietal, and occipital 
lobe) WMH volumes in cm3. Regional WMH volumes 
were derived by co-registering a lobar atlas [27] to the 
FLAIR scans. Voxels within each of those regions are 

Fig. 1  Example of a raw (A) and labeled for WMH (B) T2-weighted FLAIR image on a single axial slice from an A4 study participant. C 3D rendering 
of total WMH in same participant in coronal, sagittal, and axial view, respectively
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added and multiplied by the voxel dimensions to derive 
the regional WMH volumes.

Statistical analysis
Demographic characteristics and total and regional 
WMH volumes were compared between participants in 
A4 and in LEARN with t-tests for continuous variables 
and chi-squared tests for proportional data. A series of 
general linear models tested the association of total and 
regional WMH volumes with PACC scores; these analy-
ses included age, number of years of education, and 
amyloid status (elevated or not elevated) as additional 
predictor variables. In subsequent models, we added a 
term capturing the interaction between total or regional 
WMH and amyloid status to test whether the association 
of WMH volumes with PACC score differed in individu-
als with and without elevated amyloid. Akaike informa-
tion criterion (AIC), a log-likelihood metric penalized for 
the number of model parameters (lower is better), was 
used to determine the most parsimonious model (i.e., 
model containing only main effects versus a model con-
taining a WMH × amyloid interaction term). Adjusted R2 
values, also penalized for the number of model param-
eters (higher is better), were used to compare the total 
variance in the outcome that was explained by the model. 
The square of the partial correlation was used to deter-
mine the proportion of the variance attributable to each 
covariate within the models. Note that because all par-
ticipants included from the A4 trial had elevated amyloid 
levels and all participants in the LEARN study did not 
have elevated amyloid levels, main effects and interac-
tions with amyloid status reflect the effects of substudy 
as well.

Results
Table  1 displays the demographic characteristics of A4 
and LEARN participants, corresponding to those with 
and without elevated amyloid levels, respectively. As is 
typical of clinical therapeutic trials in symptomatic or 
preclinical AD, participants were predominantly women, 
were in their early 70 s, were predominantly non-Latinx 
white, and had high levels of education. Participants in 
A4 (elevated amyloid levels) were older than those in 
LEARN (non-elevated amyloid) but were otherwise simi-
lar in sex/gender, race, ethnicity, and education. The two 
groups also did not differ in total WMH volumes; how-
ever, those enrolled in A4 had lower temporal lobe WMH 
volumes but greater occipital lobe WMH volumes.

As seen in Table  2 and in Fig.  2, higher total, frontal, 
and parietal WMH volumes were associated with lower 
PACC scores. As expected, elevated amyloid was also 
associated with poorer PACC performance. The AIC, 
adjusted R2, and the interaction effect size (interaction 

effects =  − 0.0049–0.003, p-values = 0.48–0.95) converged 
to indicate that total and regional WMH volumes did not 
interact with amyloid status on PACC scores, suggesting 
that the association of total and regional WMH with cog-
nitive outcomes is similar in those with and without ele-
vated amyloid. The total variance accounted for in PACC 
scores was small to moderate for each model. In models 
with a significant WMH effects, total, frontal, and parietal 
WMH volumes accounted for 1.4%, 2.7%, and 1.6% of the 
total variance, respectively, while amyloid accounted for 
3.5% in each model.

Discussion
We found that regionally distributed WMH, an indica-
tor of small vessel cerebrovascular disease, are associ-
ated with cognitive functioning in a group of participants 
being considered for enrollment in a secondary preven-
tion trial for AD targeting beta amyloid. As expected, the 
PET biomarker reflecting beta  amyloid pathology was 
strongly related to cognition, but WMH additionally con-
tributed independently and significantly to the amount 
of variance in the cognitive outcome. The findings have 
important implications for our understanding of sources 
of cognitive impairment in preclinical AD, for strate-
gies to analyze and interpret AD clinical trial data, and 
for planning of future prevention or intervention trials in 
AD.

It is now well-established that regional cerebrovascular 
disease is associated with cognition, cognitive decline, 
and risk of and progression of both late onset and auto-
somal dominant AD [15–18]. This observation is recapit-
ulated in the current study, which included older adults 
considered for a secondary prevention trial. We con-
firmed an association of total WMH with cognitive out-
comes. In terms of impact of regional WMH distribution, 
we previously showed consistent associations between 
posterior distribution, typically parietal lobe, WMH, 
and outcomes related to AD [28]. Here, we observed 
the same regional effect but also found that frontal lobe 
WMH, which are typically attributed to age- and risk 
factor-related ischemic changes [29], are also related to 
cognitive outcomes. It is unclear what factors mediate 
the regional distribution of AD-associated WMH, but it 
is interesting to note that several pathophysiology fea-
tures of AD converge in posterior areas relatively early 
in the disease process, including cerebral microbleeds, 
amyloid and tau pathology, atrophy, and glucose hypo-
metabolism [30–33]. We speculate that upstream blood 
flow abnormalities in posterior regions may mediate 
some of this convergence. As in previous studies [34, 35], 
WMH volume was independent of and did not interact 
with amyloid status in its relationship with cognitive 
outcomes. Some work suggests that amyloid pathology 
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does interact with small vessel cerebrovascular disease to 
affect rates of cognitive decline [36], so despite the inde-
pendent effects we observed of the two markers cross-
sectionally, they may have a synergistic impact on change 
in cognitive outcomes. Additionally, our previous work 
demonstrates an effect of small vessel cerebrovascular 
disease on tau pathology [37], raising the possibility of 
direct downstream consequence of cerebrovascular dis-
ease on AD pathophysiology. The findings in the current 
study confirm that even in typical prospective AD clinical 
trial participants, cerebrovascular disease contributes to 
the clinical profile. Notably, the impact of cerebrovascu-
lar disease on cognition was not trivial; whereas amyloid 
positivity status accounted for 3.5% variance in PACC 
scores, frontal lobe WMH accounted for 2.7%.

The relationship between  regional WMH volume 
and  performance on the PACC, which was the primary 
clinical efficacy outcome of the trial, suggests that WMH 
should be considered explicitly in the design and analysis 

of clinical trial data. We are unaware of trials that have 
examined baseline WMH as potential effect modifiers or 
factors that would need statistical adjustment when con-
sidering efficacy. However, the relationship we observed 
indicates WMH as a source of variance in trial out-
comes that could potentially obscure treatment effects. 
The results of the A4 trial showed that solanezumab did 
not slow cognitive decline compared with placebo [34]; 
an important post hoc analysis should examine whether 
WMH affected the efficacy outcomes in this trial. Simi-
larly, it is now well established that brain edema and 
hemorrhage, the so-called amyloid-related imaging 
abnormalities (ARIA-E and ARIA-H, respectively), are 
common side effects of monoclonal antibody treatments 
that target amyloid [38]. The presence of baseline micro-
bleeds is one predictor of these adverse outcomes [38], 
but future analyses should consider whether small vessel 
disease manifesting as WMH may also signal who might 
be at risk for adverse events. Cerebral microbleeds may 

Fig. 2  Scatterplots of total and regional WMH volumes against PACC scores. Plotted values have been residualized to account for covariates (age, 
education, and amyloid positivity status), leading to some negative values appearing on the x-axis
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be difficult to detect, and their visualization is dependent 
on MRI scan protocols, resolution, and operator exper-
tise; on the other hand, WMH are easily visualized and 
quantifiable and may provide similar or better indicators 
of risk. Future trials should consider analyses involving 
WMH for both efficacy and safety outcomes.

Limitations
There is considerable debate about whether WMH in the 
context of AD represent a purely vascular phenomenon 
or whether they are consequences of AD-related neuro-
degeneration [39, 40]. We have argued against the latter 
based on animal studies, anatomical distribution, tem-
porality, and dissociations between vascular risk factors 
and WMH severity [41]. In the A4 trial, which includes 
individuals who are presymptomatic or have very mild 
symptoms, we would also not expect there to be signifi-
cant white matter degeneration secondary to AD patho-
physiology at such early disease stages. Additionally, 
while the A4 trial was designed to be more inclusive of 
race and ethnicity groups than previous AD trials [8], 
there was still bias [42], and the target numbers for inclu-
sion of enrolled participants from racially and ethnically 
minoritized backgrounds were not reached. We [43, 44] 
and others [45] have documented differences in WMH 
volume across race/ethnicity minoritized groups and in 
the impact of WMH on cognitive outcomes. As recruit-
ment and enrollment strategies of AD trials continue to 
improve with respect to more inclusive participation, the 
potential impact of cerebrovascular disease on the effi-
cacy, and possibly safety, of trial outcomes will become 
more relevant.

Conclusions
Given the multifactorial etiology of cognitive decline in 
AD, efforts towards risk reduction and prevention via 
multidomain interventions that include management of 
cerebrovascular disease [46, 47], combination therapies 
[48], or explicit inclusion of individuals with cerebro-
vascular disease will continue to emerge as important 
strategies. Our study confirms the importance of multi-
ple etiological factors in cognitive outcomes even among 
individuals considered for single mechanism secondary 
prevention AD trials.
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