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Abstract 

Background  Electroencephalogram (EEG) has emerged as a non-invasive tool to detect the aberrant neuronal activ-
ity related to different stages of Alzheimer’s disease (AD). However, the effectiveness of EEG in the precise diagnosis 
and assessment of AD and its preclinical stage, amnestic mild cognitive impairment (MCI), has yet to be fully eluci-
dated. In this study, we aimed to identify key EEG biomarkers that are effective in distinguishing patients at the early 
stage of AD and monitoring the progression of AD.

Methods  A total of 890 participants, including 189 patients with MCI, 330 patients with AD, 125 patients with other 
dementias (frontotemporal dementia, dementia with Lewy bodies, and vascular cognitive impairment), and 246 
healthy controls (HC) were enrolled. Biomarkers were extracted from resting-state EEG recordings for a three-level 
classification of HC, MCI, and AD. The optimal EEG biomarkers were then identified based on the classification per-
formance. Random forest regression was used to train a series of models by combining participants’ EEG biomarkers, 
demographic information (i.e., sex, age), CSF biomarkers, and APOE phenotype for assessing the disease progression 
and individual’s cognitive function.

Results  The identified EEG biomarkers achieved over 70% accuracy in the three-level classification of HC, MCI, and 
AD. Among all six groups, the most prominent effects of AD-linked neurodegeneration on EEG metrics were localized 
at parieto-occipital regions. In the cross-validation predictive analyses, the optimal EEG features were more effective 
than the CSF + APOE biomarkers in predicting the age of onset and disease course, whereas the combination of EEG 
+ CSF + APOE measures achieved the best performance for all targets of prediction.

Conclusions  Our study indicates that EEG can be used as a useful screening tool for the diagnosis and disease pro-
gression evaluation of MCI and AD.
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Background
Alzheimer’s disease (AD) is the leading cause of demen-
tia, accounting for an estimated 60-80% of cases world-
wide [1]. Currently, there is no effective treatment for AD, 
and only very limited medications show the potentials for 
delaying the progression of this neurodegenerative dis-
ease at its early stage. On the other hand, amnestic mild 
cognitive impairment (MCI) is characterized by cognitive 
decline greater than normal for a person’s age and edu-
cation level without notably interfering with activities of 
daily life [2]. It is well-accepted that MCI is a high-risk 
factor for the development of AD and reflects a prodro-
mal predementia state of AD, with an estimated conver-
sion rate of 10–15% per year [3]. Taken together, early 
diagnosis of AD, including detection at MCI or even early 
stage, may substantially benefit patients from disease-
modifying treatments.

The gold standard of AD diagnosis is the Amyloid/Tau/
Neurodegeneration (ATN) framework proposed by the 
National Institute on Aging and Alzheimer’s Association 
in 2018 [4]. In the ATN framework, the biological state 
of AD is classified through the identification of three 
biomarkers (i.e., amyloid, tau, and neurodegeneration) 
measured from cerebrospinal fluid (CSF) and positron 
emission tomography (PET) imaging [4]. Specifically, 
“A” represents the cortical amyloid PET ligand binding 
or low CSF Aβ42, “T” refers to elevated CSF phospho-
rylated tau (P-tau) and cortical tau PET ligand binding, 
and “N” indicates CSF T-tau, FDG PET hypometabolism, 
and atrophy on MRI [4]. The ATN framework has been 
shown to be a feasible way for AD diagnosis and can be 
also extended to quantify personalized risk profiling for 
individuals with MCI [5, 6]. However, this approach is 
typically conducted through a lumbar puncture or PET 
examination, which is costly, invasive, and highly relies 
on clinical infrastructure, thus significantly limiting its 
availability in clinical practice. As such, there are growing 
demands for the development of new approaches to aid 
the early diagnosis of AD.

Electroencephalography (EEG), a low-cost, non-inva-
sive, and portable technique that directly measures neu-
ral activity with a high temporal resolution, has emerged 
as a potential tool for detecting neural biomarkers related 
to MCI and AD [7–10]. Numerous lines of evidence have 
validated the possibility of using EEG to distinguish MCI 
and AD patients from healthy cohorts with diverse sensi-
tivity and specificity [11]. Overall, previous EEG studies 
involving both MCI and AD patients reported relatively 
consistent neural alterations compared to healthy cohort, 
including decreased alpha and beta rhythms activity and 
increased delta and theta oscillations, which are probably 
the most promising neural biomarkers for early detec-
tion of AD, due to their good correlations with patients’ 

cognitive function [11–15]. In addition, reduced com-
plexity and coherence in EEG recordings, as well as 
decreased ratios of theta/gamma and high alpha/low 
alpha, were also reported as potential biomarkers for the 
diagnosis of AD [15–19].

Despite the convergence of evidence showing EEG-
derived biomarkers linked to MCI and AD, there remain 
important challenges in bringing these findings into clini-
cal practice. In particular, previous studies were largely 
conducted based on limited sample sizes. During the last 
three decades, as pointed out in a recent study, more than 
95% of the studies that focused on EEG-based classifica-
tion of MCI or AD were conducted with fewer than 100 
participants, making relevant findings unconvincing [15]. 
Moreover, while AD is the most common form of demen-
tia, symptoms of preclinical and early AD mostly overlap 
with other types of dementia such as frontotemporal 
dementia (FTD), dementia with Lewy bodies (DLB), and 
vascular cognitive impairment (VCI) [20–22]. However, 
most previous studies have commonly examined EEG 
signatures related to MCI and AD without the inclusion 
of other dementias. We argue that the sensitivity and 
specificity of such EEG biomarkers in early AD diagno-
sis should be further thoroughly validated on datasets 
with more types of dementia. Lastly, though a number 
of EEG biomarkers (e.g., power spectrum, entropy) have 
been extensively investigated in previous studies [23, 24], 
clear knowledge gaps remain regarding the effectiveness 
of such EEG biomarkers in the diagnosis and prediction 
of the progress of AD.

To address the aforementioned challenges, this study 
sought to examine key EEG biomarkers that are capa-
ble of distinguishing patients with MCI, AD, and other 
neurodegenerative dementias from healthy participants. 
We also aimed to investigate how the identified EEG bio-
markers were associated with individual cognitive decline 
and CSF biomarkers. In addition, we implemented a 
machine learning approach and validated the added 
value of EEG biomarkers in assessing patients’ cognitive 
function (i.e., MMSE and MoCA), age of disease onset 
(ADO), and course of disease (COD).

Materials and methods
Participants
A total of 890 individuals were utilized in the study, 
including 189 patients with amnestic MCI, 330 patients 
with AD, 47 patients with FTD, 57 patients with VCI, 
21 patients with DLB, and 246 healthy controls (HC). 
All patients were enrolled from the Department of Neu-
rology, Xiangya Hospital, Central South University, 
between March 2017 and January 2022. The patients 
of MCI, probable AD, FTD, VCI, and DLB were diag-
nosed according to the respective clinical-based criteria 
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[25–30]. All HC were recruited from Xiangya Health 
Management Center, who were matched with age and sex 
and reported without cognitive decline. The protocol was 
approved by the Institutional Review Board of Xiangya 
Hospital, Central South University. All participants or 
guardians signed the informed consent before the study.

APOE genotyping
The gDNA was extracted from peripheral blood using 
the standard phenol-chloroform extraction method. All 
gDNA samples were diluted to 50 ng/μl. A 581-bp frag-
ment was amplified using the following primers: forward 
5-CCT​ACA​AAT​CGG​AAC​TGG​-3, and reverse 5-CTC​
GAA​CCA​GCT​CTT​GAG​-3. Polymerase chain reaction 
(PCR) was performed as previously described [31]. Each 
PCR product was sequenced using an ABI 3730xl DNA 
analyzer (ABI, Louis, MO, USA).

CSF collection and analysis
The CSF was collected through a lumbar puncture. The 
samples were then centrifuged at 2000× g and 4 °C for 
10 min and stored at the temperature of −80 °C. All 
assessments of CSF biomarkers were measured using an 
enzyme-linked immunosorbent assay (ELISA), includ-
ing beta-amyloid (1–40) (EQ 6511–9601), beta-amyloid 
(1–42) (EQ 6511–9601), total-tau (EQ 6531–9601), and 
pTau (181) (EQ 6591–9601-L) (EUROIMMUN, Ger-
many). Four core biomarkers, including Aβ42, Aβ40, 
t-tau, and p-tau were then obtained. All procedures 
were performed in accordance with the manufacturer’s 
instructions. Briefly, samples were added to the rea-
gent wells, and the plate was incubated for 3 h at 22°C 
± 2°C. After washing, horseradish peroxidase solution 
was added and incubated for 90 min at 22°C ± 2°C. The 
plate was then washed with the provided washing buffer, 
and substrate solution was added. After 30 min incuba-
tion protected from light, stop-solution was added, and 
the optical density (OD) was measured using a micro-
plate reader (Thermo, Waltham, MA, USA), at 450 nm, 
corrected by the reference OD at 620 nm within 30 min 
of adding the stop solution. Two technical replicates were 
performed on samples and standards, and the mean of 
the replicates was used for the final analysis.

EEG collection and preprocessing
EEG signal was recorded at 200 Hz from the partici-
pants in a 10-min eye-closed resting state. Participants 
were required to remain awake during the entire record-
ing. Standard 16-channels montage was utilized accord-
ing to the 10–20 International System (channels: Fp1, 
Fp2, F3, F4, F7, F8, T3, T4, T5, T6, C3, C4, P3, P4, O1, 
O2). All data analysis was performed using custom-
ized Python scripts (Python 3.9, Delaware, USA). The 

pipeline of the proposed classification and assessment 
framework is shown in Fig. 1. Briefly, the collected EEG 
signals were first band-pass filtered between 1 Hz and 55 
Hz and further filtered by a 50-Hz notch filter to remove 
the powerline interference. The filtered data were then 
re-referenced using a common average re-reference 
approach. After that, all EEG traces were inspected using 
a 25-s sliding time window for motion artifact (e.g., 
spike) detection. Windowed data containing more than 
30% artifacts were excluded, leaving the average length 
of EEG data at 6.2 min. As recommended by a guide-
line published recently [32], we then segmented the EEG 
data into a series of epochs using a 5-s time window (i.e., 
1000 sample points), resulting in data size of M epochs Í 
16 channelsÍ1000 points for each participant. A total of 
38,925 epochs were finally obtained from all participants 
(HC, MCI, and AD).

EEG analyses and feature extraction
We computed multiple types of EEG features, including 
absolute power, relative power, Hjorth metrics (activ-
ity, mobility, and complexity), time-frequency property 
(STFT), sample entropy, and microstate measures (life-
time, occurrence rate, converting rate). Before feature 
calculation, each 5s epoch data was filtered by a band-
pass filter to extract several frequency components 
including delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 
Hz), beta (13–30 Hz), and gamma (30–45 Hz). We then 
computed all features from each frequency component 
of each epoch. Specifically, the absolute power and rela-
tive power features were extracted from each frequency 
band of each channel, while the Hjorth metrics and 
sample entropy were computed for each channel. Time-
frequency (STFT) features were calculated from each 
frequency band across all channels, while microstate 
features were extracted across all channels. A detailed 
definition of these features can be found in the Supple-
mentary material.

Classification of HC, MCI, and AD based on EEG features
We performed a two-step three-level classification of 
HC, MCI, and AD groups using linear discriminant anal-
ysis (LDA) and support vector machine (SVM). Briefly, 
we first calculated the Pearson’s correlation coefficient 
between each individual feature dimension and all class 
labels (HC = 1, MCI = 2, AD = 3), resulting in a series 
of correlation coefficients between each EEG feature and 
the class labels. All EEG features were then sorted based 
on their absolute correlation coefficients in a descend-
ing manner, in which the features that yielded a higher 
coefficient represented more important features and 
were given higher priority in the classification of the 
three groups. With the sorted feature set, we started the 
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classification using the feature with the highest priority, 
and then iteratively added other features one by one (in 
a forward manner) and evaluated the classification per-
formance at each iteration. The optimal feature set was 
defined as the set that yielded the highest accuracy, rep-
resenting the key EEG features essentially related to the 
diagnosis of MCI and AD. We randomly selected 80% 
of the samples as a training set, and the left 20% of the 
samples as a testing set. To avoid the overfitting prob-
lem, classifiers were trained using 5-fold cross-validation 
within the training set, in which 80% of the training set 
was used to train the model and 20% of the training set 
was used as the validating set.

Statistical analyses
Among the optimal EEG features identified via the three-
way classification, we further explored whether these 
EEG features could be used to distinguish MCI from AD 
groups as well as other subtypes of dementia (i.e., DLB, 
FTD, and VCI) through a series of ANCOVA tests that 
included age as a covariate. Significant EEG features were 
determined (p < 0.05) and tested for the between-group 
difference using a post hoc Tukey test (corrected for age, 
multiple comparisons were corrected using the FDR 

Benjamini-Hochberg method). To assess the associa-
tion among individual neural activity, CSF, and cognitive 
function, we computed Pearson’s correlation between 
each EEG feature and the Mini-Mental State Examina-
tion (MMSE), Montreal Cognitive Assessment (MoCA) 
scores, and each CSF biomarker within the combined 
MCI-AD group.

Assessment of cognitive decline in MCI and AD patients
Next, we aimed to assess how well the selected EEG-
based biomarkers, demographic information (i.e., sex, 
age), the CSF biomarkers, and APOE phenotype can 
be used to assess individual cognitive function and dis-
ease profiles within the MCI and AD groups, through a 
machine-learning-based approach. Three types of fea-
ture sets, including EEG feature-only (EEG), CSF/APOE 
measures-only (CSF/APOE), and hybrid (EEG + 
CSF/APOE + demographic information), were inde-
pendently selected to train a series of regression mod-
els for the prediction of the absolute scores of MMSE, 
MoCA, ADO, and COD, respectively. As the total num-
ber of patients with MCI and AD decreased due to miss-
ing measurements of CSF and APOE, random forest 
regression was used in the predictive analysis to avoid 

Fig. 1  The schematic diagram of the classification a–d of HC/MCI/AD participants and assessment e–g of participants’ cognitive function and 
disease progression
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an overfitting problem [33]. Random forest regression 
is an ensemble technique capable of performing regres-
sion-based predictive analysis with the use of multiple 
binary decision trees. The basic idea behind this is to 
combine multiple simple predictive models in deter-
mining the final output rather than relying on a simple 
regression model. Here, we adopted a 10-fold cross-vali-
dation approach to perform relatively robust predictions 
of measures of interest. In each fold, we randomly split 
the available participants (MCI + AD) into a training set 
(80%) and a validating set (20%). After ten iterations, we 
combined all training and validating sets from each fold 
to form the complete training set and validating set for 
the prediction, respectively. The prediction performance 
of the regression models was assessed using two metrics. 
The first metric is the coefficient of determination (R2), a 
statistical measure that assesses how well the predicted 
scores approximate the target score. The coefficient of 
determination (R2) is calculated as:

where MSS is the model sum of squares, which is the sum 
of the squares of the predicted variable minus the mean 
of the true target variable; TSS is the total sum of squares 
associated with the target variable, which is the sum of 
the squares of the target variable minus their mean. R2 
ranges from 0 to 1, and a higher R2 indicates better good-
ness of fit for the observations.

The second metric is the mean absolute error (MAE) 
which measures the average magnitude of the errors in a 
set of predictions. MAE can be calculated as:

R2
= MSS/TSS,

where n is the number of samples, yi is the target score 
of the ith sample, and ŷi is the predicted score of the ith 
sample.

Results
Demographic information
The demographic information of 890 participants is sum-
marized in Table 1. No significant difference in age and sex 
distribution were observed among the MCI, AD, and HC 
participants (p = 0.50 for age; p = 0.29 for sex).

EEG‑based classification results
We identified 178 EEG features as the key features for the 
classification of HC, MCI, and AD. The optimal feature set 
covered partial features from each EEG feature category, 
particularly the absolute PSD and the complexity of EEG 
signals. The distribution of the optimal feature set among 
all extracted EEG features is shown in Fig. 2.

Table  2 summarizes the classification performance of 
binary classification and three-level classification. The 
metrics used to evaluate the classification performance 
included recall, precision, F1-score, and accuracy, given as:

MAE =
1

n

n

i=1
yi −Oyi ,

(1)Recall (RC) =
TP

TP+ FN

(2)Precision (PC) =
TP

TP+ FP

Table 1  Demographic and clinical characteristics of six groups of individuals

Fifty-seven with MCI and 150 with AD, completed APOE genotype testing, 43.86% and 52.00% of whom were APOE ε4 carriers (at least one ε4 allele), respectively. In 
addition, 28 with MCI and 87 with AD completed the CSF core biomarkers testing

ADO age of disease onset, COD course of disease

MCI (n=189) AD (n=330) VCI (n=57) FTD (n=47) DLB (n=21) HC (n=246)

Age (years) 64.77 ± 9.30 64.60 ± 9.75 67.18 ± 9.80 61.36 ± 8.69 72.01 ± 9.07 63.85 ± 8.20

Sex (male, %) 68, 35.98 121, 36.67 31, 54.39 23, 48.94 13, 61.90 104, 42.28

ADO 62.78 ± 9.42 61.80 ± 9.91 61.47 ± 11.06 61.74 ± 10.42 62.67 ± 10.49 -

COD 1.98 ± 1.91 2.90 ± 2.49 1.75 ± 1.97 2.79 ± 1.65 2.00 ± 2.31 -

MMSE 22.70 ± 4.48 11.63 ± 6.28 13.51 ± 6.98 12.20 ± 7.41 12.76 ± 6.44 28.62 ± 1.09

MoCA 16.22 ± 5.01 7.02 ± 4.87 7.74 ± 4.86 7.68 ± 6.74 5.94 ± 5.65 -

Aβ42 (pg/ml) 587.46 ± 439.59 408.29 ± 217.28 - - - -

Aβ40 (pg/ml) 8572.50 ± 6108.20 8286.91 ± 6000.22 - - - -

Aβ42/40 0.09 ± 0.07 0.06 ± 0.04 - - - -

t-tau (pg/ml) 316.58 ± 289.84 506.21 ± 316.95 - - - -

p-tau (pg/ml) 76.79 ± 51.92 104.39 ± 51.94 - - - -

APOE ε4 (%) 43.86 (25/57) 52.00 (78/150)
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where TP, TN, FP, and FN represent the true positive, 
true negative, false positive, and false negative, respec-
tively. Generally, Recall measures the model’s ability to 

(3)F1 score = 2 ∗
PC ∗ RC

PC+ RC

(4)Accuracy =
TP+ TN

TP+ TN + FP+ FN

correctly predict the positives out of actual positives (i.e., 
patients). A lower recall score would mean that some 
patients who are positive are termed as falsely negative. 
Precision measures the proportion of positively pre-
dicted labels that are actually correct. A low precision 
score would mean that some people who are negative are 
termed as falsely positive. F1 score represents the model 
score as a harmonic mean of precision and recall score, 
which is often used to provide high-level information 

Fig. 2  Distribution of the optimal feature set among all extracted EEG features in classification (indicated by red). Six types of EEG features were 
extracted, including a absolute PSD, b relative PSD, c Hjorth metrics (activity, mobility, and complexity), d time-frequency measures (STFT), e sample 
entropy, and f microstate measures (lifetime, occurrence rate, converting rate)
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about the model’s output quality. Model accuracy is 
defined as the ratio of true positives and true negatives to 
all positive and negative observations. That is, accuracy 
evaluates a model’s ability to correctly output a diagnosis 
out of the total predictions it made.

As shown in Table 2, the binary classification of HC vs. 
MCI achieved an accuracy of approximately 80% and an 
F1 score of 80.9%, while the binary classification of HC 
and AD achieved an accuracy of approximately 85% and 
an accuracy of 80%. For a three-level classification of HC 

vs. MCI vs. AD, both the accuracy and F1 score reached 
about 70%. Regardless of classification type, the SVM 
model showed similar classification performance com-
pared to the LDA model.

Comparison among MCI/AD and subtypes of dementia
Through a series of ANCOVA tests, we found signifi-
cant differences among MCI, AD, and other subtypes of 
dementia in a total of 178 EEG features. Figure 3 displays 
five EEG features that showed representatively signifi-
cant differences among all six groups (all Fs > 40, all ps 
< 0.0001), with results of the post hoc pair-wise com-
parisons (FDR corrected). Most of the selected features 
showed significant between-group differences, particu-
larly among HC, MCI, and AD groups. These features 
mainly included the absolute theta PSD, relative theta 
PSD at the occipital area, and Hjorth mobility at the 
parieto-occipital area. Moreover, significant differences 
between MCI/AD groups and other subtypes of demen-
tia, such as DLB, FTD, or VCI, were also observed in the 
selected EEG features.

Brain‑cognition‑CSF relationship in patients with MCI 
and AD
Results of the correlational analyses among brain meas-
ures (EEG features), cognitive decline (MMSE, MoCA), 

Table 2  Classification performance of binary classification and 
triple classification using EEG-based features

Classifiers Recall Precision F1 score Accuracy

HC vs. MCI
  SVM 79.6% 75.8% 77.7% 76.7%

  LDA 83.8% 78.1% 80.9% 79.8%

HC vs. AD
  SVM 86.4% 83.6% 85.0% 84.4%

  LDA 84.7% 87.0% 85.8% 85.8%

HC vs. MCI vs. AD
  SVM 70.2% 70.7% 69.8% 70.2%

  LDA 70.0% 70.3% 69.4% 70.0%

Fig. 3  The key EEG biomarkers at parieto-occipital regions effectively recognized distinct neural patterns among six groups. Selected EEG features 
included a absolute theta PSD at O2 (F = 42.46, p < 0.001), b relative theta PSD at O2 (F = 50.11, p < 0.001), c Hjorth mobility at O1 (F = 51.08, 
p < 0.001), d Hjorth mobility at O2 (F = 50.14, p < 0.001), and e Hjorth mobility at P4 (F = 47.09, p < 0.001). “*” indicates that there is a significant 
between-group difference (p<0.05, FDR corrected)
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and CSF biomarkers are summarized in Fig.  4. The key 
EEG features that were effective in distinguishing among 
HC, MCI, AD, DLB, VCI, and FTD were also significantly 
correlated with multiple cognition/CSF measures. In par-
ticular, the absolute theta power of channel O2 was nega-
tively correlated with Aβ42 (r = −0.358, p < 0.001) and 
positively correlated with p-tau (r = 0.442, p < 0.001), 
indicating that stronger low-frequency oscillation at the 
occipital cortex was linked to lower Aβ42 and higher 
p-tau amount in patients with MCI and AD. Besides, the 
relative theta power of channel O1 was positively cor-
related with Aβ42 (r = 0.373, p < 0.001) and negatively 
correlated with p-tau (r = −0.447, p < 0.001). That is, a 
stronger low-frequency component at the left occipital 
cortex was associated with a higher amount of Aβ42 and 
a lower amount of p-tau in the patients. In terms of cog-
nitive assessment, we found Hjorth mobility of channels 
O1, O2, and P4 were positively associated with MMSE 
and MoCA scores, with estimated correlations ranging 

from 0.416 to 0.464 (all p values < 0.001) (Fig.  5). This 
finding suggested that stronger instantaneous fluctua-
tion of EEG signals at the parietal and occipital areas was 
specifically linked to better cognitive function in patients 
with cognitive impairment.

Assessing AD‑related behaviors using multimodal features
The assessment performance of each target measure, 
including the MMSE score, MoCA score, ADO, and 
COD, are shown in Fig.  6. For the assessment of the 
patient’s MMSE score (Fig.  6a–c), EEG-only features 
achieved moderate performance (MAE = 2.67, R2 = 
0.82), while CSF-APOE features achieved slightly better 
performance (MAE = 2.09, R2 = 0.87). The best perfor-
mance was obtained using hybrid features as predictors 
of the regression model (MAE = 1.69, R2 = 0.93). Similar 
results were obtained in the assessment of the patient’s 
MoCA score (Fig.  6d–f). EEG-only features achieved 
moderate performance (MAE = 2.32, R2 = 0.85), whereas 

Fig. 4  The correlational analyses among brain measures (EEG features), cognitive decline (MMSE, MoCA), and CSF biomarkers. Numbers within the 
Ellipses represent the correlation coefficients of all x–y pairings
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Fig. 5  Brain-cognition-CSF relationship in patients with MCI and AD. a Absolute theta PSD at O2 vs. Aβ42, b relative theta PSD at O2 vs. Aβ42, c 
Absolute theta PSD at O2 vs p-tau, d relative theta PSD at O2 vs. p-tau, e Hjorth mobility at O1 vs. MMSE, f Hjorth mobility at P4 vs. MMSE, g Hjorth 
mobility at O1 vs. MoCA, and h Hjorth mobility at P4 vs. MoCA
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CSF-APOE biomarkers achieved better performance 
(MAE = 1.44, R2 = 0.94). The hybrid features (MAE = 
0.88, R2 = 0.98) were most effective in the assessment of 
MoCA scores.

In the assessment of ADO (Fig. 6g–i), EEG-only fea-
tures achieved moderate performance (MAE = 2.95 
years, R2 = 0.87), which was markedly higher com-
pared to the performance obtained from CSF-APOE 

features (MAE = 4.36 years, R2 = 0.65). The best pre-
diction of ADO was obtained from the hybrid features 
(MAE = 1.53 years, R2 = 0.95). For COD (Fig.  6j–l), 
EEG-only features achieved the best performance 
(MAE = 0.87 years, no correlation coefficient due to 
the discrete and small range of COD) compared to a 
moderate performance using hybrid features (MAE = 
0.89 years) or CSF-APOE features (MAE = 1.12 years).

Fig. 6  Results of the prediction analyses using different combinations of features. The predictions of MMSE (a–c), MoCA (d–f), ADO (g–i), and COD 
(j–l) were obtained using EEG feature only (first column), CSF/APOE biomarkers (second column), hybrid features (EEG, CSF/APOE, sex, and age) as 
the predictors of the regression model, respectively. R2 is the determination coefficient, and MAE is the mean absolute error
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Discussion
Growing evidence has demonstrated that EEG measure-
ments reflect the effects of AD neuropathology on the 
brain neural signal transmission underpinning cogni-
tive processes [3, 34–36], yet it remains largely unknown 
about the accuracy and reliability of different types of 
EEG biomarkers in facilitating the early detection and 
prediction of AD progression. To our knowledge, this is 
the first study to comprehensively evaluate the impacts of 
promising EEG biomarkers on effectively differentiating 
patients with MCI, AD, and other subtypes of dementias 
from HC, and to clarify the associations among EEG-
based neural signatures, individual cognitive function, 
and CSF biomarkers. Remarkably, we provided strong 
evidence supporting that the inclusion of multi-dimen-
sional information (i.e., EEG biomarkers, CSF/APOE ε4 
measures, and demographic characteristics) is highly 
effective in assessing patients’ cognitive function and 
clinical status through a machine learning approach. 
Together, our findings suggest that EEG biomarkers are 
of great importance for the early detection of AD in clini-
cal practice.

Identifying effective EEG biomarkers associated with 
AD could help us elucidate the neural mechanism under-
lying this neurodegenerative disorder and facilitate its 
early diagnosis. As reported in previous studies, patients 
with MCI and AD generally showed decreased alpha/
beta power and increased theta/delta power in a broad 
range of brain regions such as frontal, temporal, parietal, 
and occipital areas [23, 37–39]. Other abnormal brain 
alterations, such as functional connectivity and entropy, 
were also reported [17, 37, 40–42]. However, the multi-
group classification of HC, MCI, and AD based on these 
EEG biomarkers has not yet achieved satisfactory accu-
racy, possibly due to the difficulty in selecting meaning-
ful EEG metrics and the heterogeneity of patients when 
the sample size is limited. In this study, we addressed this 
challenge by recruiting a relatively large sample of healthy 
controls (246) and patients (189 MCI and 330 AD) in a 
clinical framework and achieved a decent three-level 
classification accuracy (over 70%). In particular, the key 
EEG biomarkers that have the most prominent effect on 
differentiating MCI and AD from the HC included power 
spectral density measures and entropy, which aligns well 
with previous studies [37, 43]. Our findings thus confirm 
that the power spectral density metrics and entropy are 
significantly altered in AD patients. Importantly, given 
the decent sample size and the rigorous EEG acquisition 
condition in the present study, our findings could provide 
a solid benchmark for developing useful EEG-based tools 
for the early diagnosis and screening of AD.

We explored whether EEG-based biomarkers could 
differentiate MCI and AD from other subtypes of 

dementia, a critical clinical question that has never 
been systematically studied before. We found that mul-
tiple EEG biomarkers revealed highly distinct patterns 
over MCI/AD-related groups and other dementias. 
First, the spectral measures of theta rhythm (absolute/
relative PSD) at the occipital region presented with a 
purely monotonic trend from HC to MCI and AD, a 
finding that has been consistently reported in previous 
studies [14, 37]. Post hoc pair-wise comparisons further 
confirmed that these measures were capable of differ-
entiating HC/MCI/AD groups from other dementias. 
We hypothesize that the alterations of the EEG power 
spectral density may be present not only in AD-related 
cognitive decline, but also in other dementias that have 
different neurodegenerative causes (e.g., FTD, VCI). 
And such alterations could be potentially differenti-
ated by EEG measurements. This premise is supported 
by recent studies suggesting that EEG technique may 
be able to distinguish MCI/AD patients from other 
dementias such as FTD, VCI, or DLB [18–20]. How-
ever, it is worth noting that we didn’t perform a sys-
tematic classification among all six groups in this study 
due to the relatively small sample sizes of FTD, VCI, 
and DLB groups. Future work is needed to evaluate the 
effectiveness of EEG techniques in diagnosing different 
types of dementias.

We found that Hjorth mobility of EEG signals at pari-
etal and occipital regions was highly effective in distin-
guishing among HC, MCI, AD, DLB, VCI, and FTD 
groups. This was evidenced by the consistently decreased 
mobility in the HC-MCI-AD trajectory and the signifi-
cant differences in most pair-wise comparisons among all 
six groups. Hjorth mobility is one of the Hjorth param-
eters that measure the complexity of a signal [44]. Among 
the Hjorth parameters, mobility is defined as a ratio per 
time unit and may also be treated as a mean frequency. 
Though less explored in AD studies, decreased Hjorth 
complexity was reported in the AD cohort compared to 
HC [45]. Previous studies also showed that the complex-
ity measure of EEG could be effective in the differential 
diagnosis of MCI and AD [24, 46], which strengthens the 
findings in our study. Besides, the decreased mobility in 
MCI and AD group reflects the decreased frequency of 
neuronal oscillation caused by cognitive decline. This 
finding is in line with a previous study that reported a 
shift in the power spectrum toward the lower frequen-
cies (delta and theta band) [37]. Given the high discrimi-
nation power of these biomarkers that have never been 
reported in the literature, our study provides first-hand 
evidence for developing EEG-based quantitative, statisti-
cally significant criteria that could be applied to the dif-
ferential diagnosis of dementia in routine assessments in 
the future.
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Understanding the relationship between EEG bio-
markers and currently used biomarkers (e.g., CSF) could 
improve our knowledge of the pathological basis of AD. 
With a large sample size, we found that key EEG bio-
markers, including power spectrum at the occipital 
region and signal complexity at the parieto-occipital area, 
were significantly associated with both patient’s cogni-
tive decline and levels of p-tau and Aβ42. These findings 
consolidate results from previous studies that reported 
significant correlations between EEG-derived biomark-
ers and CSF measures (e.g., Aβ42, tau, p-tau) in limited 
samples of AD patients [47, 48]. Together with the above 
classification result, in addition to being able to detect 
AD and other dementias, EEG biomarkers may be used 
as potential measures for monitoring the progression 
of AD. In particular, CSF and neuroimaging biomarkers 
have been a core basis in recently proposed recommen-
dations and research criteria for the diagnosis of AD at 
the preclinical, prodromal, and overt dementia stages 
in the clinical practice [4, 49]. Therefore, EEG-derived 
biomarkers could be a valuable addition to the clinically 
adopted neuroimaging biomarkers.

To further evaluate the added value of including EEG 
in clinical practice, we implemented a machine learn-
ing approach to assess patients’ cognitive decline, ADO, 
and COD using standalone EEG biomarkers and a com-
bination of EEG and other recommended biomark-
ers. CSF/APOEε4 measures were more effective than 
EEG biomarkers in assessing patients’ cognitive func-
tion (i.e., MMSE and MoCA). This is expected given 
that ATN measures have been widely accepted as rec-
ommended biomarkers for clinical diagnosis of AD [4, 
50]. Yet, EEG biomarkers were found to be more effec-
tive than the CSF/APOE measures in assessing disease 
ADO and COD, suggesting the advantage of using EEG 
to evaluate the temporal profile of AD. As expected, the 
combination of the measures of EEG, CSF, APOE ε4, 
age, and sex achieved the best performance in all assess-
ments. It has been recommended that the combination 
of amyloid-based biomarkers with other measures such 
as abnormal neurodegeneration biomarkers could pro-
vide higher accuracy and reliability in the prediction of 
future cognitive decline and conversion rate to AD than 
amyloid measure alon e[51]. Our finding thus supports 
the premise that the fusion of multi-dimensional infor-
mation could potentially improve the power of primary 
outcomes in clinical trials.

Several limitations of this study should be acknowl-
edged. First, we have a limited sample size for other 
subtypes of dementia, such as FTD, VCI, and DLB. 
Though the focus of this study is to perform a three-
way classification of HC/MCI/AD, future work 
should include various types of dementia to assess the 

sensitivity and specificity of EEG-based early detec-
tion of AD. In addition, due to the limited availability of 
CSF/APOE measures, only a small number of MCI and 
AD patients are available for the prediction analysis 
in the present study. The effectiveness of adding EEG 
biomarkers into a model for monitoring and predic-
tion of AD progression should be evaluated with larger 
samples in the future. Finally, this study only included 
measurements for a single time point. Longitudinal 
studies with large cohorts would be conducted in the 
future to assess whether EEG biomarkers can be used 
to trace the progress trajectory of AD or evaluate the 
efficacy of pharmacological/therapeutic interventions 
for AD patients.

Conclusions
Increasing evidence suggests that EEG biomarkers are 
diagnostically meaningful and associated with the clini-
cal progression of AD. In this study, we identified distinct 
neural biomarkers that were specifically linked to the CSF 
measures and cognitive function of AD patients. These 
neural biomarkers mainly included the power spectrum 
alterations of low-frequency oscillations at the occipi-
tal area and the altered signal complexity at the parietal 
and occipital regions. Finally, through a machine learn-
ing approach, we found that the combination of EEG 
biomarkers, CSF/APOE ε4 measures, and demographic 
information of patients was most effective in assessing 
individual cognitive function and disease progression.
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