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Abstract 

Background: Cerebrospinal fluid (CSF) Aβ1–42 levels and the Aβ1–42/Aβ1–40 ratio are markers of amyloid pathol‑
ogy, but previous studies suggest that their levels might be influenced by additional pathophysiological processes.

Aims: To compare Aβ1–42 and the Aβ1–42/Aβ1–40 ratio in CSF in different neurodegenerative disorders and study 
their association with other biomarkers (tTau, pTau181, and NfL) and with cognitive and functional progression.

Methods: We included all participants from the Sant Pau Initiative on Neurodegeneration (SPIN) with CSF Aβ1–42 
and Aβ1–42/Aβ1–40. Participants had diagnoses of Alzheimer’s disease (AD), dementia with Lewy bodies, fronto‑
temporal lobar degeneration‑related syndromes, non‑neurodegenerative conditions, or were cognitively normal. We 
classified participants as “positive” or “negative” according to each marker. We compared CSF levels of tTau, pTau181, 
and NfL between concordant and discordant groups through ANCOVA and assessed differences in cognitive (MMSE, 
FCSRT) and functional (GDS, CDR‑SOB) progression using Cox regression and linear‑mixed models.

Results: In the 1791 participants, the agreement between Aβ1–42 and Aβ1–42/Aβ1–40 was 78.3%. The Aβ1–42/
Aβ1–40 ratio showed a stronger correlation with tTau and pTau181 than Aβ1–42 and an agreement with tTau and 
pTau181 of 73.1% and 77.1%, respectively. Participants with a low Aβ1–42/Aβ1–40 ratio showed higher tTau and 
pTau181 and worse cognitive and functional prognosis, regardless of whether they were positive or negative for 
Aβ1–42. The results were consistent across stages, diagnostic categories, and use of different cutoffs.

Conclusion: Although Aβ1–42 and Aβ1–42/Aβ1–40 are considered markers of the same pathophysiological path‑
way, our findings provide evidence favoring the use of the Aβ1–42/Aβ1–40 ratio in clinical laboratories in the context 
of AD.
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Introduction
Cerebrospinal fluid (CSF) biomarkers of Alzheimer’s 
disease (AD) have changed the management of patients 
with cognitive impairment [1]. In particular, CSF levels of 
β-amyloid 1–42 (Aβ1–42), total tau (tTau), and its phos-
phorylated form on threonine 181 (pTau181) have shown 
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very high accuracy for the diagnosis of AD [2–4]. They 
are consequently being implemented in clinical labora-
tories [5–9] both for diagnosis and research settings, as 
well as in clinical trials.

The role of Aβ1–42 in CSF as a marker of amyloid 
pathology is widely accepted [6, 9, 10]. However, a series 
of studies have shown that reduced levels of CSF Aβ1-
42 can also be found in a variety of conditions different 
from AD, such as inflammatory diseases, prionopathies, 
amyloid angiopathy, or frontotemporal dementia [10–
15]. The Aβ1–42/Aβ1–40 ratio has proven to be of great 
value in detecting amyloid pathology both in CSF [16, 17] 
and plasma [18, 19] and has shown a better correlation 
with amyloid burden in PET than Aβ1–42 alone [20–22]. 
However, Aβ1–40 levels are not systematically assessed 
in many clinical laboratories alleging that this marker 
alone has no diagnostic value. A large-scale head-to-head 
comparison between Aβ1–42 and the Aβ1–42/Aβ1–40 
ratio would address the question of whether these two 
markers are equally tracking the same pathophysiologi-
cal process. It would also inform laboratories on whether 
to implement the Aβ1–42/Aβ1–40 ratio into the clinical 
routine.

In the present work, we studied the CSF markers Aβ1–
42 and Aβ1–42/Aβ1–40 ratio in a large cohort of partici-
pants with a variety of neurodegenerative disorders. We 
compared the agreement between both measures in dif-
ferent contexts and studied their association with other 
CSF biomarkers (tTau, pTau181, and NfL) and with cog-
nitive and functional progression. This information is 
highly relevant in the implementation and interpretation 
of these markers in clinical routine.

Material and methods
Study participants and clinical classification
We included all participants in the Sant Pau Initiative 
on Neurodegeneration (SPIN) cohort [23] that under-
went lumbar puncture for CSF biomarkers between 
November 2013 and August 2021. The diagnostic groups 
included patients with mild cognitive impairment (MCI) 
or dementia and with either pathophysiological evidence 
of Alzheimer’s disease (AD), frontotemporal lobar degen-
eration (FTLD)-related syndromes [24, 25], or probable 
dementia with Lewy bodies (DLB). Diagnoses were estab-
lished following internationally accepted diagnostic crite-
ria [6, 7, 9, 26–28]. Clinical symptoms, neuroimaging and 
CSF biomarkers were considered for the diagnostic clas-
sification of patients. We also included participants with 
Down syndrome (DS) [29, 30] and cognitively normal 
controls (CN). All CN participants had normal cognitive 
scores in a formal neuropsychological evaluation [23, 31]. 
Patients with other diagnoses were grouped as “others” 
and included participants with prionopathy and other 

non-neurodegenerative conditions such as psychiatric 
etiology, vascular cognitive impairment, inflammatory, 
and those with uncertain etiology. Details about the SPIN 
cohort have been reported previously [23].

CSF collection and analysis
CSF was obtained by lumbar puncture, collected, and 
processed in polypropylene tubes following international 
recommendations [32, 33]. The same pre-analytical han-
dling was followed in all samples [23]. Concentrations of 
Aβ1–42, Aβ1–40, total tau (tTau), and 181-phosphoryl-
ated tau (pTau181) in CSF were measured using com-
mercially available kits in the Lumipulse fully automated 
platform (Fujirebio-Europe), as previously described [22, 
34], and following provider’s instructions in line with 
Global Biomarker Standardization [35, 36]. For each 
sample, Aβ1–42, Aβ1–40, tTau, and pTau181 were quan-
tified simultaneously in the same run immediately after 
the first freeze-thaw cycle of each sample using pristine 
aliquots containing 500 μL of CSF [22, 34]. The results 
of the Lumipulse G β-amyloid 1–42 have been standard-
ized according to certified reference material developed 
by the International Federation of Clinical Chemistry and 
Laboratory Medicine as recommended by their work-
ing group for CSF proteins. Our laboratory participates 
in the Alzheimer’s Association Quality Control Program 
led by the University of Gothenburg [37]. Three levels of 
internal quality controls provided by the manufacturer 
were assessed for each analyte to assess the reproducibil-
ity of the assays. We included at least one level of quality 
control per analyte in each run. Inter-assay coefficients of 
variation (CV%) were between 1.7% and 6.8% for all lev-
els and analytes.

Neurofilament light (NfL) levels in CSF were meas-
ured using a commercially available ELISA kit (NF-light, 
UMAN DIAGNOSTICS, Umea, Sweden) as previously 
described [24, 25]. The mean inter- and intra-assay coef-
ficients of variation were 3.4% and 11.4%, respectively.

Definition of amyloid profile
To ensure that the cutoffs for Aβ1–42 and Aβ1–42/Aβ1–
40 had comparable levels of sensitivity and specificity, we 
applied cutoffs corresponding to one-sided 95% quan-
tile (Q95%) values in a middle-aged cognitively healthy 
population (age range 23–60 years, 67% female). This age 
range was selected to minimize the presence of preclini-
cal AD in the reference population. We used these Q95% 
cutoffs for Aβ1–42 (637 pg/mL) and Aβ1–42/Aβ1–40 
(0.070) to classify all participants in four different pro-
files: two concordant profiles in which both Aβ1–42 and 
Aβ1–42/Aβ1–40 ratio were above (Aβ1–42[−]Ratio[−]) 
or below (Aβ1–42[+]Ratio[+]) their respective cutoffs, 
and two discordant profiles, in which only one of the two 
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amyloid parameters, Aβ1–42 or the Aβ1–42/Aβ1–40 
ratio, was abnormal (Aβ1–42[+]Ratio[−] and Aβ1–
42[−]Ratio[+], respectively). The objective of classifying 
participants in four amyloid profiles is to assess the par-
ticularities of those groups where Aβ1–42 and the Aβ1–
42/Aβ1–40 ratio are discordant (Aβ1–42[−]Ratio[+] and 
Aβ1–42[+]Ratio[−]) and compare them to those that are 
clearly amyloid negative (Aβ1–42[–]Ratio[−]) or clearly 
amyloid positive (Aβ1–42[+]Ratio[+]) according to both 
markers. More details about the cognitively healthy refer-
ence population and results after applying other cutoffs 
can be found in Additional file 1.

Measures of cognitive and functional impairment
Cognition was assessed by the Mini-Mental State Exami-
nation (MMSE) and the free and cued selective remind-
ing test (FCSRT). Global functional impairment was 
assessed by the Clinical Dementia Rating Scale Sum of 
Boxes (CDR-SOB) and the Global Deterioration Scale 
(GDS). Outcomes for cognitive and functional impair-
ment were defined as MMSE < 24 and GDS ≥ 4, respec-
tively [31].

APOE genotyping
DNA was extracted from whole blood using standard 
procedures and APOE was genotyped according to previ-
ously described methods [38].

Statistical analysis
Non-normally distributed variables were log-trans-
formed. Differences in the frequency of categorical vari-
ables were assessed by the χ2 test, and we used age- and 
sex-adjusted analysis of covariance (ANCOVA) to com-
pare CSF levels of tTau, pTau181, and NfL between 
concordant and discordant groups. We determined 
Spearman’s correlation coefficients between biomark-
ers in the whole sample and after stratification by diag-
nostic category, clinical stage, and amyloid profile. We 
assessed the association with cognitive and functional 
progression in patients with mild cognitive impairment 
through Kaplan-Meier survival curves and age- and 
sex-adjusted Cox regression analysis. We studied the 
association of amyloid profiles with a cognitive decline 
through linear-mixed models. The initial model included 
baseline MMSE score, baseline age, sex, years of educa-
tion, pTau181 levels, diagnosis, time, APOE4 status, and 
amyloid profile together with its interaction with time 
and with APOE4 status as fixed factors. We defined ran-
dom intercepts for diagnosis and at the participant level 
to account for repeated measures and modeled residual 
errors per diagnostic group. The alpha threshold was set 
at 0.05, and all analysis were performed using MEDCALC 
(MEDCALC software ver 15.2.2) and packages “survival” 

(v.3.1-12), “survminer” (v.0.4.6), “nlme” (v.3.1-147), 
“multcomp” (v.1.4-13), “ggplot2” (v.3.3.0), and “ggpubr” 
(v.0.3.0), as implemented in the R statistical software (v 
3.6.2). The alpha threshold was set at 0.05 for all analyses.

Ethical approval and consent to participate
All procedures in the study were approved by the Sant 
Pau Ethics Committee following the standards for medi-
cal research in humans recommended by the Declaration 
of Helsinki. All participants or their legally authorized 
representatives gave written informed consent.

Results
Demographics and core CSF biomarkers
We included a total of 1791 participants from the SPIN 
cohort. The demographic characteristics and biomarker 
results are summarized in Table 1. There were differences 
in age and male/female proportion between the groups. 
As expected, the APOEε4 allele was more frequent in 
AD patients (50%; p < 0.001), and no differences were 
observed among the other groups. MMSE scores were 
lower in all symptomatic groups compared to CN (p < 
0.001).

Aβ1–42 and the Aβ1–42/Aβ1–40 ratio in CSF show high 
but not perfect agreement
Figure 1 shows the distribution of participants based on 
their CSF Aβ1–42 and Aβ1–42/Aβ1–40 ratio measures. 
The correlation between these two parameters was rho = 
0.71, p < 0.001. Using Q95% cutoffs as described in the 
“Material and methods” section, Aβ1–42 and Aβ1–42/
Aβ1–40 ratio had an overall agreement of 78.3% in the 
whole sample, as both measures were normal (Aβ1–
42[−]Ratio[−]) in 41.6% and both were abnormal (Aβ1–
42[+]Ratio[+]) in 36.7% of participants. Within each 
diagnostic category, the agreement ranged from 69.9% 
(AD group) to 87.9% (CN group). More details about the 
agreement after applying other cutoffs values and with 
other biomarkers can be found in Additional file 1.

Aβ1–42/Aβ1–40 ratio is more strongly associated with tau 
markers than Aβ1–42
We next studied the association of Aβ1–42 and the 
Aβ1–42/Aβ1–40 ratio with the other CSF biomarkers by 
assessing Spearman correlations in the whole sample and 
within diagnostic groups. In the whole sample, Aβ1–42 
showed a significant correlation with tTau (rho = − 0.25, 
p < 0.001) and pTau181 (rho = − 0.32, p < 0.001). These 
correlations were stronger for the Aβ1–42/Aβ1–40 
ratio (rho = − 0.69 and rho = − 0.75, respectively, both 
p < 0.001). Both Aβ1–42 and the Aβ1–42/Aβ1–40 ratio 
showed a similar correlation with NfL (rho = − 0.26 
and rho = − 0.32, respectively, both p < 0.001). These 
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stronger associations of Aβ1–42/Aβ1–40 ratio with tTau 
and pTau181 were observed within all symptomatic diag-
nostic categories (Additional file 1).

Next, we compared CSF levels of tTau, pTau181 
and NfL between all four amyloid profiles. The objec-
tive of this analysis was to assess the particularities 
of those groups where the Aβ1–42 and the Aβ1–42/
Aβ1–40 ratio are discordant. As expected, compared 
to the Aβ1–42[−]Ratio[−] group and after adjusting 
by age and sex, the Aβ1–42[+]Ratio[+] profile was 
associated with higher levels of tTau (Tukey post hoc 
p < 0.001), pTau181 (Tukey post hoc p < 0.001), and 

NfL (Tukey post hoc p = 0.001). But we also found 
differences in tTau and pTau181 levels between the 
two discordant profiles. As seen in Fig. 2, Aβ1–42[−]
Ratio[+] participants showed higher levels of tTau 
(Tukey post hoc p < 0.001) and pTau181 (Tukey post 
hoc p < 0.001) compared to those with Aβ1–42[+]
Ratio[−]. These differences were also observed within 
all diagnostic categories and in all clinical stages 
(Additional file 1). These results indicate that reduced 
levels of the Aβ1–42/Aβ1–40 ratio are associated with 
high levels of CSF tau markers, regardless of the status 
of Aβ1–42 alone.

Table 1 Demographics, clinical information, and biomarkers across diagnostic categories

MMSE Mini-Mental State Examination, CSF cerebrospinal fluid, CN cognitively normal, AD Alzheimer’s disease, DLB dementia with Lewy bodies; FTLD frontotemporal 
lobar degeneration-related syndrome, MCI mild cognitive impairment
a Due to specific particularities of the clinical and cognitive assessment in the context of intellectual disability, participants with Down syndrome were excluded from 
the prognostic analysis

CN AD DLB FTLD Down Others

N 197 518 128 186 225 536

AGE, years Mean (SD) 53.5 (12.5) 73.1 (6.88) 75.7 (5.49) 70.8 (8.58) 45.1 (10) 70 (9.18)

Median [IQR] 55 [46–62] 74 [69–78] 76 [71–80] 72 [66–77] 48 [40–52] 71 [65–77]

SEX, females/males (% 
females)

132/65 (67%) 311/207 (60%) 64/64 (50%) 77/109 (41.4%) 103/122 (45.8%) 310/226 (57.8%)

MMSE score Mean (SD) 29.2 (0.889) 23.6 (4.52) 24 (4.09) 24 (5.08) NAa 25.4 (4.12)

Median [IQR] 29 [29–30] 25 [22–27] 24.5 [22–27] 25 [21–28] NAa 27 [24–28]

Education, years Mean (SD) 15.6 (3.99) 10.7 (4.72) 9.18 (5.05) 12 (5.13) 15.3 (3.07) 10.7 (4.93)

Median [IQR] 16 [12–20] 10 [8–13] 8 [7–12] 12 [8–16] NAa 9 [8–13]

APOEε4, APOEε4−/APOEε4+ 
(%APOEε4+)

46/151 (23.4%) 254/251 (50.3%) 33/93 (26.2%) 37/139 (21%) 44/177 (19.9%) 115/413 (21.8%)

Follow-up, years Mean (SD) 2.02 (1.99) 1.09 (1.49) 3.33 (1.93) 1.71 (1.47) 1.76 (2.09) 0.59 (1.23)

Median [IQR] 1.71 [0–2.82] 0 [0–2.06] 3.46 [2.07–4.52] 1.52 [0.242–2.66] NAa 0 [0–0.383]

Aβ1–42, pg/ml Mean (SD) 1148 (397) 562 (165) 817 (399) 938 (446) 715 (417) 1000 (500)

Median [IQR] 1118 [849–1371] 556 [432–673] 703 [542–1009] 850 [569–1229] 583 [430–892] 896 [609–1323]

Aβ1–40, pg/ml Mean (SD) 11,694 (3595) 12,790 (3781) 11,506 (4189) 10,806 (4357) 11,673 (4678) 11,399 (4390)

Median [IQR] 11,329 [9238–
13,777]

12,541 [10,125–
15,122]

10,885 [8882–
14,234]

10,140 [7710–
13,334]

11,035 [8346–
14,594]

10,638 [8112–
13,986]

Aβ1–42/Aβ1–40 Mean (SD) 0.0991 (0.0181) 0.0453 (0.0108) 0.0727 (0.0263) 0.0877 (0.0221) 0.0615 (0.0226) 0.0862 (0.0225)

Median [IQR] 0.104 [0.0986–
0.109]

0.0445 [0.0376–
0.0514]

0.0662 [0.0503–
0.0996]

0.0964 [0.0731–
0.103]

0.0562 [0.0422–
0.078]

0.0943 [0.0665–
0.103]

tTau, pg/ml Mean (SD) 255 (152) 748 (358) 456 (334) 387 (260) 644 (520) 334 (231)

Median [IQR] 230 [174–291] 656 [488–915] 361 [253–525] 322 [222–456] 489 [262–870] 292 [213–378]

pTau181, pg/ml Mean (SD) 37.3 (27.3) 122 (60.3) 70.5 (55.5) 49.9 (39.2) 100 (96.8) 45 (27.4)

Median [IQR] 31.6 [24.9–42] 105 [78.7–145] 51 [35.7–83] 39.7 [29.2–54.1] 63.6 [29.8–151] 41 [29.3–52.7]

NfL, pg/ml Mean (SD) 475 (256) 1330 (1824) 1108 (570) 2079 (1836) 815 (773) 1488 (1340)

Median [IQR] 458 [320–533] 981 [791–1254] 918 [719–1297] 1412 [884–2767] 614 [357–1014] 1089 [595–1878]

Clinical stage, CN/MCI/demen-
tia (% MCI)

177/0/0 0/296/208 2/60/64 5/90/80 NAa 27/348/125

Amyloid profile (Aβ1–42[−]
Ratio[−]/Aβ1–42[−]Ratio[+]/
Aβ1–42[+]Ratio[−]/Aβ1–42[+]
Ratio[+])

165/13/11/8 4/154/2/358 50/29/7/42 120/8/23/35 61/37/13/114 345/45/47/100
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Fig. 1 Distribution of participants according to CSF levels of Aβ1–42 and amyloid ratio within diagnostic categories. CN, cognitively normal; AD, 
Alzheimer’s disease; DLB, dementia with Lewy bodies; FTLD, frontotemporal lobar degeneration‑related syndrome. Dashed lines indicate 95% 
quantile values (Q95%) for Aβ1–42 and Aβ1–42/Aβ1–40 in a middle‑aged cognitively normal population as described in the “Material and methods” 
section
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Aβ1–42/Aβ1–40 ratio is more strongly associated 
with cognitive and functional progression than Aβ1–42
We studied the association of amyloid profiles with cog-
nitive and functional progression in patients with MCI 
(n = 794) through Kaplan-Meier survival curves and 
age- and sex-adjusted Cox regression analysis. Sup-
plementary Table  3 describes the characteristics of this 
subgroup. Due to specific particularities of the clinical 
and cognitive assessment in the context of intellectual 
disability, participants with Down syndrome were not 
included in this analysis. As displayed in Fig. 3, we found 
that patients with MCI with a low Aβ1–42/Aβ1–40 ratio 
had worse cognitive outcomes reflected by an earlier 
decline in MMSE scores. Compared to the Aβ1–42[−]
Ratio[−] group, the adjusted risk of presenting a MMSE 
score lower than 24 during follow-up was 1.77 (1.25–
2.49) times higher in the Aβ1–42[−]Ratio[+] group, 1.78 
(1.33–2.39) times higher in the Aβ1–42[+]Ratio[+], but 
not different in the Aβ1–42[+]Ratio[−] group (p = 0.28). 
Similarly, the adjusted risk of progression to demen-
tia was 1.55 (0.96–2.50) times higher in the Aβ1–42[−]
Ratio[+] group and 2.07 (1.43–2.99) times higher in 
the Aβ1–42[+]Ratio[+] group compared to that of the 
Aβ1–42[−]Ratio[−]. The adjusted risk of progression to 
dementia in the Aβ1–42[+]Ratio[−] group was not sig-
nificantly different from the Aβ1–42[−]Ratio[−] group 
(p = 0.26).

We also fitted linear-mixed models to assess the 
changes in longitudinal cognitive and functional 

measures by amyloid profiles. As shown in Fig.  4, after 
adjusting by baseline MMSE score, baseline age, sex, 
years of education, pTau181 levels, APOEε4 status and 
diagnosis, participants with low Aβ1–42/Aβ1–40 ratio 
presented larger decreases in MMSE scores. The model 
estimated an annual decrease of − 1.32 (− 1.55 to − 1.09) 
points when Aβ1–42 was low and of − 0.86 (− 1.18 to 
− 0.55) points when Aβ1–42 was in the normal range. 
However, the annual change in MMSE scores in the two 
groups with normal Aβ1–42/Aβ1–40 ratio was not sig-
nificantly different from zero. As displayed in Fig. 4, we 
also found that both groups with low Aβ1–42/Aβ1–40 
had larger annual decreases in the FCSRT total score, 
estimated in − 1.21 in Aβ1–42[−]Ratio[+] and − 1.5 in 
Aβ1–42[+]Ratio[+], compared to 0.05 in Aβ1–42[−]
Ratio[−] and 0.1 in Aβ1–42[+]Ratio[−]. Positivity in 
the amyloid ratio was also associated to larger annual 
increases in the cognitive-functional scale CDR-SOB, of 
0.46 (0.22–0.71) in Aβ1–42[−]Ratio[+] and 0.65 (0.46-
0.85) in Aβ1–42[+]Ratio[+], compared to 0.27 (0.16–
0.39) in Aβ1–42[−]Ratio[−] and no significant changes 
in Aβ1–42[+]Ratio[−].

Discussion
The results of our study indicate that, compared to 
Aβ1–42 alone, the Aβ1–42/Aβ1–40 CSF ratio is more 
strongly associated with tau markers and with cognitive 
and functional progression. Regardless of the Aβ1–42 
status, participants with low CSF Aβ1–42/Aβ1–40 ratio 
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Fig. 3 Cognitive progression in patients with mild cognitive impairment according to their amyloid profile. A Kaplan‑Meier curve and B age‑ and 
sex‑adjusted Cox regression display the risk of cognitive progression of all four amyloid profiles (outcome defined as MMSE < 24)

Fig. 4 Estimation of the annual change in cognitive and functional scores across amyloid profiles. Estimations of the annual change in MMSE (A), 
CDR‑SOB (B), and FCSRT total score (C) were calculated through linear‑mixed models adjusted by baseline MMSE score, baseline age, sex, years of 
education, pTau181 levels, APOEε4 status, and diagnosis. MMSE, Mini‑Mental State Examination; CDR‑SOB, Clinical Dementia Rating Sum of Boxes; 
FCSRT, free and cued selective reminding test
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showed a biochemical and clinical profile character-
ized by increased levels of CSF tTau and pTau181, worse 
functional prognosis and larger cognitive decline. Inter-
estingly, when the Aβ1–42/Aβ1–40 ratio was normal, 
participants with low Aβ1–42 levels had a biochemical 
and clinical profile similar to that of participants with 
normal Aβ1–42. Our findings provide evidence suggest-
ing that the use of the Aβ1–42/Aβ1–40 ratio is less con-
founded by other comorbidities or processes, and thus, 
this work favors the use of the Aβ1–42/Aβ1–40 ratio as 
a marker of AD in clinical laboratories and in clinical 
trials.

The use of CSF Aβ1–42 alone as a marker of amyloid 
plaques entails some limitations. Numerous studies 
have reported that low concentrations of Aβ1–42 can be 
found in some non-AD conditions such as prionopathies, 
bacterial meningitis, inflammatory diseases, amyloid 
angiopathy, or frontotemporal dementia [10–14, 39], thus 
limiting its diagnostic accuracy. Different hypotheses 
have been suggested to explain these findings. Among 
other possibilities, low levels of Aβ1–42 in these contexts 
could be in relation with a decrease in Aβ generation due 
to neuronal or synaptic loss [10, 15] or the consequence 
of abnormal clearance through the blood-brain barrier 
[10]. As Aβ1–40 would be similarly affected by these pro-
cesses, the use of the Aβ1-42/Aβ1-40 ratio could com-
pensate the reduction in these situations to some extent, 
thus being less influenced by these processes and reflect-
ing more accurately the presence of amyloid plaques. 
The stronger association of the Aβ1–42/Aβ1–40 ratio 
to other AD markers (tau markers) is in line with these 
hypotheses. Another limitation for the use of Aβ1–42 
alone is that it is particularly sensitive to preanalytical 
and analytical variations, such as changes in the mate-
rial of collection or storage tubes, number of freeze-thaw 
cycles, and volume of aliquoted CSF for storage [33, 40, 
41]. In our study, we took advantage of a large cohort of 
subjects with various neurodegenerative and non-neuro-
degenerative conditions where CSF was collected using 
the same preanalytical protocol and analyzed under the 
same standard operating procedures. We found that the 
overall agreement between Aβ1–42 and the Aβ1–42/
Aβ1–40 ratio did not exceed 85% in the whole sample, 
regardless of the cutoffs definition, suggesting that both 
markers might be tracking similar but not identical pro-
cesses or that they are influenced differently by other 
factors.

We found that CSF concentrations of tTau and 
pTau181 were higher in the presence of low Aβ1–42/
Aβ1–40 ratio, regardless of the Aβ1–42 status. This 
association was present in the whole sample but also 
within each diagnostic group. Thus, in the groups of CN, 
AD, and Down syndrome, less likely affected by non-AD 

pathology, low Aβ1–42/Aβ1–40 ratio values, but not 
low Aβ1–42 levels alone, were associated with high con-
centrations of markers of neurofibrillary pathology and 
neurodegeneration (pTau181, tTau, and NfL). In other 
contexts (DLB, FTLD, and other diagnoses), low levels 
of Aβ1–42 were only associated with markers of neu-
rofibrillary pathology in the presence of reduced Aβ1–
42/Aβ1–40 ratio. Our findings indicate that the ratio is 
more strongly associated to the AD pathophysiological 
process (both as main and comorbid pathology) and also 
support the idea that the isolated reduction of Aβ1–42 
levels in CSF might reflect additional processes (such as 
neuronal or synaptic loss) or that the chrono pathology 
of their changes along the disease is not identical. These 
results are in line with our previous study showing that 
the Aβ1–42/Aβ1–40 ratio presents a stronger correla-
tion with cerebral amyloid burden than Aβ1–42 alone 
[22].

Baseline levels of the Aβ1–42/Aβ1–40 ratio were also 
influential in the cognitive and functional outcomes of 
participants in our study. We found that participants with 
low Aβ1–42/Aβ1–40 ratio had faster cognitive and func-
tional worsening, especially in the group with low Aβ1–
42 but also when Aβ1–42 was in the normal range. The 
group with a low Aβ1–42/Aβ1–40 ratio also presented a 
more rapid decline in episodic memory measured by the 
free and cued selective reminding test. These findings 
support the use of the Aβ1–42/Aβ1–40 ratio over Aβ1–
42 alone in the prognostic assessment of patients with 
cognitive decline.

The major strengths of our study are the large sample 
size and the inclusion of a variety of diagnoses. Another 
relevant strength is the fact that the same standard oper-
ating procedures were used in the processing and analy-
sis of all samples. Aβ1–42 and Aβ1–40 were measured 
simultaneously, and we followed the same preanalyti-
cal and analytical protocol in all samples, thus minimiz-
ing the impact of confounders, which are critical in the 
case of amyloid-β peptides. Lastly, we replicated our 
results by using different levels of cutoffs, defined as 
percentiles from a cognitively normal population. This 
approach allowed us to match pairs of cutoffs for Aβ1–42 
and Aβ1–42/Aβ1–40 ratio that had comparable levels of 
sensitivity and specificity. But we also acknowledge some 
limitations.

Limitations of the study
Despite the large sample size, extensive cognitive 
repeated measures were not available for all participants, 
thus limiting the statistical power in the longitudinal 
analysis. On the other hand, amyloid PET imaging was 
only available in a reduced group of participants previ-
ously reported [22].
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Conclusions of the study
The present work highlights the importance of routinely 
measuring Aβ1–40 in the CSF in combination with Aβ1–
42 to assess the Aβ1–42/Aβ1–40 ratio, as this measure 
reflects more accurately the presence of amyloid plaques 
and is a useful and robust tool for the diagnostic and 
prognostic evaluation of patients with cognitive decline. 
The fact that the Aβ1–42/Aβ1–40 ratio shows a stronger 
association than Aβ1–42 with markers of neurofibril-
lary pathology and with cognitive and functional decline 
strengths the utility  of this ratio in the clinical context of 
symptomatic and preclinical AD but also to detect con-
comitant pathology in other neurodegenerative diseases.
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