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Abstract

Background: Comprehensive testing of cognitive functioning is standard practice in studies of Alzheimer disease
(AD). Short-form tests like the Montreal Cognitive Assessment (MoCA) use a “sampling” of measures, administering
key items in a shortened format to efficiently assess cognition while reducing time requirements, participant
burden, and administrative costs. We compared the MoCA to a commonly used long-form cognitive battery in
predicting AD symptom onset and sensitivity to AD neuroimaging biomarkers.

Methods: Survival, area under the receiver operating characteristic (ROC) curve (AUC), and multiple regression
analyses compared the MoCA and long-form measures in predicting time to symptom onset in cognitively normal
older adults (n = 6230) from the National Alzheimer’s Coordinating Center (NACC) cohort who had, on average, 2.3
± 1.2 annual assessments. Multiple regression models in a separate sample (n = 416) from the Charles F. and
Joanne Knight Alzheimer Disease Research Center (Knight ADRC) compared the sensitivity of the MoCA and long-
form measures to neuroimaging biomarkers including amyloid PET, tau PET, and cortical thickness.

Results: Hazard ratios suggested that both the MoCA and the long-form measures are similarly and modestly
efficacious in predicting symptomatic conversion, although model comparison analyses indicated that the long-
form measures slightly outperformed the MoCA (HRs > 1.57). AUC analyses indicated no difference between the
measures in predicting conversion (DeLong’s test, Z = 1.48, p = 0.13). Sensitivity to AD neuroimaging biomarkers
was similar for the two measures though there were only modest associations with tau PET (rs = − 0.13, ps < 0.02)
and cortical thickness in cognitively normal participants (rs = 0.15–0.16, ps < 0.007).
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Conclusions: Both test formats showed weak associations with symptom onset, AUC analyses indicated low
diagnostic accuracy, and biomarker correlations were modest in cognitively normal participants. Alternative
assessment approaches are needed to improve how clinicians and researchers monitor cognitive changes and
disease progression prior to symptom onset.
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Introduction
Detecting changes in cognition in the earliest stages of
Alzheimer disease (AD) in longitudinal studies requires
that assessment measures meet several criteria. Assess-
ments must be psychometrically valid and reliable and
test relevant domains of cognition such as episodic
memory, executive function, attentional control, pro-
cessing speed, language, and orientation. For both over-
all scores and domain-specific scores, these measures
should have good retest reliability and inter-rater reli-
ability. Of particular importance, especially for studies
that enroll large asymptomatic cohorts, is that the tests
included are sensitive enough to detect subtle changes in
cognition that characterize the preclinical asymptomatic
stages of AD [1, 2]. Attempting to maximize sensitivity,
AD cohort studies and clinical trials typically involve ex-
tensive cognitive testing sessions including dozens of in-
dividual measures. The comprehensiveness of a
cognitive evaluation is often valued as a method to pro-
vide more nuanced and sensitive insights into cognitive
changes commonly associated with AD pathology [3, 4].
However, this comprehensiveness comes at a cost as
lengthier evaluations can be problematic for multiple
reasons. First, longer assessments increase participant
burden and require significant personnel time for test
administration, scoring, quality control, and data entry1.
Second, day-to-day variability in stress and mood can
significantly impact participants’ attention and fatigue,
factors which have been shown to particularly influence
older adults’ cognitive performance [5]. Finally, the tests
which tap into the domains of cognition that decline in
the earliest stages of AD, including episodic memory, at-
tention, and working memory, are perceived as most
taxing and effortful [6, 7] and often have suboptimal reli-
ability [8].
Short-form cognitive assessment tools, sometimes re-

ferred to as cognitive screening measures, have been
used for decades in clinical studies to provide a snapshot
of overall cognitive and functional abilities and require a
fraction of the time it takes to complete their long-form
counterparts. The brevity and simplicity of these assess-
ments make them popular tools among researchers and

clinicians when assessing cognitive decline. The most
common short-form measure in the AD literature is the
Mini-Mental State Examination (MMSE) [9]. The
MMSE requires approximately 10 min to administer and
has high sensitivity and specificity for detecting symp-
tomatic AD [10]. However, at milder stages of dementia,
this test has exhibited poor sensitivity [11]. Specifically,
due to ceiling effects, individuals with preclinical AD or
early symptomatic AD (e.g., mild cognitive impairment
[MCI] due to AD) are more likely to score within the
“normal” range [12–14]. Beyond these validity and reli-
ability issues, the MMSE is subject to copyright restric-
tions and carries fees for its use [15, 16], making it
costly for large-scale studies and restricts research to in-
vestigators with sufficient resources.
For these reasons, the MMSE was not included in the

National Alzheimer’s Coordinating Center (NACC) Uni-
form Data Set (UDS) in its third iteration (UDS 3) [17,
18] in lieu of the Montreal Cognitive Assessment
(MoCA) [19], a short-form cognitive assessment similar
to the MMSE with several advantages. The MoCA re-
quires approximately 10–15min to administer and tests
seven domains of cognition: memory, visuospatial func-
tion, naming, attention, language, orientation, and ab-
straction. The most unique feature of the MoCA is that,
apart from simple assessments of orientation and ab-
straction like those included in the MMSE, it uses items
and test concepts drawn from classic long-form neuro-
psychological test batteries. The MoCA includes con-
densed versions, or a “sampling,” of more
comprehensive measures including the trail making test,
letter fluency, confrontation naming, digit span, and ver-
bal list learning and recall. Like the MMSE, it is highly
sensitive to dementia, but unlike the MMSE, it is more
sensitive to early symptomatic AD [14, 20]; has shown
sensitivity to AD biomarkers [21]; and is available at no
cost for non-profit use, although its publisher has re-
cently begun requiring training and certification fees
(https://www.mocatest.org/training-certification/).
The goal of the current study was to determine how

the short-form MoCA measure compares to standard
long-form neuropsychological tests in terms of predict-
ing the onset of symptomatic dementia in the NACC co-
hort. The NACC cohort is a large, well-characterized
sample of older adults enrolled in ongoing studies of
aging and dementia at ~ 30 Alzheimer's Disease

1Additionally, in light of the COVID-19 pandemic, it is worth noting
that the length of long-form cognitive assessments may also make
them less adaptable to remote testing.
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Research Centers across the USA. Additional analyses
were done using participants enrolled in studies at the
Charles F. and Joanne Knight Alzheimer Disease Re-
search Center (Knight ADRC) to determine the sensitiv-
ity of the short-form and long-form measures to AD
neuroimaging biomarkers, including amyloid positron
emission tomography (PET), tau PET, and magnetic res-
onance imaging (MRI) structural measures. We hypothe-
sized that, in comparison with the MoCA, the long-form
cognitive measures from the UDS 3 would show super-
ior specificity and sensitivity in predicting conversion to
symptomatic AD and would be more sensitive to AD
neuroimaging biomarkers.

Study 1
Methods
Participants
The NACC UDS 3 is a standardized evaluation consisting
of clinical and cognitive measures administered to partici-
pants enrolled in ongoing studies of aging and dementia
at ~ 30 centers funded by the National Institute on Aging
(NIA) Alzheimers Disease Research Center (ADRC) pro-
gram. Written informed consent is obtained at the indi-
vidual ADRCs and approved by individual Institutional
Review Boards (IRBs). We included participant visits sub-
mitted to NACC by the ADRCs from March of 2015 to
August 2019. This time period reflects when the MoCA
and other UDS 3 measures were introduced into the
ADRCs and submitted to NACC. Because we were inter-
ested in determining the utility of the MoCA as compared
to the long-form UDS 3 cognitive battery in predicting
disease progression from cognitive normality to onset of
symptomatic disease, we included only participants who
were cognitively normal at their first visit when MoCA
was introduced into the ADRCs. Participants were re-
quired to have a Clinical Dementia Rating™ (CDR™) [22] of
0 at their first visit and have at least one follow-up visit.

Clinical and cognitive measures
Clinical status was determined with the CDR which uses
a 5-point scale to characterize six domains of cognitive
and functional performance that are applicable to AD
and other dementias [22]. The domains include memory,
orientation, judgment and problem solving, community
affairs, home and hobbies, and personal care. CDR
scores are determined through semi-structured inter-
views with the participant and a reliable informant such
as a family member or friend. A CDR score of 0 indi-
cates cognitive normality, 0.5 = very mild dementia, 1 =
mild dementia, 2 = moderate dementia, and 3 = severe
dementia.
The UDS 3 cognitive battery includes measures of epi-

sodic memory (Craft Story 21, Benson Complex Figure
Recall), language (the Multilingual Naming Test

(MINT)), visuospatial functioning (Benson Complex Fig-
ure Copy), immediate attention (Trails A, Number Span
Forward), working memory (Number Span Backwards),
and executive functioning (Trails B; see Weintraub et al.,
2018 for a detailed description and associated references
for individual measures). Each test was standardized
using the mean and standard deviation from the first
visit for individuals who remained CDR 0 (i.e., non-
converters) to form Z-scores. Z-scores from each test
were then averaged together to form domain scores (i.e.,
memory, visual, attention, language) which were then av-
eraged together to form a simple global composite score.
Because the MoCA total score is commonly used in the
diagnosis of cognitive impairment [23], our analyses fo-
cused on comparing the MoCA total score with the
UDS 3 global composite score.

Statistical analyses
Time to symptomatic conversion was operationalized as
the time, in years, from participants’ initial study time
point to the time point in which they were first deter-
mined to have a non-zero CDR score (or, in the case of
individuals who never converted to a non-zero CDR,
their final time point in the study). Individuals who died
during follow-up were not included in the analyses (i.e.,
148 non-converters and 31 converters). Two cut points,
one at − 1 SD and one at − 1.5 SDs, were used for both
the MoCA (scores of 23 and 21, respectively) and the
UDS 3 global composite score. Similar cut points have
been used in the literature to indicate the presence or
absence of cognitive impairment [24–28]. Log-rank tests
were used to compare the Kaplan-Meier survival curves
for high and low groups for each measure (i.e., the
MoCA and the UDS 3 global composite). Adjusted haz-
ard ratios (HRs) and their 95% confidence intervals were
estimated using a Cox proportional hazards model with
covariates including baseline age, self-reported gender,
years of education, and presence of one or more apoli-
poprotein ε4 (APOE4) alleles with the survival package
version 3.2 in the R statistical computing environment
[29].
To obtain measures of the two tests’ diagnostic dis-

crimination abilities [30], the scales were subjected to an
area under the curve (AUC) analysis of receiver operat-
ing characteristics (ROC) curves using the pROC pack-
age version 1.17 in R [30]. This analysis focused on
examining which score provided better diagnostic accur-
acy in predicting conversion status using baseline data
from individuals who were CDR 0 at their initial visit.
The ROC analysis results were interpreted following the
diagnostic accuracy guidelines from Swets (1996) such
that an AUC < 0.70 indicates low diagnostic accuracy,
an AUC in the range of 0.70–0.90 indicates moderate
diagnostic accuracy, and an AUC ≥ 0.90 indicates high
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diagnostic accuracy [30]. DeLong’s test for correlated
ROC curves was used to test whether the two areas
under the curve were significantly different from one
another.
Finally, multiple regression model comparison ana-

lyses were used to directly compare the efficacy of
the baseline, continuous MoCA, and UDS 3 global
composite scores in predicting the time to symptom-
atic conversion. Because the MoCA and UDS 3 global
composite were correlated with one another, r = 0.70,
p < 0.001, a single multiple regression model includ-
ing both variables would be subject to potential mul-
ticollinearity issues. Therefore, non-nested models
were used, and model fit was evaluated based on the
R2, Akaike information criterion (AIC), Bayesian in-
formation criterion (BIC), and deviance values. For all
models, males served as the reference group for the
gender variable, and APOE negative served as the ref-
erence groups for the APOE variable.

Results
Demographics
Six thousand two hundred thirty cognitively normal
older adults aged 72.9 ± 10.4 years from the NACC

cohort were followed for an average of 2.3 ± 1.2 annual
assessments (range = 1–5 assessments). As expected,
converters had more assessments than non-converters,
t(746.92) = 12.90, p < 0.001, d = 0.55. Participants that
enroll as cognitively normal that are observed for longer
periods are more likely to convert due to advancing age
(see Table 1 for additional demographic information).

Survival model results
Survival analyses were conducted using outcomes from
the short-form MoCA and the long-form UDS 3 global
composite to predict the time to symptomatic onset (de-
fined as a change from CDR 0 to CDR > 0). Percentages
of high- and low-scoring converters and non-converters
for each cut point are presented in Table 2. Outcomes
were contrasted on HR magnitude and their confidence
intervals. For reference, higher HRs are interpreted as
representing a better prediction of future conversion and
narrower confidence intervals suggest less variability in
prediction. Primary analyses contrasted individuals who
scored above vs. below the − 1 SD and − 1.5 SDs cut
points on the MoCA and UDS 3 global composite. HRs
for symptomatic conversion by the cut point criteria de-
scribed above, adjusted for demographic covariates, are

Table 1 Study 1 demographic data

Converter No, N = 56221 Yes, N = 6081 p-value2

Age 73 (7) 76 (8) < 0.001

Gender 0.002

Female 3709 (66%) 362 (60%)

Male 1913 (34%) 246 (40%)

Education (years) 16.24 (2.81) 16.08 (3.09) 0.24

APOE status 0.4

Neg. 2608 (70%) 351 (68%)

Pos. 1134 (30%) 167 (32%)

Race 0.21

White 4499 (80%) 480 (79%)

Black or African American 853 (15%) 107 (18%)

Asian 148 (2.6%) 10 (1.6%)

American Indian or Alaska Native 40 (0.7%) 7 (1.2%)

Native Hawaiian or other Pacific Islander 6 (0.1%) 0 (0%)

Others 32 (0.6%) 2 (0.3%)

Unknown 44 (0.8%) 2 (0.3%)

Number of visits 2.25 (1.2) 3.21 (0.94) < 0.001

MoCA 26.1 (2.9) 24.6 (3.3) < 0.001

UDS 3 global composite 0.05 (0.57) − 0.25 (0.59) < 0.001
1Mean (SD); n (%)
2Welch two-sample t-test; Pearson’s chi-squared test
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presented in Table 3. For all models, the adjusted cumu-
lative incidence of time to symptomatic conversion was
increased in the individuals who scored below the cut
point after controlling for demographic covariates as
compared to individuals who scored above the cut point,
HRs > 1.57, ps < 0.001. Comparison of HRs indicated
that the UDS 3 global composite was slightly better at
predicting symptomatic conversion than the MoCA with
the − 1 SD cut point. However, the opposite was true
(MoCA HR > UDS 3 global composite HR) with the −
1.5 SD cut point (see Table 3). Overall, these results ul-
timately suggest that both the MoCA and the UDS 3
global composite show relatively equivalent HRs and are
thus similarly, yet modestly, efficacious in predicting
symptomatic conversion. Kaplan-Meier curves for the
MoCA and UDS 3 global composite at the two different
cut points are presented in Fig. 1.

ROC results
ROC analyses in the NACC sample indicated an area
under the curve (AUC) estimate for the MoCA of
0.64 and an AUC estimate for the UDS 3 global com-
posite of 0.66. DeLong’s test for two correlated ROC
curves was non-significant, Z = 1.48, p = 0.13, indi-
cating that these measures demonstrate similarly low
diagnostic accuracy in predicting conversion to symp-
tomatic AD [31].

Model comparison results
The multiple regression models predicting the time to
symptomatic conversion indicated that both the con-
tinuous MoCA and UDS 3 global composite scores
significantly predicted time to symptomatic conver-
sion after covarying out effects of age, self-reported
gender, years of education, and APOE4 status. The
results of the model comparison analyses suggested
that the model including the UDS 3 global composite
score outperformed the model including the MoCA
score in predicting time to symptomatic conversion.
This was indicated by the larger R2 and smaller AIC,
BIC, and deviance values (see Table 4).

Study 2
Methods
Participants
Participants were community-residing volunteers en-
rolled in longitudinal studies of memory and aging at
the Knight ADRC at Washington University in St. Louis.
We were interested in determining the associations be-
tween the MoCA and long-form measures with AD neu-
roimaging biomarkers, so we selected participants based
on the availability of at least 1 amyloid PET scan, 1 tau
PET scan, and a volumetric MRI that were collected

Table 2 Study 1 cut point Ns

Converter No, N = 56221 Yes, N = 6081

MoCA − 1 SD cut point

High 4710 (84%) 416 (68%)

Low 912 (16%) 192 (32%)

Global composite − 1 SD cut point

High 5381 (96%) 543 (89%)

Low 241 (4.3%) 65 (11%)

MoCA − 1.5 SD cut point

High 5204 (93%) 505 (83%)

Low 418 (7.4%) 103 (17%)

Global composite − 1.5 SD cut point

High 5537 (98%) 591 (97%)

Low 85 (1.5%) 17 (2.8%)
1n (%)

Table 3 HRs for time to symptomatic conversion by task score adjusted for covariates

Predictor MoCA − 1 SD cut point MoCA − 1.5 SD cut point Composite − 1 SD cut point Composite − 1.5 SD cut point

HR 95% CI p HR 95% CI p HR 95% CI p HR 95% CI p

Age 1.02 1.01, 1.04 < 0.001 1.03 1.01, 1.04 < 0.001 1.03 1.02, 1.04 < 0.001 1.03 1.02, 1.04 < 0.001

Gender 0.76 0.64, 0.91 0.003 0.72 0.60, 0.86 < 0.001 0.74 0.62, 0.89 0.001 0.74 0.62, 0.88 < 0.001

Education 1.00 0.97, 1.03 > 0.9 1.00 0.97, 1.04 0.90 0.99 0.96, 1.02 0.40 0.97 0.94, 1.00 0.035

APOE 1.22 1.01, 1.47 0.04 1.20 0.99, 1.44 0.06 1.23 1.02, 1.49 0.03 1.22 1.01, 1.47 0.038

MoCA

High – – – – – –

Low 2.99 2.45, 3.65 < 0.001 3.87 3.00, 4.99 < 0.001

Global composite

High – – – – –

Low 4.06 2.95, 5.58 < 0.001 2.69 1.57, 4.61 < 0.001

HR hazard ratio, CI confidence interval
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within 1 year of each other. We also sought to determine
the sensitivity of the MoCA and long-form measures in
tracking disease progression from the asymptomatic to
symptomatic stages; thus, data were analyzed in two
groups: participants who were CDR 0 and participants
who were CDR > 0. All participants signed a standard in-
formed consent document, and all procedures were

approved by the Institutional Review Board at Washing-
ton University in St. Louis.

Clinical and cognitive measures
Measures included the CDR (as described in study 1),
MoCA, and UDS 3 (as described in study 1). The UDS 3

Fig. 1 Survival curves for the MoCA and UDS 3 global composite for the two different cut points (− 1 SD and − 1.5 SDs)

Table 4 Study 1 model comparisons
Predictor MoCA model Global composite model

Beta 95% CI p Beta 95% CI p

Age 0.00 − 0.01, 0.01 0.60 0.00 − 0.01, 0.01 0.80

Gender 0.13 − 0.02, 0.28 0.09 0.11 − 0.04, 0.26 0.14

Education − 0.03 − 0.06, 0.00 0.05 − 0.03 − 0.06, − 0.01 0.01

APOE 0.06 − 0.10, 0.22 0.40 0.06 − 0.09, 0.22 0.40

Standardized MoCA 0.11 0.04, 0.18 0.003

Global composite 0.30 0.17, 0.44 < 0.001

R2 0.028 0.05

AIC 1292 1280

BIC 1322 1310

Deviance 362 353

CI confidence interval
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global composite was calculated in the same way as de-
scribed in study 1.

Neuroimaging
Amyloid PET imaging was performed with either florbe-
tapir (18F-AV-45) or Pittsburgh Compound B (PiB) and
was acquired on a Biograph mMR (Siemens Medical So-
lutions, Malvern, PA). All florbetapir PET scans include
data 50- to 70-min post-injection, and all PiB PET scans
include data 30- to 60-min post-injection. All data were
converted to standardized uptake value ratios (SUVRs)
with the cerebellar cortex used as a reference region be-
fore then being converted to the Centiloid scale [32, 33].
PET data were processed with an in-house pipeline
using regions of interest derived from FreeSurfer
(https://github.com/ysu001/PUP) [34]. This approach
corrects for the spillover signal from adjacent regions of
interest and non-brain tissue on the basis of the scanner
point spread function and the relative distance between
regions. This partial volume correction approach ac-
counts not only for spillover from different areas in the
brain but also for spillover from the non-brain regions
into the brain. Amyloid deposition was quantified with
the average across the left and right lateral orbitofrontal,
medial orbitofrontal, rostral middle frontal, superior
frontal, superior temporal, middle temporal, and precu-
neus regions. Tau PET imaging used the tracer 18F-AV-
1451 (flortaucipir) and was acquired on a Biograph 40
PET/CT scanner (Siemens Medical Solutions). Data
from the 80- to 100-min post-injection window were
converted to SUVRs using a cerebellar cortex reference
and partial volume corrected. Deposition was summa-
rized with the average of the bilateral entorhinal cortex,
amygdala, inferior temporal lobe, and lateral occipital
cortex [35]. MRI data were acquired on a Siemens Bio-
graph mMR or Trio 3T scanner. T1-weighted images
were acquired with a magnetization-prepared rapid ac-
quisition gradient echo sequence acquired in the sagittal
orientation with a repetition time of 2300 ms, an echo
time of 2.95 ms, a flip angle of 9°, 176 slices, an in-plane
resolution of 240 × 256, and a slice thickness of 1.2 mm.
Images underwent volumetric segmentation with Free-
Surfer 5.3 (freesurfer.net) to identify the regions of inter-
est for further analysis [36, 37]. Cortical thickness values
were obtained for each hemisphere for a limited number
of regions of interest (ROIs) reflecting the brain atrophy
patterns in AD [38]. Cortical thickness was calculated as
the shortest distance between the cortical gray/white
boundary to the gray/CSF boundary [39].

Statistical analyses
The relationships between the AD neuroimaging bio-
markers (at baseline) and the MoCA/UDS3 global com-
posite in CDR 0 and CDR 0.5 individuals were examined

using multiple regression models in the R statistical
computing environment. As in study 1, due to the high
degree of correlation between the MoCA and UDS 3
global composite scores, non-nested model comparison
metrics (i.e., R2, AIC, BIC, and deviance) were used in
lieu of a single, nested multiple regression model to
avoid potential confounding multicollinearity issues.
Separate models were run predicting each biomarker
and separately for each subset of the data (i.e., CDR 0 s,
CDR 0.5 s) using demographic predictor variables as the
covariates and either the MoCA or the UDS 3 global
composite as the key independent variable. For all
models, males served as the reference group for the gen-
der variable, and APOE negative served as the reference
group for the APOE variable.

Results
Demographics
Participants included 416 mostly older adults aged 45 to
92 years old enrolled in ongoing studies at the Knight
ADRC (see Table 5 for the complete demographic infor-
mation) and who had completed at least one relevant bio-
marker scan and a clinical assessment. Most participants
(n = 365) were cognitively normal with a CDR of 0.

Regression results
As shown in Table 6, analyses of CDR 0 participants in-
dicated small but significant relationships between both
short- and long-form scores (i.e., the MoCA and UDS 3
global composite) and tau PET and cortical thickness (ps
0.007–0.03). Model comparison results indicated that
the MoCA and UDS 3 global composite were relatively
similarly sensitive in predicting biomarker values as indi-
cated by the R2, AIC, BIC, and deviance values (see
Table 6). As expected, in the CDR 0.5 subsample, there
were stronger relationships between the MoCA and
UDS 3 global composite and all of the neuroimaging
biomarkers, including amyloid PET, as compared to the
CDR 0 sample (see Table 7). Model comparison analyses
indicated that the MoCA was a better predictor of bio-
marker levels as compared to the UDS 3 global compos-
ite in the CDR 0.5. Scatterplots showing the
relationships between the MoCA and UDS 3 global
composite score and the three neuroimaging biomarkers,
with separate regression lines for CDR 0 and 0.5 s, are
displayed in Fig. 2. As shown in the scatterplots, and as
made evident by the regression models, both the MoCA
and UDS 3 global composite were essentially equivalent
in their associations with the neuroimaging AD
biomarkers.

General discussion
The present study compared the efficacy of a popular
short-form cognitive measure (MoCA) against a global
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composite score created from the more comprehensive
long-form UDS3 cognitive battery in predicting AD pro-
gression. AD progression was operationalized as the
time to the onset of initial symptoms. Additionally, we
compared the short- and long-form measures on their
sensitivity to AD neuroimaging biomarkers. Using data
from the NACC, we compared the survival analyses,
ROC curves, and multiple regression models using the
MoCA total score and a global cognitive composite to
investigate whether one measure outperformed the
other. In a sample of data from the Knight ADRC, which
included several neuroimaging biomarkers in addition to
both the MoCA and UDS 3 cognitive battery, we further
investigated the predictive power of each score in pre-
dicting biomarker levels in participants who were cogni-
tively normal (CDR 0) and in those with very mild
dementia (CDR 0.5).
Our first hypothesis, that the long-form measure

would outperform the MoCA in predicting disease
progression, was supported, although both measures
produced only modest associations. We compared
commonly used standard deviation (SD) cut points, at
− 1.0 SD and − 1.5 SD, for both measures. Similar cut
points have been used in the literature to indicate the
presence or absence of cognitive impairment [24–28].
HRs from the survival analyses indicated that both
the MoCA and UDS 3 global composite were rela-
tively equivalent in their sensitivity to symptomatic
conversion, though ROC analyses indicated that

neither reached the threshold for acceptable diagnos-
tic accuracy. Model comparison analyses in the
NACC sample indicated that the UDS 3 global com-
posite outperformed the MoCA by only a slim
margin.
It appears that longer, more comprehensive cogni-

tive assessments may afford a marginal benefit over
shorter cognitive screening measures like the MoCA
when used to predict the time to symptomatic dis-
ease onset. In contrast, when stricter cut points were
used (i.e., − 1.5 SDs), the MoCA outperformed the
long-form composite score. These findings should be
interpreted with caution, however, because there are
far fewer cases at this low-performance threshold for
the long-form global composite than the MoCA (see
Table 2 and confidence interval magnitude in Fig. 1),
which was expected given that the sample was se-
lected based on a baseline CDR of 0. These data also
corroborate existing studies which find that cutoff
scores, which purportedly identify individuals at the
greatest risk for cognitive decline and symptom on-
set [2], have unacceptably poor predictive power,
even when coupled with AD biomarker information
[40].
We also hypothesized that the long-form global

composite would prove superior to the MoCA in as-
sociations with AD neuroimaging biomarkers includ-
ing amyloid PET, tau PET, and an AD-specific ROI
cortical thickness measure. However, analyses in the

Table 5 Study 2 demographic data

CDR 0, N = 3651 0.5, N = 511 p2

Age 71 (6) 74 (6) < 0.001

Gender 0.12

Female 211 (58%) 23 (45%)

Male 154 (42%) 28 (55%)

Education (years) 16 (2) 16 (3) 0.076

APOE 0.001

Neg. 245 (67%) 22 (43%)

Pos. 119 (33%) 29 (57%)

Race 0.83

White 320 (88%) 45 (88%)

Black or African American 41 (11%) 5 (9.8%)

Others (American Indian, Alaska Native, Native Hawaiian, Pacific Islander, or Asian) 4 (1.1%) 1 (2.0%)

MoCA 26 (2) 22 (4) < 0.001

UDS 3 global composite 0.22 (0.58) − 0.62 (0.73) < 0.001

Amyloid PET (Centiloid) 17 (24) 59 (40) < 0.001

Tau PET SUVR 1.22 (0.19) 1.64 (0.56) < 0.001

AD ROI cortical thickness (mm) 2.82 (0.14) 2.64 (0.21) < 0.001
1Mean (SD); n (%)
2Welch two-sample t-test; Pearson’s chi-squared test
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Knight ADRC sample did not support this hypothesis.
There were only minor associations between the
MoCA and long-form global composite measures and
tau PET SUVR and cortical thickness in CDR 0 indi-
viduals. As expected, and consistent with prior work
in this cohort [41, 42], more robust relationships were
seen in CDR 0.5 s and significant effects extended to
all three imaging markers, including amyloid PET. Al-
though it may be somewhat surprising that amyloid
PET was not significantly associated with either cog-
nitive measure in the CDR 0 participants, this has
been observed in previous studies. Specifically,

relationships with amyloid and cognition are relatively
inconsistent [43–45], and accumulating evidence sug-
gests that changes in cognition in the preclinical
stages of AD are predominantly driven by tau path-
ology and structural changes, rather than by amyloid
alone [41, 46, 47].

Limitations
The findings of this study should be considered in light
of a number of limitations, which may be addressed in
future studies. First, although it would be optimal to dir-
ectly compare the performance of the short-form and

Fig. 2 Biomarker correlations with MoCA/UDS 3 global composite by CDR group
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long-form measures to one another in a single multiple
regression, the high degree of correlation between the
measures would result in potential multicollinearity is-
sues if included in a single model together. Thus, our
analyses were restricted to non-nested model compari-
son techniques. Second, we only compare baseline per-
formance of the short-form and long-form measures
here; it is possible that the long-form battery is more
sensitive to decline than the short-form MoCA when
assessing longitudinal change. Third, only a limited
number of demographic covariates were included in the
models presented. It is, of course, possible that the re-
sults may differ if other covariates were included. Finally,
the participants included in the NACC cohort and the
Knight ADRC cohort are composed of mostly highly
motivated older adults who are comprehensively pheno-
typed and often engaged in imaging and fluid biomarker
studies and therefore are not representative of the gen-
eral population. Although a primary goal of the NIA
ADRC programs and the Knight ADRC is to diversify
enrollment to include underrepresented persons in aging
and dementia research, the participants in these studies
are primarily White and highly educated (see Tables 1
and 5).

Conclusions
Ultimately, the MoCA and UDS 3 global composite ex-
hibit relatively equivalent, but limited, sensitivity to
symptomatic conversion. Thus, depending on the use
case, choosing the MoCA over longer cognitive batteries
may afford sufficient sensitivity while also reducing ad-
ministration time, costs, and participant burden. On the
other hand, longer and more comprehensive measures
do provide some unique power in predicting disease
progression, depending on the cutoff point used. A
shortcoming of both approaches is that neither demon-
strated acceptable classification accuracy nor robust bio-
marker relationships in cognitively normal participants.
In order for researchers and clinicians to reliably detect
AD pathology in preclinical individuals, novel assess-
ment methodologies with increased sensitivity and reli-
ability (such as ecological momentary assessment studies
or paradigms which move away from the traditional
“one-shot” approach [48]) are necessary.
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