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Abstract

Background: Plasma biomarkers showed a promising value in the disease diagnosis and management of
Alzheimer’s disease (AD). However, profiles of the biomarkers and the associations with cognition across a spectrum
of cognitive stages have seldom been reported.

Methods: We recruited 320 individuals with cognitive impairment and 131 cognitively normal participants from a
memory clinic and a community cohort. Participants were classified into 6 groups based on their Clinical Dementia
Rating (CDR) scores and clinical diagnosis, including AD, amnestic mild cognitive impairment (aMCI), and normal
cognition (NC). A battery of neuropsychological tests was used to assess the global and domain-specific cognition.
Plasma Aβ1-40, Aβ1-42, Aβ1-42/Aβ1-40, total tau (t-tau), neurofilament protein light chain (NfL), and phosphorylated tau
at threonine 181 (p-tau181) were quantified using the single-molecule array (Simoa) platform.

Results: All the plasma markers (Aβ1-40, Aβ1-42, Aβ1-42/Aβ1-40, t-tau, NfL, p-tau181) showed certain discrepancies among
NC, aMCI, and AD groups. The p-tau181 level showed a continuous escalating trend as the CDR scores increased from 0
(NC group) to 3 (severe AD). Compared with other biomarkers, p-tau181 had correlations with broader cognitive domains,
covering global cognition (r = −0.536, P < 0.0001), memory (r = −0.481, P < 0.0001), attention (r = −0.437, P < 0.0001),
visuospatial function (r = −0.385, P < 0.0001), and language (r = −0.177, P = 0.0003). Among participants with CDR ≥ 1,
higher p-tau181 was correlated with worse global cognition (r = −0.301, P < 0.001).

Conclusions: Plasma p-tau181 had correlations with broader cognitive domains, suggesting its potential as a promising
clinical-relevant blood-based biomarker.
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Background
Alzheimer’s disease (AD), the most common cause of
dementia, is characterized by the accumulation of the
amyloid plaques and neuronal tangles in the brain [1].
Previous AD-relevant biomarkers could only be detected
in the cerebrospinal fluid (CSF) or through positron
emission tomography (PET) [1]. With the development
of ultrasensitive immunoassays technique, detecting AD
relevant biomarkers in blood samples became available
[2]. Plasma biomarkers have a promising value in clinic
usage due to the non-invasiveness, cost-effectiveness,
and easy accessibility [3]. Following Aβ1-42, Aβ1-40, total
tau (t-tau), neurofilament protein light chain (NfL), re-
cently reported plasma phosphorylated tau at threonine
181 (p-tau181) showed better diagnostic performance
and prognostic value in several cohort studies [3–9].
The cognitive performance is a pivotal indicator in AD

management and efficacy evaluation. Previous studies
found plasma Aβ1-42 [10], NfL [11, 12], and p-tau181
[3, 4, 13] were significantly different in participants
with mild cognitive impairment (MCI) and AD compared
with participants with normal cognition (NC). However,
few studies depicted plasma biomarkers’ profiles based on
the cognitive performance and compared their discrep-
ancy in different stages of AD clinical syndrome. It would
be valuable to reveal the alterations of plasma AD bio-
markers from NC until the severe cognitive impairment
stage since the cognitive manifestations are the most con-
cerned issues for both clinicians, patients, and caregivers.
In addition, some studies investigated the relationships

between plasma biomarkers and various cognitive
domains [11, 14–22]. However, they only focused on
individual markers, and the results were incomparable
or inconsistent due to the diverse testing platforms and
study designs. It is also worthwhile to observe which
biomarker has the best correlation with the cognitive
domains.
In this study, we aimed to depict the profile of plasma

biomarkers, including Aβ1-40, Aβ1-42, Aβ1-42/Aβ1-40, t-
tau, NfL, and p-tau181, among different stages of AD
clinical syndrome. We also intended to explore the
correlation between these biomarkers and the domain-
specific cognitive functions.

Methods
Study participants
Participants with cognitive impairment were consecu-
tively recruited from the memory clinic of the depart-
ment of neurology, Huashan Hospital, Shanghai, China
from November 2018 to September 2020. The inclusion
criteria included the following: (1) consulted at the
memory clinic due to memory complaints from herself
(himself) or proxy; (2) able to cooperate with physical
examinations and neuropsychological tests; (3) diagnosed

with single-domain amnestic MCI (aMCI-s), multi-domain
amnestic MCI (aMCI-m), or AD clinical syndrome; and (4)
consent to the blood draw.
Participants in the Shanghai Aging Study (SAS) were

eligible to be selected as the controls with NC. The SAS
is a community-based longitudinal cohort in downtown
Shanghai, China. The original purpose of SAS was to in-
vestigate the prevalence, incidence, and risk factors for
dementia and MCI among older residents in an urban
community. The detailed study design and recruitment
procedure have been published elsewhere [23]. In this
study, the participants were selected from the third wave
of follow-up between Jun and Oct in 2020 if they were
(1) 60 years or older, (2) able to cooperate with physical
examinations and neuropsychological tests, (3) with
normal cognition, and (4) consent to the blood draw.

Demographics and assessment of covariables
The demographic and lifestyle characteristics were
acquired from the participants and/or proxy through a
questionnaire. The educational background was defined
as the years of formal education. Participants who
smoked daily within the past month were regarded as
cigarette smoking, and alcohol consumption was defined
as having at least one serving of alcohol weekly during
the past year [24]. Hypertension and diabetes mellitus
were confirmed by the medical records [23].
The Barthel index [25] and the Brody Activity of Daily

Living (ADL) scale-16 [26] were used to elicit physical
self-maintenance and instrumental activities of daily liv-
ing, such as eating, preparing meals, using the telephone,
handling money, and doing chores, for participants from
the clinic and the community, respectively. Participants
were considered functionally intact if the Barthel index
score was over 60 [25], or the ADL score was over 16
[26]. Apolipoprotein E (APOE) genotype was assessed by
the Taqman single-nucleotide polymorphism method
using the blood or saliva samples collected from the
participants [27]. The presence of at least one APOE ε4
allele was regarded as APOE ε4-positive.

Neuropsychological tests
Comprehensive neuropsychological tests were adminis-
tered by the certified psychometrists. All the tests were
translated and adapted from western countries harmo-
nized to Chinese culture and were validated in the
Chinese population. Each participant from the memory
clinic received a battery of neuropsychological tests, in-
cluding (1) mini-mental status examination (MMSE)
[28], (2) Montreal Cognitive Assessment-Basic (MoCA-
B) [29–31], (3) Auditory Verbal Learning Test [32, 33],
(4) Symbol Digit Modalities Test [34, 35], (5) Rey-
Osterrieth Complex Figure test [35], (6) Boston Naming
Test [36], and (7) Trail Making Test (TMT) [37]. For
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those who refused or were unable to complete the whole
battery of tests, only MMSE and MoCA-B were adminis-
tered. Because the MMSE is less sensitive for MCI
detection [38], MoCA was used together with MMSE to
discriminate dementia and MCI. As for the participants
with NC, a battery of similar neuropsychological tests
was administered due to the original study design of
SAS [32]: (1) MMSE [28], (2) Auditory Verbal Learning
Test [32, 33], (3) Conflicting Instructions Task (Go/No-
Go Task) [32], (4) Stick Test [32], (5) Modified Common
Objects Sorting Test [32], and (6) TMT [37].
In order to make the best use of the neuropsycho-

logical tests, we extracted raw scores from each test to
evaluate five clinically relevant cognitive domains includ-
ing Memory, Attention, Visuospatial function, Language,
and Executive function (Supplementary Table 1). The
percentage of the correct answer in each domain was
calculated. Then, Z scores were further computerized to
ensure the comparability between the participants from
the two cohorts.

Cognitive impairment severity and consensus diagnosis
All participants and their proxy were interviewed by two
neurologists specialized in neurodegenerative diseases.
The CDR, a semi-structured inventory, was used to as-
sess the severity of cognitive impairment. It covered six
cognitive, behavioral, and functional aspects, including
memory, orientation, judgment and problem-solving,
community affairs, home and hobby performance, and
personal care. The neurologists scored on each aspect,
taking into consideration information collected from
both participants and proxy. The global CDR score was
calculated automatically on biostat.wustl.edu/~adrc/
cdrpgm/index.html by inputting in each CDR box score,
based on the Washington University CDR-assignment
algorithm with a 0–3 scale index [39, 40].
Neurologists and neuropsychologists reached a

consensus diagnosis of the cognitive function of each
participant. The presence or absence of dementia was
defined using the DSM-IV criteria [41]: (1) memory
impairment; (2) at least one of the following cognitive
impairments: aphasia, apraxia, agnosia, and executive
dysfunction; (3) cognitive deficit results in significant im-
pairment of social or professional functioning; (4) cogni-
tive function declines slowly; and (5) exclude other
potential disorders that contribute to cognitive decline.
Probable AD was diagnosed according to the NINCDS-
ADRDA criteria [42]: (1) dementia established by MMSE
and confirmed by neuropsychological tests, (2) deficits
in two or more areas of cognition, (3) progressive wors-
ening of memory and other cognitive functions, (4) no
disturbance of consciousness, and (5) the laboratory tests
(including, thyroid function, syphilis tests, level of vita-
min B12 and folate, and other related blood tests) and

magnetic resonance imaging (MRI)/computerized tomog-
raphy (CT) was performed to rule out other systemic dis-
orders or other brain diseases that would cause cognitive
decline. Participants who met the criterion of probable
AD were regarded as having AD clinical syndrome. The
diagnosis of MCI was based on Petersen’s criteria [43]: (1)
cognitive complaint by the subject, informant, nurse, or
physician, with CDR = 0.5; (2) objective impairment in at
least 1 cognitive domain; (3) essentially normal functional
activities (determined from the CDR and the ADL score);
(4) absence of dementia; and (5) the laboratory tests and
MRI/CT was performed to rule out other systemic disor-
ders or other brain diseases that would cause cognitive
decline [44]. Because aMCI is more likely to progress to
AD [45], we only included participants with 2 types of
aMCI: (1) aMCI-s, memory impairment was required with
no deficit in other domains, and (2) aMCI-m, memory
impairment plus at least 1 additional deficit in another
domain. NC participants had no memory complaint and
have been confirmed cognitively intact through detailed
neuropsychological assessment.
In this study, the continuum of AD clinical syndrome

was described based on the combination of CDR and
clinical diagnosis: NC (CDR = 0), aMCI-s (CDR = 0.5),
aMCI-m (CDR = 0.5), mild AD (CDR = 1), moderate
AD (CDR = 2), and severe AD (CDR = 3) [39, 40].

Plasma biomarker measurement
Blood samples were collected in ethylene diamine tetraa-
cetic acid (EDTA) plasma tubes and centrifuged (1000
rpm, 4°C) for 15 min. After the centrifugation, plasma
was transferred into 1.5ml Eppendorf tubes and stored
at −80 °C refrigerators.
Plasma Aβ1-40, Aβ1-42, t-tau, NfL, and p-tau181 were

quantified using an ultra-sensitive single-molecule array
(Simoa) (Quanterix, MA, USA) on the automated Simoa
HD-X platform per the manufacturer’s instruction. The
multiplex Neurology 3-Plex A kits (Cat. No. 101995),
NF-light assay (Cat. No. 103186), and p-tau181 Assay
Kit V2 (Cat. No.103714) were purchased from Quanterix
and used accordingly. Technicians who performed the
assay were blinded to the clinical data.

Statistical analyses
Mean and standard deviation (SD) were used to describe
normally distributed continuous variables, while the me-
dian and quartile 1 (Q1) to quartile 3 (Q3) were used to
describe the skewed distributed continuous variables.
For categorical variables, number (n) and frequencies
(%) were employed. One-way analyses of variance
(ANOVA) and Kruskal-Wallis tests were used for com-
paring continuous variables, and Pearson chi-square and
Fisher exact tests were used to compare the categorical
variables. For the comparisons among multi-groups,
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ANOVA and post hoc Tukey multiple comparison tests
were used for variables with equal variance, while Welch
and post hoc Games-Howell tests were used for
variables with unequal variance.
Boxplots and points were used to present the distribu-

tions of original values of six plasma biomarkers.
Levene’s tests were used for testing the homogeneity of
variances in six groups with different cognition statuses.
Associations between domain-specific Z scores and log-
transformed plasma biomarker indexes (due to non-
normal distributions [3]) were examined using partial
correlation analyses with the adjustment for age, gender,
and education year. The heatmap matrix was imple-
mented to visualize the adjusted partial correlation coef-
ficients r in all participants. Positive correlations (r > 0)
were exhibited in red, and negative correlations (r < 0)
were exhibited in blue in the heatmap figure. The same
correlation analyses were applied to participants with
CDR = 0, CDR = 0.5, and CDR ≥ 1, respectively. For
partial correlation analysis, we used the Bonferroni
method for multiple corrections [46]. Since global cogni-
tion and memory are the two most important cognition
domains for AD clinical syndrome, scatter plots were
used to illustrate the correlations between MMSE &
memory and plasma biomarkers.
Two-sided P < 0.05 was considered statistically

significant, except for a specific explanation of multiple
corrections. The degree of freedoms (df) was presented
in correlation analysis. Data were analyzed using IBM
SPSS Statistics for Windows, version 25.0 (IBMCorp.,
Armonk, N.Y., USA) [47] and R (version 4.0.2) [48]. Box
plots were produced using the package ggplot2 in R.
The heatmap was visualized by GraphPad Prism version
8.0.0 for Windows, GraphPad Software, San Diego,
California, USA (www.graphpad.com).

Results
Characteristics of the study participants
We recruited 451 participants, including 320 participants
from the memory clinic cohort and 131 NC participants
from the community cohort. The characteristics of study
participants were shown in Table 1. Significant differ-
ence was found in gender (P = 0.011), age (P < 0.001),
education years (P < 0.001), and APOE ε4 allele (P <
0.001) among six cognitive performance groups. The
most severe cognitive impairment group (CDR = 3) had
the highest proportion of women (68.4%), the lowest
mean age (mean = 62.3), the shortest education years
(mean = 5.6), and the largest proportion of positive
APOE ε4 allele (57.9 %). We did not find a significant
discrepancy in smoking, alcohol consumption, hyperten-
sion, and diabetes mellitus among the six groups. All
neuropsychological test scores were significantly differ-
ent among six groups (all P < 0.001).

Plasma biomarkers across groups with different cognitive
performances
As shown in Fig. 1, plasma Aβ1-40, Aβ1-42, and Aβ1-42/
Aβ1-40 ratio showed a descending trend, while plasma t-
tau, NfL, and p-tau181 exhibited an increasing trend
across groups with the increasing CDR scores in general.
With regard to Aβ1-40, Aβ1-42, and NfL, we found signifi-
cant differences between participants with NC (CDR =
0) and AD (CDR ≥ 1) (Fig. 1A, B, and E). Aβ1-42/Aβ1-40
and t-tau showed differences only between participants
with NC (CDR = 0) and severe AD (CDR = 3) (Fig. 1C
and D). There was no significant discrepancy of Aβ1-40,
Aβ1-42, Aβ1-42/Aβ1-40, t-tau, or NfL among participants
with different severity levels of AD (CDR = 1, 2, or 3).
P-tau181 gradually increased among different cognitive
stages of AD clinical syndrome, with the lowest concen-
tration in NC participants (CDR = 0), an increase in par-
ticipants with aMCI (CDR = 0.5), and the highest
concentration in participants with AD (CDR ≥ 1)
(Fig. 1F). Specifically, participants with severe AD
(CDR = 3) had significantly higher p-tau181 than
those with mild AD (CDR =1).
When we compared the difference of plasma biomarkers

between CDR = 0.5 and CDR >=1, it turned out that
plasma Aβ1-42 (P = 0.025), t-tau (P = 0.010), and p-tau181
(P < 0.001) showed significant difference (not shown
in Fig. 1).

Correlation between plasma biomarkers and domain-
specific cognition
Figure 2 showed the partial correlation matrix between
six plasma biomarkers and six domain-specific cognitions
after adjusting age, gender, and education years. Through
Bonferroni correction, Aβ1-42 showed a positive correlation
with MMSE (r = 0.156, df = 444, P = 0.0010) and memory
(r = 0.244, df = 408, P < 0.0011). Aβ1-42/Aβ1-40 was only
positively correlated with memory (r = 0.161, df = 407, P =
0.0011). T-tau had an inverse correlation with MMSE (r =
-0.168, df = 444, P = 0.0004). Higher NFL was correlated
with worse MMSE (r = -0.322, df = 441, P < 0.0001), mem-
ory (r = -0.292, df = 405, P < 0.0001), attention (r = -0.236,
df = 406, P < 0.0001), and visuospatial function (r = −0.264,
df = 378, P < 0.0001). P-tau181 showed a stronger negative
correlation with MMSE (r = −0.536, df = 441, P < 0.0001),
memory (r = −0.481, df = 406, P < 0.0001), attention (r =
−0.437, df = 407, P < 0.0001), visuospatial function (r =
−0.385, df = 379, P < 0.0001), and language (r = −0.177, df
= 406, P = 0.0003). Figures 3 and 4 demonstrated the scat-
ter plots of the correlations between MMSE & memory
and six plasma biomarkers, respectively.
When the participants were divided into three stages

according to the CDR score, only higher p-tau181 was
correlated with worse MMSE in participants with CDR
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≥ 1 after Bonferroni correction (r = −0.301, df = 161, P <
0.001) (Supplementary Table 2).

Discussion
The present study demonstrated that plasma Aβ1-40,
Aβ1-42, and Aβ1-42/Aβ1-40 had a decreasing trend, while

plasma t-tau, NfL, and p-tau181 escalated along the dif-
ferent stages of cognitive impairment as the CDR score
increased from 0 to 3. P-tau181 was the best plasma in-
dicator of clinical cognitive performance and had corre-
lations with broader cognitive domains than the other
five biomarkers. To our knowledge, it was the first study

Fig. 1 Plasma biomarkers in participants with different clinical cognitive status. Note: The ANOVA and the post hoc Tukey test were used for
comparison of plasma Aβ1-40 & Aβ1-42 in six groups, while Welch test and the post hoc Games-Howell test were used to compare the plasma
Aβ1-42/Aβ1-40, t-tau, NfL, and p-tau181 among six groups. Six extreme values were not shown in panel E, but they were included in the statistical
analyses. The multiple corrected P values were presented with asterisks: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. NC, normal
cognition; aMCI-s, amnestic mild cognitive impairment-single domain; aMCI-m, amnestic mild cognitive impairment-multiple domains; AD,
Alzheimer’s disease clinical syndrome; CDR, Clinical Dementia Rating Scale; Aβ, amyloid-beta protein; t-tau, total tau; NfL, neurofilament protein
light chain; p-tau181, tau phosphorylated at threonine 181
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to exhibit the distribution of plasma p-Tau 181 using
the Simoa HD-X platform in Chinese older individuals
with different stages of AD clinical syndrome.
Pathology is pivotal in the diagnosis of AD. However,

cognitive performance, including various cognitive do-
mains, played a more significant role in patient manage-
ment and efficacy evaluation. Cognitive manifestations
are closely related to one’s daily function and quality of
life for both patients and caregivers. Thus, we focused
on individual’s performance and classified the partici-
pants into six groups according to CDR levels and clin-
ical cognitive diagnosis. One previous study found
plasma p-tau181 increased at preclinical AD and further
increased at the MCI and dementia stages [3]. Another
group verified that plasma p-tau181 gradually increased
from the Aβ-negative cognitively unimpaired older
adults, through the Aβ-positive cognitively unimpaired
and MCI groups, to the highest concentrations in Aβ-
positive MCI and AD groups [4]. Our results testified
their findings from the clinical perspective and further
indicated that p-tau181 was a symptom-related plasma
biomarker. Although some markers showed a significant
escalating or descending trend along the AD spectrum,
plasma p-tau181 is the only one that had a significant

discrepancy in the later stage of AD clinical syndrome
with overt dementia symptoms. This means plasma p-
tau181 may keep increasing along with the deterioration
of cognitive function, till the severe stage of AD. Previ-
ous studies showed that plasma p-tau181 was correlated
with CSF p-tau181 in AD patients, suggesting that
plasma p-tau181 was originated from the central ner-
vous system [3, 4]. Peripheral p-tau reflects the phos-
phorylation of the tau protein, which eventually leads to
the neurofibrillary tangles in the brain [8]. Therefore,
the continuous increment of the plasma p-tau across dif-
ferent stages of AD indicated the ongoing tau-related
pathologic change in the brain, even in the moderate to
severe stage of the disease. This may potentially guide
the development of disease-modifying therapy for the
advanced-stage AD patients in the future.
Previously, one cohort study demonstrated that plasma

p-tau181 was correlated with the MMSE score [4]. How-
ever, the relationships between plasma p-tau181 and dif-
ferent cognitive domains have not been reported. Our
study revealed a strong correlation between plasma p-
tau181 and various cognitive domains. The correlation
between p-tau181 and MMSE was only observed in par-
ticipants with dementia symptoms. This may reflect the

Fig. 2 Correlations between plasma biomarkers and cognitive domains. Note: The plasma biomarkers concentrations were log transformed. The
partial correlation coefficients (r) were adjusted for age, gender, and education year. P < 0.0014 was considered statistically significant after using
multiple comparisons by Bonferroni correction. Aβ, amyloid-beta protein; t-tau, total tau; NfL, neurofilament protein light chain; p-tau181, tau
phosphorylated at threonine 181
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underlying mechanism that plasma p-tau181 is regulated
differently by the disease staging, namely the Alzheimer’s
pathological status in the brain. Another possibility is
that the narrow range of the testing scales, as well as the
“ceiling effects” or “floor effects,” might also weaken the
correlation between plasma biomarkers and cognition.
However, this might not be the main reason, since when

analyzing with the more sensitive tests assessing memory
and attention, the correlations were still absent in the
subgroup with CDR = 0.
The NfL was an age-related biomarker [49]. Lin et al.

found that higher plasma NfL levels correlated with
lower MMSE scores [15], without adjustment for age.
Another study by Chatterjee et. al. showed that plasma

Fig. 3 Scatter plots of MMSE and plasma biomarkers. Note: The plasma biomarkers concentrations were log-transformed. The partial correlation
coefficients (r) were adjusted for age, gender, and education year. P < 0.0014 was considered statistically significant after using multiple
comparisons by Bonferroni correction. The purple area represented the 95% confidence interval. MMSE, mini-mental state examination; Aβ,
amyloid-beta protein; t-tau, total tau; NfL, neurofilament protein light chain; p-tau181, tau phosphorylated at threonine 181
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NfL was inversely correlated with working memory, ex-
ecutive function, and the global composite score after
considering age [14]. Two other studies found plasma
NfL associated with all cognitive domains after adjusting
potential confounders including age [21, 22]. However,
using the same Simoa detecting method, a Chinese
group did not find any correlation of NfL with episodic

memory, information processing speed, executive func-
tion, or visuospatial function after adjusting for age, gen-
der, and education. In our results, the plasma NfL had a
significant correlation after adjustment for age and other
covariates, not only with global cognition, but also with
the other three cognitive domains. This suggested that,
although NfL was regarded as a non-specific biomarker

Fig. 4 Scatter plots of Memory and plasma biomarkers. Note: The plasma biomarkers concentrations were log-transformed. The partial correlation
coefficients (r) were adjusted for age, gender, and education year. P < 0.0014 was considered statistically significant after using multiple
comparisons by Bonferroni correction. The green area represented the 95% confidence interval. MMSE, mini-mental state examination; Aβ,
amyloid-beta protein; t-tau, total tau; NfL, neurofilament protein light chain; p-tau181, tau phosphorylated at threonine 181
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for neurological diseases [12], it still has value in the
monitoring of AD cognitive deterioration. Nevertheless,
most correlations could not be observed when we classi-
fied participants into three sub-groups according to
CDR levels of 0, 0.5, and ≥1. The paradoxical results
may be attributed to the diverse pathophysiological con-
ditions in different cognitive stages [49].
The traditional amyloid cascade theory emphasized

that Aβ as an initial factor that triggers the following
Tau pathology [1]. Our study found a relatively
weaker correlation between the plasma amyloid bio-
markers (Aβ1-42, Aβ1-42/Aβ1-40) and the cognition,
only with MMSE and memory. Previous CSF and
PET studies [50, 51] indicated that the amyloid-
related biomarkers reflected the earliest pathological
change but tended to reach a plateau as the disease
progressed to the dementia stage. Since the plasma
Aβ was supposed to display the central nervous
change [52], blood Aβ level may also be saturated in
the symptomatic individuals. However, in the CDR
subgroups, the trend is ambiguous and inconsistent,
probably because of the small sample and minor ef-
fect size. Further large-scale longitudinal studies need
to be conducted to demonstrate the dynamic Aβ
alteration along the spectrum of AD. A previous
experimental study showed that neurons exposed to
Aβ had increased synthesis and secretion of tau [53].
These neurons may eventually degenerate and develop
tangle pathology, which may also drive the increase of
p-tau in the blood. Therefore, regarding AD as a
lengthy, continuous disease course, plasma p-tau181,
being more sensitive and clinical-relevant, might be
superior to the amyloid-related markers.

Limitations
There are several limitations to our study. Firstly, the
biomarkers in this study were only detected once with-
out longitudinal measurements. However, we separated
the participants into six groups according to CDR scores
and cognitive diagnosis to simulate the spectrum of AD
clinical syndrome. Future prospective studies are needed
to verify our findings. Secondly, the participants in our
studies were from two different resources with unavoid-
able imparity. However, there was no significant differ-
ence in some dementia-related risk factors, such as
smoking, alcohol consumption, hypertension, and dia-
betes mellitus (Table 1). Age, gender, and education year
were adjusted in the multivariate statistical models.
Thirdly, some neuropsychological tests might have “ceil-
ing effects” (e.g., Go/No-Go Task) or “floor effects” (e.g.,
Auditory Verbal Learning Test), which may conceal the
relationship between the biomarkers and the cognitive
domains. Tests assessing similar cognitive domains have
unavoidable learning effects [54, 55] and intrusion errors

[56], which may lead to the unstable evaluation of the
cognitive performance of the study participants. In our
study, 38.6% of the intrusion rate of the memory tests
(Supplementary Table 3) may impact the correlation
estimations between the biomarkers and the cognitive
domains. Fourthly, not all the participants were able to
accomplish the extensive testing. About 90% of the
participants accomplished tests for domains of memory,
executive function, attention, and language, while 86%
accomplished tests for the domain of the visuospatial
function. Particularly in participants with severe AD, the
response rates were even lower, due to their lack of abil-
ity to accomplish all the tests. When we repeated the
analyses in participants that were able to accomplish all
the tests (N = 374), the most correlations still hold, in-
cluding associations between p-tau181, NfL and global
cognition, memory, attention, and visuospatial function;
between t-tau and global cognition; and between Aβ42,
Aβ42/Aβ40, and memory (Supplementary Table 4). Al-
though the correlation between plasma A42 and global
cognition, language and p-tau181 could not pass the
Bonferroni correction, and the P values were still < 0.01.
Considering the Bonferroni correction as a conservative
test, the results and conclusions could still be seen as
solid. Fifthly, since AD was regarded as a continuum, the
stage-partitioned correlations should be interpreted with
caution due to the restricted range of cognitive test
scores within each partition of disease severity. Lastly,
we diagnosed AD based on the clinical standard rather
than pathological evidence of CSF or amyloid/tau PET.
Lacking a golden standard impeded us from the classify-
ing of “ATN” framework [57] or receiver operating char-
acteristic analysis.

Conclusions
In conclusion, we found plasma p-tau181 increased in
the AD clinical syndrome. Plasma p-tau181 had correla-
tions with broader cognitive domains than other bio-
markers. Our study suggests that the plasma p-tau181
may be a promising, clinical-relevant blood-based bio-
marker. Longitudinal studies are needed to verify these
findings and provide more evidence for the association
between plasma p-tau181 and cognitive manifestations.
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