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Abstract

Challenges have been recognized in healthcare of patients with Alzheimer’s disease (AD) in the COVID-19
pandemic, given a high infection and mortality rate of COVID-19 in these patients. This situation urges the
identification of underlying risks and preferably biomarkers for evidence-based, more effective healthcare. Towards
this goal, current literature review and network analysis synthesize available information on the AD-related gene
APOE into four lines of mechanistic evidence. At a cellular level, the risk isoform APOE4 confers high infectivity by
the underlying coronavirus SARS-CoV-2; at a genetic level, APOE4 is associated with severe COVID-19; at a pathway
level, networking connects APOE with COVID-19 risk factors such as ACE2, TMPRSS2, NRP1, and LZTFL1; at a
behavioral level, APOE4-associated dementia may increase the exposure to coronavirus infection which causes
COVID-19. Thus, APOE4 could exert multiple actions for high infection and mortality rates of the patients, or
generally, with COVID-19.
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Background
In the midst of the COVID-19 pandemic, patients with
Alzheimer’s disease (AD), once infected by the under-
lying coronavirus SARS-CoV-2, are 5 times likely to die
of this infectious disease [1]. In the absence of effective
treatment, a mechanistic understanding of how the pa-
tients with AD become a vulnerable target of COVID-19
may guide evidence-based healthcare management and
targeted therapeutics development. In the earlier litera-
ture, it was postulated that APOE4 (italic for gene), a
genetic risk factor for AD [2], would be a biomarker for
severe COVID-19 [3]; others considered psychological
and behavioral contributions [4]. This review aims to
capitalize on the evolving literature and database re-
sources and seek a fundamental or molecular under-
standing of the high vulnerability in patients with AD.

Genetic evidence for APOE4 involvement in the
vulnerability for COVID-19
There is evidence for the genetic contribution to comor-
bidity of other brain disorders with COVID-19 [5] so
that genetics may explain the high vulnerability of pa-
tients with AD as well. APOE4 is the most established
genetic risk factor for late-onset AD. An in vitro study
has suggested that cells expressing APOE4 are more vul-
nerable to SARS-CoV-2 infection than those expressing
the nonpathogenic isoform APOE3 [6]. Via induced
pluripotent stem cells (iPSC)-based in vitro technologies,
cells with APOE4 allowed more significant SARS-CoV-2
infection of artificially differentiated either neurons or
astrocytes than those with APOE3. Furthermore, APOE4
astrocytes infected with SARS-CoV-2 presented a more
severe cytopathogenic effect than APOE3 astrocytes,
which could facilitate the progression and severity of
COVID-19. This study indeed provided the first insight
to a possible APOE-mediated mechanism for COVID-19
severity. It remained unknown how this genetic vulner-
ability was achieved and more importantly what this
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finding meant for a high infection rate in APOE4 car-
riers and increased COVID-19 mortality in the comorbid
patients.
The difference between APOE4 and APOE2/3 is

caused by the single nucleotide polymorphism (SNP)
rs429358. This SNP carries two alleles, T and C, where
T encodes a cystine (APOE3) and C encodes an arginine
(APOE4) at residue position 130. In APOE4 carriers, re-
duced expression levels of APOE in both brain and per-
ipheral systems suggested that this variant causes an
increased risk not only for AD [7, 8], but also for sys-
temic susceptibility to coronavirus infection. APOE4 has
a worldwide average frequency of 15%, according to the
1000 Genomes Project [9], meaning that approximately
2% of the worldwide population are homozygotes, equal
to the current 2% of the world population that have been
diagnosed with COVID-19. In fact, APOE is abundantly
expressed in cells of various peripheral systems including
macrophages and epithelial cells of the lung [10, 11]
which confers the most severe impact on coronavirus
pathology. As an explanation, patients with APOE4-
associated AD may carry higher vulnerability in their
peripheral organs such as the lung than those carrying

APOE3, possibly via enhancing the receptors’ activities
and facilitating the coronavirus entry.

Pathway support for a role of APOE4 in the
severity of COVID-19
To explore this possibility, we have used a pathway ana-
lysis approach in MetaCore as previously described [12].
Results from this pathway analysis indeed support that
possibility by identifying a plausible ten-member net-
work where all ten members have been implicated in
AD: APOE [13], ACE2 [14], CTNNB1 [15], NOTCH1
[16, 17], LZTFL1 [18], MMP1 [19], NRP1 [20], RELA
[21], SIRT1 [22], and MMP14 [19] (left panel in Fig. 1).
Among them, ACE2 and NRP1 are utilized by SARS-
CoV-2 in order to enter cells and cause COVID-19 [23,
24]. ACE2 is almost undetectable and NRP1 has low ex-
pression levels in the brain. For a better understanding
of the epidemiological finding, these functional genetic
and pathway findings may encourage and re-direct our
attention from the brain with AD to comorbid patients’
peripheral systems, where both receptors are well
expressed and the coronavirus has an easy access, does
extensive damages during the progression, and causes

Fig. 1 Possible mechanisms of APOE4-mediated AD and COVID-19 comorbidity. Left panel: A ten-member network shared by both AD (all
members) and COVID-19 (*), generated by using MetaCore. In the case of APOE4, reduced/altered APOE has three potential actions in this
network alone: (1) disinhibition of ACE2, (2) transcriptional reduction of the protective LZTFL1, and (3) more indirect disinhibition of NRP1 via
LZTF1, in exacerbation of COVID-19. Asterisks are for genetic association with severe COVID-19: APOE: rs429358 (APOE2/3 vs 4) p = 0.0026, OR =
1.31; ACE2: chr23:15564667 p = 0.0056, OR = 1.12; CTNNB1: chr3:41204313 p = 0.016, OR = 0.74; LZTFL1: chr3:45834967 p = 1.15 × 10−10, OR =
0.56; NOTCH1: chr9:136510909 p = 0.0092, OR = 0.87; MMP1: rs11621460 p = 0.010, OR = 0.84; NRP1: chr10:33292184 p = 0.00072, OR = 1.47; RelA:
rs1049728 p = 0.0063, OR = 0.64 (II); SIRT1: rs12783242 p = 0.0019, OR = 0.78; where chromosome positions are based on HG38 in the absence of
rs numbers; OR, odds ratio; II, adjusted with gender and age; all association signals are provided by the GWAS meta-analysis by Ellinghaus et al.
Not shown here is the additional APOE-LRP1-PARP1-TMPRSS2 pathway (see text): LRP1: rs4759044 p = 0.023, OR = 0.89; PARP1: chr1:226405149 p
= 0.0065, OR = 0.51 (II). Right panel: APOE4-based vulnerability for patients with COVID-19 and AD at double risk: attenuated protective behavior
for exposure risk and APOE4-associated infection risk
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multiorgan damage-triggered mortality of COVID-19.
Of note, it has been experimentally shown that the cor-
onavirus (SARS-CoV) enters cells by binding to ACE2
while ACE2 may recycle subsequently back to cell sur-
face after unloading of the virus [25]. Specifically, ACE2-
related endocytosis, besides direct membrane fusion, has
been proposed as an entry mechanism [26], consistent
with the recent identification of the endosomal protein
TMEM106B as another risk factor for the coronavirus
infection [27].
Further pathway analyses found that SIRT1, the direct

target of APOE, might regulate TMEM106 through
binding to several AD-related transcription factors (e.g.,
FOXP3 [28], STAT1 [29], BMAL1 [30, 31], SIRT6 [32],
and E2F1 [33]) but the specifics on these regulations and
on how TMEM106B regulates coronavirus’ intracellular
activity remain to be uncovered. Interestingly, FOXP3
also bound to TMPRSS2 which encoded another cell
surface risk factor for SARS-CoV-2 infection [23]. Also,
reduced APOE could reduce LRP1 inhibition of the
TMPRSS2 activator PARP1, which in turn promotes the
coronavirus infection as well (detailed pathway not
shown) [34, 35]. Therefore, APOE might regulate the in-
fectivity of SARS-CoV-2 in multiple ways.
Among the ten members, LZTFL1 represents the most

significant genetic risk factor for severe COVID-19 as
per findings from two genome-wide association studies
(GWAS) of severe COVID-19 [18, 36]. Specifically, a
minor allele of a SNP (G/GA, without a “rs” number yet)
at chr3:45834967 in LZTFL1 was protective against pro-
gression to severe forms of COVID-19. Together,
APOE4 may have tetrad action: it enhances ACE2 activ-
ity by disinhibiting SIRT1 (Sirtuin 1, a generic enzyme),
activates TMPRSS2 by the LRP1-PARP1 pathway, de-
creases the LZTFL1 expression by inhibiting NOTCH1,
and activates NRP1 via LZTFL1 indirectly, satisfying the

protective roles of both APOE and LZTFL1. That is, re-
duced APOE levels, which have demonstrated to be as-
sociated with the increased risk of AD, may disinhibit
ACE2, TMPRSS2, and NRP1 and consistently increase
the vulnerability to the coronavirus infection in the pa-
tients with AD. In fact, indirect activation of APOE by
LZTFL1 via CTNNB1 (generic binding protein) and
MPPs (metalloprotease) fits with their protections
against the fatal comorbidity.
More interestingly, nine of the ten members in this

network, along with LRP1 and PARP1 in the TMPRSS2
pathway, had nominal significance for genetic associa-
tions indeed with the severity of COVID-19 (Fig. 1 le-
gend for left panel), as revealed by the meta-analysis of
GWAS [18]. For APOE, it was rs429358 that encodes
APOE4 (pmeta = 0.0026), but not another nearby (only
138 bp away) SNP rs7412 C/T that differentiates the
nonpathogenic APOE2 vs 3 (Cys176Arg) (pmeta = 0.73),
that showed an association with severe COVID-19, se-
lectively supporting the underlying risk of APOE4 and
the in vitro experimental finding that there is an associ-
ation between APOE4 and COVID-19 infectivity. The
APOE networking had a 17.6-fold enrichment for associ-
ations with severe COVID-19 based on pmeta-values,
comparing to the whole GWAS, pointing to a shared
molecular etiology.
It remains unknown how significant this pathway in-

formation contributes to ACE2/TMPRSS2/NRP1-related
infection itself. Such information however encourages
modeling analysis of human peripheral (epithelial and
immune) cells that bear the brunt of the coronavirus in-
fection for further clarification of the APOE4 mechan-
ism in COVID-19 development and progression. Even
worse for AD, the molecular vulnerability can be fur-
thered by exposure-related behavioral disadvantage in
the patients (right panel in Fig. 1).

Fig. 2 Summary: coronavirus targets AD patients carrying APOE4
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Conclusion
Comparing to two other isoforms, APOE4 is genetically
associated with reduced APOE levels for increased cor-
onavirus infection and disease progression risks, and
consistently with severe COVID-19 as well. As summa-
rized in Fig. 2, the association between APOE4 and cor-
onavirus infectivity supports the hypothesis that APOE4
is an important risk marker for the severity of COVID-
19 pathology in patients with AD. If further verified,
APOE genotyping may help guide evidence-based
healthcare of the comorbid patients.
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