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Abstract

Background: Physical inactivity has been consistently linked to increased risk of cognitive decline; however, studies
examining the impact of exercise interventions on cognition have produced inconsistent findings. Some observational
studies suggest exercise intensity may be important for inducing cognitive improvements; however, this has yet to be
thoroughly examined in older adult cohorts. The objective of the current study was to evaluate the effect of systematically
manipulated high-intensity and moderate-intensity exercise interventions on cognition.

Methods: This multi-arm pilot randomised clinical trial investigated the effects of 6 months of high-intensity exercise and
moderate-intensity exercise, compared with an inactive control, on cognition. Outcome measures were assessed at pre-
(baseline), post- (6months), and 12 months post-intervention. Ninety-nine cognitively normal men and women (aged 60–80
years) were enrolled from October 2016 to November 2017. Participants that were allocated to an exercise group (i.e. high-
intensity or moderate-intensity) engaged in cycle-based exercise two times per week for 6months. Cognition was assessed
using a comprehensive neuropsychological test battery. Cardiorespiratory fitness was evaluated by a graded exercise test.

Results: There was a dose-dependent effect of exercise intensity on cardiorespiratory fitness, whereby the high-intensity
group experienced greater increases in fitness than the moderate-intensity and control groups. However, there was no direct
effect of exercise on cognition.

Conclusions:We did not observe a direct effect of exercise on cognition. Future work in this field should be appropriately
designed and powered to examine factors that may contribute to individual variability in response to intervention.

Trial registration: This study is registered with the Australian New Zealand Clinical Trials Registry (ACTRN12617000643370).
Registered on 3 May 2017—retrospectively registered. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=372
780
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Introduction
Physical inactivity is considered one of the greatest
modifiable risk factors for dementia [1]; however, at-
tempts to provide definitive evidence from randomised
controlled trials (RCTs) of a link between exercise and
enhanced cognition have been inconsistent. Indeed, a
2015 Cochrane review [2] of RCTs concluded there is
insufficient evidence, in cognitively normal older adults,
to suggest an effect of exercise on cognition. While a
more recent meta-analysis [3], assessing a similar cohort,
identified positive effects of exercise when session dura-
tions were in excess of 45 min and at least of moderate
intensity. These conflicting results indicate the need for
greater clarity for the use of exercise as a method for
preventing cognitive decline, specifically the precise pa-
rameters needed for improving brain health.
When compared with the total volume of physical ac-

tivity, observational work has reported a stronger associ-
ation between objectively measured intensity of physical
activity and cognitive function [4, 5]. Furthermore, acute
bouts of high-intensity exercise improve memory and
executive function to a greater extent than moderate-
intensity continuous exercise bouts [6, 7]. Although pre-
vious work in the area is promising, the importance of
exericise intensity in enhancing cognitive health requires
rigorous examination in RCTs. A recent 12-week inter-
vention in older adults demonstrated greater improve-
ments in memory after undertaking high-intensity
compared with moderate-intensity exercise, or a stretch-
ing control [8]. The use of high-intensity exercise is safe
in older populations [9] and provides a time-effective
method to increase physical health, yet, until more con-
sistent and rigorous evidence is available, the widespread
use of high-intensity exercise to enhance cognitive
health will continue to be questioned.
Variability across studies might also be explained by

factors moderating exercise-induced changes in cogni-
tion. Genetic factors, such as the apolipoprotein E
(APOE) ε4 allele and the brain-derived neurotrophic fac-
tor (BDNF) Val66Met single nucleotide polymorphism,
may modulate the relationship between exercise and
brain health [10–12]. The literature in these fields is pre-
dominantly sourced from observational studies, which
have contributed to largely inconsistent findings. In
addition, variability in cognitive response may be due to
variability in cardiorespiratory fitness change following
exercise [13, 14]. Evidence from RCTs is needed to gain
a greater understanding of these potential mediating and
moderating effects on cognition.
The current pilot RCT was designed to provide a

head-to-head comparison of work-matched moderate-
intensity and high-intensity exercise on cognition in cog-
nitively normal older adults. We hypothesised that both
intervention groups would receive benefits to cognition,

but the high-intensity group would receive additional
benefit beyond the moderate-intensity group in a dose-
dependent fashion. Based on the hypothesis that in-
creases in cardiorespiratory fitness are an important fac-
tor in the relationship between exercise and cognition,
we investigated whether change in fitness is associated
with improved cognition. Finally, we conducted an ex-
ploratory investigation as to whether targeted genetic
factors (APOE ε4 carriage and BDNF Val66Met) moder-
ate the effect of exercise on cognition, and the relation-
ship between altered fitness and cognitive changes.
Based on previous literature, we hypothesised that APOE
ε4 carriers and BDNF Val66Met carriers would receive
the greatest benefit from exercise, in terms of cognitive
improvements [10, 12].

Methods
Trial design
The Intense Physical Activity and Cognition (IPAC)
study was a single-site parallel pilot randomised con-
trolled trial conducted between October 2016 and Sep-
tember 2019 at Murdoch University and the Australian
Alzheimer’s Research Foundation, Western Australia.
An open access protocol paper for the IPAC study has
been published previously [15]. Participants were rando-
mised to either 6 months of supervised high-intensity
exercise, supervised moderate-intensity exercise, or an
inactive control group. Reporting of this study adheres
to Consolidated Standards of Reporting Trials (CON-
SORT) guidelines [16].
The IPAC study is registered with the Australian New Zea-

land Clinical Trials Registry (ACTRN12617000643370). The
human research ethics committees at Murdoch University
and Edith Cowan University approved the conduct of this
study, and all participants provided written informed
consent.

Participants and randomisation
Participants were recruited between October 2016 and
November 2017 from a number of sources, including
media advertisement, flyers, and word-of-mouth. A full
list of inclusion and exclusion criteria have been de-
scribed previously [15]. Our power analysis was based
on the primary outcome of cognitive function: using
data from Vidoni et al. [13], we required 28 participants
per group to detect differences between three groups at
80% power and the 5% level of significance. A block ran-
domisation protocol (conducted by a researcher who
was not collecting outcome data) was used to randomly
assign participants to one of the following three groups:
high-intensity exercise, moderate-intensity exercise, or a
control group.
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Interventions
Participants that were allocated to an exercise group (i.e.
high-intensity or moderate-intensity) engaged in exercise
two times per week (under the supervision of an Accre-
dited Exercise Physiologist) for 6 months. Each exercise
session lasted 50min and was conducted on a cycle erg-
ometer (Wattbike Pro; Wattbike, Australia). Target in-
tensity was set using the 6 to 20 Borg Scale of Perceived
Exertion [17]. Further details of the exercise interven-
tions can be found within the supplementary material.
Adherence to the intervention was measured via ses-

sion attendance. In addition, exercise intensity was cal-
culated for each participant in the moderate- and high-
intensity groups: the percentage of peak aerobic power
(measured via a graded exercise test) was calculated for
each session (not including the warm-up, cool-down,
and for the high-intensity group, the recovery between
intervals). The percentage of peak aerobic power in the
initial 3 months were calculated using baseline peak aer-
obic power output, while months 4 to 6 were calculated
using peak aerobic power output from the mid-
intervention fitness test.
Participants randomised to the control group were

provided with an information session regarding the ben-
efits of exercise for overall physical health and known
benefits to the brain. Participants in the control group
did not receive any exercise instructions.

Procedures and outcome measures
Full methodological detail regarding outcome measures
can be found in the supplementary material.

Cognitive assessment
A comprehensive battery of neuropsychological tests was
administered to all participants at baseline, 6 months, and
18 months. Composite scores for global cognitive func-
tion, attention, episodic memory, and executive function
were calculated.
The battery included the Montreal Cognitive Assess-

ment (MoCA), Wechsler Adult Intelligence Scale-III
Digit Span, California Verbal Learning Test (CVLT-II),
Brief Visual Memory Test (BVMT), Trail Making Test
forms A and B, and the NIH EXAMINER Verbal fluency
task, Flanker, and Set-shifting. A computerised Cogstate
battery (www.cogstate.com) was administered including
Groton Maze learning and recall, and identification, de-
tection, one-card learning, and one-back tasks.
We calculated cognitive composite scores using z-

scores of individual’s performances across all timepoints.
For scores where a lower score indicates better perform-
ance (i.e. speed), we inversed the score ([score]*-1). The
composite scores included the following tasks: (1) Global
cognitive composite: Digit Span, Cogstate one-back,
Cogstate identification task, CVLT (learning, short delay

recall, long delay recall, and recognition d`), BVMT
(learning and long delay recall), Cogstate Groton Maze
recall, Trails B, Phonemic fluency, Flanker, and Set-
shifting; (2) Attention: Digit Span (Forward only) and
Cogstate identification task; (3) Episodic Memory: CVLT
(short delay recall, long delay recall, and recognition d`),
BVMT long delay recall, and Groton Maze recall; and
(4) Executive function: Trails B, Phonemic fluency,
Flanker, and Set-shifting.

Physical assessment
At baseline, 3, 6, and 18 months, all participants under-
went a cycling-based graded exercise test to quantify
peak aerobic capacity (VO2peak) and peak power. All
participants also underwent a dual-energy X-ray absorp-
tiometry (DXA) scan, using a Hologic Discovery Bone
Densitometer (Hologic, USA), in order to quantify vol-
ume of fat, muscle, and bone tissue in the body.

Genotyping
TaqMan genotyping assays were performed [18] to deter-
mine APOE genotype (rs7412, assay ID: C____904973_10;
rs429358, assay ID: C___3084793_20) and BDNF Val66-
Met single nucleotide polymorphism (rs6265, assay ID:
C__11592758_10). Dichotomous variables indicating
APOE ε4 carriers or non-carriers and BDNF Val66Met
carriers or non-carriers were created.

Statistical methods
Analyses were conducted in R statistical computing
packages version 3.6.2 [19] and Statistical Package for
the Social Sciences Version 24 (IBM). Data were
inspected to determine parametric testing was appropri-
ate for all physiological and cognitive variables.

Descriptive statistics
Descriptive statistics were calculated to compare base-
line information across study groups. Analyses of vari-
ance (for continuous variables) and chi-square analyses
(for categorical variables) were conducted to identify
differences.

Intervention group analysis
All participants that completed a baseline assessment
were included in the intention-to-treat (ITT) analyses,
regardless of adherence to session attendance, or study
withdrawal. To examine the effect of study group on
cognition over time, a series of linear mixed models
(LMMs) were conducted. Repeated cognitive composite
scores were entered as dependent variables, and age,
gender, education, time (years), group, and time*group
were entered as fixed factors, and participant identifica-
tion number as a random factor, into the model. Post
hoc group comparisons were conducted for any
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significant time*group interactions (high-intensity as ref-
erence group). LMMs were conducted for baseline and
6-month data only, and then again for baseline, 6-, and
18-month data. We report raw mean change scores from
baseline and 95% confidence intervals, and unstandard-
ized beta coefficients (B) and their standard error. A
positive B represents a positive slope for the moderate/
high-intensity groups, compared with the control group.
We ran LMMs to investigate the moderating effects of

BDNF Val66Met and APOE ε4 carriage on cognitive per-
formance over the intervention. Each LMM had an add-
itional interaction of either BDNF*time*group or APOE
*time*group entered into separate models.

Individual variability analysis
The relationships between change in cognition and
change in cardiorespiratory fitness (VO2peak) from pre-
to post-intervention within the high-intensity group
only, and for all study participants, were examined.

Residualised change scores were generated by entering
post-intervention score as the dependent variable and
pre-intervention score as the independent variable. Lin-
ear models were run with the residualised cognitive
change as the dependent variable and residualised fitness
change as the independent variable (age, gender, and
education as covariates) [20]. For all study participants,
the linear models were re-run with the inclusion of ei-
ther BDNF*fitness change or APOE*fitness change. The
cohort was then stratified by BDNF Val66Met carriage
or APOE ε4 carriage and the linear models re-run.

Results
One hundred and eight participants were enrolled, with
ninety-nine completing all baseline assessments and sub-
sequent randomisation to a study group (Fig. 1; descrip-
tive data, Table 1). Seven participants withdrew during
the 6-month intervention.

Fig. 1 CONSORT diagram for Intense Physical Activity and Cognition study
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Adherence to prescribed intervention
There was no difference in exercise session attendance
between the high-intensity (85.5 ± 12.4%) and moderate-
intensity (86.3 ± 9.8%) groups.
The high-intensity group maintained 120.6 ± 25.1% of

peak aerobic power during the high-intensity intervals,
while the moderate-intensity group cycled continuously
at 70.1 ± 16.3% of peak aerobic power.
There were no serious adverse events recorded.

Group comparisons
A time*group effect was observed for cardiorespiratory fit-
ness, peak aerobic power, and body fat from pre- to post-
intervention (Table 2). The high-intensity group experienced
greater improvements in cardiorespiratory fitness (+ 24.3%)
compared with the moderate-intensity group (+ 12.4%; B=
3.92, p < 0.01), and control group (+ 2.4%; B= 7.36, p <
0.001). The high-intensity group also experienced greater im-
provements in peak aerobic power (+ 29%; B= 55.62, p <
0.001) and decreases in percentage body fat (− 3.5%; B=−
1.59, p < 0.05), compared with the control group (peak
power change, + 1.3%; percentage body fat change, 0.0%).
There were no significant time*group effects on any of

the cognitive composite scores. Main effects for time
were significant for the executive function composite
variable (p < 0.05), likely indicating a small practice effect
experienced on the tasks assessing this cognitive domain.

Similarly, there were no significant effects of the genoty-
pe*time*group interactions on the cognitive composite
scores.

Individual variability analysis
Within the high-intensity group only, changes in cardiore-
spiratory fitness were associated with changes in global
cognitive function (F = 4.91, p < 0.05, ηp

2 = 0.18) and ex-
ecutive function (F = 13.89, p < 0.001, ηp

2 = 0.37; Table 3).
Increases in cardiorespiratory fitness were associated with
improvements in global cognition (F = 4.37, p < 0.05, ηp

2 =
0.06) and executive function (F = 4.83, p < 0.05, ηp

2 = 0.06)
from pre- to post-intervention in the whole sample.
The BDNF*fitness change interaction term was signifi-

cant for global cognition (F = 5.13, p < 0.05, ηp
2 = 0.07),

executive function (F = 4.54, p < 0.05, ηp
2 = 0.06), and

episodic memory (F = 4.96, p < 0.05, ηp
2 = 0.07). Post hoc

analyses of these interactions revealed non-Met carriers
(i.e. BDNF Val/Val homozygotes) received benefit in
terms of a relationship between change in cardiorespira-
tory fitness and global cognitive function (F = 7.52, p <
0.01, ηp

2 = 0.16) and executive function (F = 8.83, p <
0.01, ηp

2 = 0.18; Fig. 2a–c), i.e. greater improvements in
cardiorespiratory fitness were associated with greater im-
provements in cognitive performance post-intervention
among non-Met carriers.

Table 1 Descriptive baseline characteristics of study cohort

High-intensity (n = 33) Moderate-intensity(n = 34) Control (n = 32) Test statistic

Age, years 70.2 ± 5.3 68.4 ± 4.2 68.7 ± 5.9 F = 1.22

Gender, % Female (n) 51.5 (17) 52.9 (18) 59.4 (19) χ2 = 0.79

APOE ε4 allele carriers, % (n) 27.3 (9) 23.5 (8) 28.1 (9) χ2 = 0.90

BDNF Val66Met carriers, % (n) 33.3 (11) 32.4 (11) 50 (16) χ2 = 2.70

Years of education 13.5 ± 2.2 14.2 ± 2.5 14.5 ± 2.1 F = 1.65

Global cognition, MoCA score 26.0 ± 2.1 26.4 ± 2.8 26.7 ± 2.0 F = 0.64

Baseline VO2peak (ml/kg/min) 22.2 ± 6.3 24.7 ± 6.9 22.8 ± 6.1 F = 1.36

Baseline peak power (W) 128.9 ± 49.4 145.0 ± 51.1 126.4 ± 37.1 F = 1.57

Alcohol, Units per week 5.7 ± 5.9 5.1 ± 5.5 6.4 ± 6.1 F = 0.44

Time from baseline to 6-mo assessment (wks) 33.0 ± 3.7 34.7 ± 4.7 34.1 ± 2.3 F = 1.60

Time from baseline to 18-mo assessment (wks) 85.3 ± 3.6 88.3 ± 5.6 87.1 ± 3.9 F = 3.38*

Physical activity (Met.min/wk−1) 4379 ± 3708 4372 ± 2488 3533 ± 1981 F = 0.94

DASS Depression score 2.3 ± 3.0 1.61 ± 2.1 1.7 ± 1.9 F = 0.95

Daily kilojoule intakea 6709 ± 2459 7430 ± 3286 6059 ± 1896 F = 2.01

BMI (kg/m2) 25.8 ± 3.7 26.0 ± 3.9 25.3 ± 3.4 F = 0.30

Waist-hip ratio 0.87 ± 0.08 0.88 ± 0.07 0.88 ± 0.08 F = 0.08

*P < 0.05, post hoc Tukey’s significant difference between high-intensity group and moderate-intensity group. Test statistics determined by one-way analysis of
variance for continuous variables and chi-square for categorical variables. Abbreviations: APOE apolipoprotein E, BDNF Val66Met brain-derived neurotrophic factor
Valine66Methionine single nucleotide polymorphism, BMI body mass index, DASS Depression, Anxiety and Stress Scales, Met.min/wk−1 metabolic minutes per week
(subjective habitual physical activity measurement), MoCA Montreal Cognitive Assessment, VO2peak peak aerobic capacity (fitness measurement), W wattage.
aDaily kilojoule intake quantified from the Cancer Council of Victoria Food Frequency Questionnaire
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We did not observe an effect of APOE*fitness change
on any of the cognitive change scores (Table 3). How-
ever, following stratification by APOE ε4 carriage, only
ε4 carriers demonstrated an association between in-
creases in cardiorespiratory fitness and improvements in
global cognition (F = 4.92, p < 0.05, ηp

2 = 0.23; eFigure 2).

Discussion
The current study compared the impact of 6 months of
supervised high- and moderate-intensity exercise on cog-
nition in a group of cognitively normal older adults. Our
intervention successfully delivered high-intensity exercise
and resulted in greater increases in cardiorespiratory

Table 2 Effects of the exercise interventions on physiological measures and cognitive composite scores

Raw mean change from baseline (95% CI) Time*Group (ITT)
Unstandardized B (standard error)

High-intensity (n = 33) Moderate-intensity (n = 34) Control (n = 32) Baseline to 6 months All timepoints

VO2peak (ml/kg/min) 3.67 (0.72)** 0.35 (0.38)

6 5.40 (4.00, 6.81) 3.02 (1.79, 4.25) 0.55 (− 0.67, 1.77)

18 0.78 (− 0.62, 2.18) − 1.43 (− 2.78, − 0.08) − 0.99 (− 2.85, 0.86)

Peak power (Watts) 27.33 (4.24)** 3.18 (2.51)

6 37.2 (29.4, 45.1) 29.5 (20.6, 38.4) 1.60 (−3.12, 6.33)

18 7.2 (− 0.6, 15.1) 0.14 (−6.56, 6.85) − 9.59 (− 16.7, − 2.43)

% Body fat − 0.80 (0.37)* − 0.09 (0.23)

6 −1.04 (− 1.83, − 0.25) − 0.48 (− 1.05, 0.10) 0.00 (− 0.64. 0.63)

18 1.73 (0.39, 3.07) 2.64 (1.85, 3.44) 1.97 (0.70, 3.24)

Global Cognitive composite − 0.04 (0.07) − 0.02 (0.03)

6 0.11 (− 0.03, 0.24) 0.19 (0.09, 0.28) 0.13 (− 0.02, 0.27)

18 0.18 (0.05, 0.30) 0.21 (0.07, 0.34) 0.23 (0.08, 0.38)

Executive function composite 0.00 (0.09) 0.02 (0.04)

6 0.17 (− 0.00, 0.34) 0.31 (0.14, 0.49) 0.13 (− 0.03, 0.30)

18 0.30 (0.12, 0.47) 0.31 (0.06, 0.56) 0.18 (0.00, 0.35)

Episodic memory composite 0.02 (0.11) − 0.04 (− 0.04)

6 0.19 (− 0.04, 0.43) 0.15 (− 0.00, 0.30) 0.13 (− 0.07, 0.34)

18 0.20 (− 0.04, 0.43) 0.25 (0.07, 0.44) 0.32 (0.12, 0.53)

Attention composite 0.01 (0.15) − 0.03 (0.05)

6 − 0.17 (− 0.50, 0.15) 0.11 (− 0.12, 0.35) − 0.22 (− 0.48, 0.04)

18 − 0.09 (− 0.30, 0.13) − 0.02 (− 0.26, 0.23) − 0.10 (− 0.33, 0.13)

n = 99. *p < 0.05, **p < 0.001. Baseline to 6 months is pre- to immediately post-intervention. ‘All timepoints’ includes the full study period of baseline, 6 months,
and an 18-month follow-up (i.e. 12 months post-intervention). Abbreviations: CI confidence intervals, ITT intention-to-treat analyses, VO2peak peak aerobic capacity
(fitness measurement). All models include age, gender, and years of education as covariates

Table 3 Changes in cardiorespiratory fitness (residuals) and cognitive function (residuals) from pre- to immediately post-intervention

Independent variable (F statistic)

Dependent variablea High-intensity
group

Whole cohort

Fitness changea Fitness
changea

Fitness changea x BDNF
Val66Met

Fitness changea x APOE ε4
carriage

Global Cognition change 4.91* 4.37* 5.13* 2.50

Executive Function
change

13.89** 4.83* 4.54* 0.33

Episodic Memory change 0.68 0.84 4.96* 2.57

Attention change 0.94 2.23 0.01 0.13
aResidualised change scores created from a linear model where the baseline score was entered as an independent variable and post score (6 months) as the
dependent variable. *p < 0.05, **p < 0.001. Covariates: age, gender, years of education. Abbreviations: APOE apolipoprotein E, BDNF Val66Met brain-derived
neurotrophic factor Valine66Methionine single nucleotide polymorphism
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fitness, compared with the moderate-intensity group. We
did not observe any beneficial effects to cognition when
comparing group performance from pre- to post-
intervention. However, changes in cardiorespiratory fit-
ness from pre- to post-intervention were associated with
changes in global cognition and executive function in the
high-intensity group, and the entire cohort. From explora-
tory genetic analyses, we observed moderating effects of
the BDNF Val66Met polymorphism, whereby the relation-
ship between change in cognition and change in fitness
was only evident in Val/Val homozygotes (i.e. non-Met
carriers).
When examining the group-level data, we found no ef-

fect of either the high- or moderate-intensity exercise in-
terventions on cognitive performance. These findings
are inconsistent with a recent RCT which demonstrated
improvements on a single high-interference memory
task, following a 12-week high-intensity exercise inter-
vention, compared to moderate-intensity exercise [8]. As
the cohort within the current study and that investigated
by Kovacevic et al. were similar for age, cognitive status,
and health, a methodological difference between studies
may instead account for the disparate findings. It is pos-
sible that more frequent exercise, at least thrice-weekly
(delivered by Kovacevic and colleagues), is required to
induce cognitive benefit, even with a shorter interven-
tion period (12 weeks). Indeed, the induction of neuro-
trophic factors (e.g. BDNF) may be required on a more
‘frequent’ basis to contribute to detectable neural bene-
fits [21]. It would not be surprising that duration and
frequency, in addition to intensity, play an important
role in exercise-induced cognitive response. Thus, future
studies are required to further elucidate the optimal ex-
ercise parameters for benefiting cognition.
Within the entire cohort, and high-intensity group

alone, changes in cardiorespiratory fitness were associ-
ated with changes in global cognitive performance and
executive function from pre- to post-intervention, with

moderate to high effect sizes observed. These data sup-
port prior work that has reported relationships between
exercise-induced improvements in cardiorespiratory fit-
ness and cognitive changes [13, 20, 22, 23]. The high-
intensity exercise intervention in the current study in-
creased cardiorespiratory fitness levels greater than prior
similar RCTs in older adults (typically 10–15% increases)
[8, 13, 24]. It therefore remains puzzling as to why the
observed associations between changes in cardiorespira-
tory fitness and cognition did not yield group-level dif-
ferences in cognitive outcomes. While it is possible that
individuals with the poorest baseline cognition and fit-
ness levels were more likely to experience fitness-
associated cognitive improvement irrespective of exer-
cise intervention, our statistical analysis at least partially
corrected for this potential bias. It is also important to
consider whether the cognitive assessments used within
this generally high-functioning sample were sensitive
enough to detect differences between groups.
We conducted an exploratory analysis to examine

whether important genetic factors play a role in deter-
mining cognitive response following the delivered exer-
cise intervention, and it is important to note that these
analyses may have been underpowered. The associations
between changes in cardiorespiratory fitness and global
cognition, executive function, and episodic memory were
strongest in BDNF Val/Val homozygotes. Increases in
BDNF levels are one of the most well-supported mech-
anistic theories underlying the relationship between ex-
ercise and brain health [25]. BDNF is synthesised in cells
as a precursor molecule (pro-BDNF), which undergoes
proteolytic cleavage to yield the mature form. Carriage
of the BDNF Met allele can negatively alter the process-
ing of pro-BDNF to mature BDNF in neurons: validation
of our preliminary findings by future work would sug-
gest that exercise may not be potent enough to counter-
act this detrimental phenotype. Consistent with our
findings, a recent systematic review on this topic

Fig. 2 Linear relationships between change in cardiorespiratory fitness (residuals) and change in a global cognition (residuals), b episodic memory
(residuals), and c executive function (residuals); from pre- to immediately post-intervention (6months) in BDNF Val66Met carriers and non-Met carriers.
Abbreviations: BDNF Val66Met, brain-derived neurotrophic factor Valine66Methionine single nucleotide polymorphism; VO2peak, peak aerobic capacity
(fitness measurement)
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revealed Val/Val homozygotes are more likely to gain
benefit from exercise in terms of better memory per-
formance, compared with Met carriers [26]. Moreover,
we also observed a relationship between fitness and glo-
bal cognition in APOE ε4 carriers, but not non-carriers;
however, the interaction term APOE*fitness change was
not significant (indicating that a moderating effect does
not exist). It is likely that combinations of genetic factors
influence the relationship between cardiorespiratory fit-
ness and cognition. Previous studies have detected cu-
mulative effects of APOE ε4 carriage and BDNF
Val66Met carriage on cognitive decline [27]; however,
our study was not sufficiently powered to examine the
APOE*BDNF interaction. Consequently, appropriately
powered exercise interventions coupled with hypothesis-
driven genetic investigation may reveal more on the abil-
ity of exercise to either provide added benefit to those
with optimal genetic factors, or alternatively counteract
detrimental genotypes.

Strengths and limitations
The lack of an active control group within the current
study contributed to differences in exposure (e.g. social
interactions) between our exercise groups and inactive
control groups. Nevertheless, as we did not detect group
differences across cognitive outcomes, this is unlikely to
have affected the results reported here. Our cohort was
a generally homogenous sample of highly educated, Cau-
casian older adults living in the community, and our re-
sults may not be applicable to the wider population.
Strengths of the study include the three-group design
that aimed to detect intensity differences, and our ability
to objectively examine intensity levels throughout the
intervention. Indeed, our use of rate of perceived exer-
tion to monitor within-subject intensity proved to be an
effective method in our older adult cohort, allowing indi-
viduals to maintain appropriate intensity targets without
the need for frequent testing or the use of monitoring
equipment (e.g. heart rate monitors).

Conclusions
We found that in a cohort of cognitively normal older
adults, 6 months of supervised high-intensity and
moderate-intensity exercise did not directly contribute
to improvements in cognition, compared to an inactive
control group. Our data did, however, demonstrate that
changes in cardiorespiratory fitness were associated with
cognitive change from pre- to post-intervention. Fur-
thermore, our exploratory analysis of important genetic
factors provided preliminary evidence that APOE and
BDNF genotypes may affect the relationship between
cardiorespiratory fitness and cognitive change. Overall,
our data does not provide evidence that high-intensity
exercise can contribute to cognitive change in all

individuals. Future work in this field should be appropri-
ately designed and powered to examine numerous fac-
tors that could contribute to individual variability in
response to intervention, ultimately leading to individua-
lised prescription of exercise to induce cognitive change
and ultimately reduce dementia risk.
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