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Abstract

There is a high rate of failure in Alzheimer’s disease (AD) drug development with 99% of trials showing no drug-
placebo difference. This low rate of success delays new treatments for patients and discourages investment in AD
drug development. Studies across drug development programs in multiple disorders have identified important
strategies for decreasing the risk and increasing the likelihood of success in drug development programs. These
experiences provide guidance for the optimization of AD drug development. The “rights” of AD drug development
include the right target, right drug, right biomarker, right participant, and right trial. The right target identifies the
appropriate biologic process for an AD therapeutic intervention. The right drug must have well-understood
pharmacokinetic and pharmacodynamic features, ability to penetrate the blood-brain barrier, efficacy demonstrated
in animals, maximum tolerated dose established in phase I, and acceptable toxicity. The right biomarkers include
participant selection biomarkers, target engagement biomarkers, biomarkers supportive of disease modification, and
biomarkers for side effect monitoring. The right participant hinges on the identification of the phase of AD
(preclinical, prodromal, dementia). Severity of disease and drug mechanism both have a role in defining the right
participant. The right trial is a well-conducted trial with appropriate clinical and biomarker outcomes collected over
an appropriate period of time, powered to detect a clinically meaningful drug-placebo difference, and anticipating
variability introduced by globalization. We lack understanding of some critical aspects of disease biology and drug
action that may affect the success of development programs even when the “rights” are adhered to. Attention to
disciplined drug development will increase the likelihood of success, decrease the risks associated with AD drug
development, enhance the ability to attract investment, and make it more likely that new therapies will become
available to those with or vulnerable to the emergence of AD.
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Introduction
Alzheimer’s disease (AD) is rapidly increasing in fre-
quency as the world’s population ages. In the USA,
there are currently an estimated 5.3 million individ-
uals with AD dementia, and this number is expected
to increase to more than 13 million by 2050 [1, 2].
Approximately 15% of the US population over age 60
has prodromal AD and nearly 40% has preclinical AD
[3]. Similar trends are seen globally with an antici-
pated worldwide population of AD dementia patients
exceeding 100 million by 2050 unless means of delay-
ing, preventing, or treating AD are found [4]. The

financial burden of AD in the USA will increase from
its current $259 billion US dollars (USD) annually to
more than $1 trillion USD by 2050 [5]. The cost of
AD to the US economy currently exceeds that of can-
cer or cardiovascular disease [6].
Amplifying the demographic challenge of the rising

numbers of AD victims is the low rate of success of the
development of AD therapies. Across all types of AD
therapies, the failure rate is more than 99%, and for dis-
ease-modifying therapies (DMTs), the failure rate is
100% [7, 8]. These numbers demand a re-examination of
the drug development process. Success in other fields
such as cancer therapeutics can be helpful in guiding
better drug discovery and development practices of AD
treatments. For example, 12 of 42 (28%) drugs approved
by the US Food and Drug Administration (FDA) in 2017
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were oncology therapies (www.fda.gov); this contrasts
with 0% of AD drugs in development. There are cur-
rently 112 new molecular entities in clinical trials in AD,
whereas there are 3558 in cancer trials [9, 10]. Success
in cancer drug development attracts funding and leads
to more clinical trials, accelerating the emergence of
new therapies. This model can assist in improving AD
drug development.
Patient care increasingly demands precision medicine

with the right drug, in the right dose, administered to
the right patient, at the right time [11–13]. Precision
medicine requires precision drug development. Effective
medications, delivered in a correct dose, to a patient in
the stage of the illness that can be impacted by therapy
requires that these precision treatment characteristics be
determined in a disciplined drug development program
[14]. Drug development sponsors have developed sys-
tematic approaches to drug testing including the “rights”
of drug development [15, 16], the “pillars” of drug devel-
opment [17], model-based drug development [18, 19],
and a translational medicine guide [20]. These ap-
proaches are appropriate across therapeutic areas, and
none have been applied specifically to AD drug develop-
ment. Building on these foundations, we describe a set
of “rights” for AD drug development which are aligned
with precision drug development. We consider lessons
derived from drug development across several fields as
well as learnings from recent negative AD treatment tri-
als [14, 17, 21, 22]; we note the areas where success in
the “right” principles is pursued. These “rights” for drug
development are not all new innovations, but recent re-
views of the AD drug pipeline show that they are often
not implemented [16, 23, 24]. We consider how the
“rights” will strengthen the AD drug discovery and de-
velopment process, increase the likelihood of success,
de-risk investment in AD therapeutic research, and spur
interest in meeting the treatment challenges posed by
the coming tsunami of patients.
Figure 1 provides an overview of the “rights of AD

drug development.”

The right target
AD biology is complex, and only one target—the cholin-
ergic system—has been fully validated through multiple
successful therapies. Four cholinesterase inhibitors have
been found to improve the dual outcomes of cognition
plus function or cognition plus global status in patients
with AD dementia [25, 26]. The successful development
of memantine supports the validity of the N-methyl-D-
aspartate (NMDA) receptor as a viable target, although
only one agent has been shown to exert a therapeutic ef-
fect when modulating this receptor [27, 28]. A combin-
ation agent (Namzaric) addressing these two targets has
been approved, establishing a precedent for combination

therapy of two approved agents in AD [29]. Cholinester-
ase inhibitors have shown benefit in mild, moderate, and
severe AD dementia [26]; memantine is effective in
moderate and severe AD dementia [30]. No agent has
shown benefit in prodromal AD (pAD), mild cognitive
impairment (MCI), or preclinical AD [31].
No other target has been validated by successful

therapy; all agents currently in development are unval-
idated at the level of human benefit. Several targets
are partially supported by biological and behavioral ef-
fects in animal models, and some agents have shown
beneficial effects in preliminary clinical trials [32]. The
lack of validation of a target by a specific trial does
not disprove its worthiness for drug development; val-
idation depends on concurrent conduct of other
“rights” in the development program.
For an agent to be a DMT, the candidate drug treat-

ment must meaningfully intervene in disease processes
leading to nerve cell death [33] and be druggable (e.g.,

Fig. 1 The rights of AD drug development
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modifiable by a small molecule agent or immunotherapy
[34, 35]). Viable targets must represent critical non-re-
dundant pathways necessary for neuronal survival. Ideal
targets have a proven function in disease pathophysi-
ology, are genetically linked to the disease, have greater
representation in disease than in normal function, can
be assayed using high-throughput screening, are not uni-
formly distributed throughout the body, have an associ-
ated biomarker, and have a favorable side effect
prediction profile [36]. Druggability relates to proteins,
peptides, or nucleic acids with an activity that can be
modified by a treatment [35].
A current National Institute of Health (NIH) ontology

of candidate targets in AD includes amyloid-related
mechanisms, tau pathways, apolipoprotein E e-4 (ApoE-
4), lipid metabolism, neuroinflammation, autophagy/pro-
teasome/unfolded protein response, hormones/growth
factors, dysregulation of calcium homeostasis, heavy
metals, mitochondrial cascade/mitochondrial uncoup-
ling/antioxidants, disease risk genes and related path-
ways, epigenetics, and glucose metabolism [37, 38].
Other mechanisms may emerge; highly influential nodes
in networks may be identified through systems pharma-
cology approaches; and opportunities or requirements
for combination therapies may be discovered. Genetic
editing techniques are increasingly used in experimental
treatment paradigms, and RNA interference approaches
show promise in non-AD neurodegenerative disorders
[39]. With the recognition that late-life sporadic AD fre-
quently has multiple contributing pathologies, identify-
ing a single molecular therapeutic target whose
manipulation is efficacious in all affected individuals
may not be forthcoming [40–43].
Analysis of predictors of success in drug development

programs shows that agents linked to genetically defined
targets have a greater chance of being advanced from
one phase to the next than drugs that address targets
having no genetic links to the underlying disease [15,
21]. Transgenic (tg) animal models and knockout and
knockin models of disease can add to the genetic evi-
dence for a target. Genes can help prioritize drug candi-
dates as well as support target validation [44]. Genes
implicate potentially druggable pathways and networks
involved in AD pathogenesis [45, 46]. Genetic linkages
to amyloid precursor protein (APP), beta-site amyloid
precursor protein cleavage enzyme (BACE), gamma-
secretase, ApoE, tau metabolism, and immune function
are elements within the pathophysiology of AD with
identified genetic influences [47]. A coding mutation in
the APP gene, for example, results in a 40% reduction in
amyloid beta protein (Aβ) formation and a substantial
reduction in the risk of AD [48]. This observation sup-
ports exploring the use of APP-modifying agents for the
treatment and prevention of AD.

Defining the “right target” (or combination of targets)
is currently the weakest aspect of AD drug discovery
and development. The absence of a deep understanding
of AD biology or focus on inappropriate targets will re-
sult in drug development failures regardless of how well
the drug development program is conducted. This em-
phasizes the importance of investment by the National
Institutes of Health (NIH), non-US basic biology initia-
tives, foundations, philanthropists, and others in the fun-
damental understanding of AD biology and identifying
druggable targets and pathways [49].

The right drug
Clinical drug development is guided by defining a target
product profile (TPP) describing the desirable and ne-
cessary features of the candidate therapy. The TPP es-
tablishes the goals of the development program, and
each phase of a program is a step toward fulfilling the
TPP [50, 51]. Drugs with TPP-driven development plans
have a higher rate of regulatory success than those with-
out [50].
Characterizing a candidate therapy begins with screen-

ing assays of the identified target in preclinical discovery
campaigns, identifies a lead candidate or limited set of
related candidates, continues through establishing the
pharmacokinetic (PK) and pharmacodynamic (PD) fea-
tures in non-clinical animal models, gains refined PK
and safety information with first-in-human (FIH) expos-
ure in phase 1 clinical trials, and accrues greater PD and
dose-response information in phase 2 trials. Finally, fully
powered trials for clinical efficacy are undertaken in
phase 3 with efficacy confirmation [52]. Safety data are
collected throughout the process.
Preliminary characterization of the molecule as a treat-

ment candidate showing the desired effect in the screen-
ing assay starts by determining that it has drug-like
properties including molecular weight of ≤ 500 Da, bond
features that support membrane penetration including
the blood-brain barrier (BBB), no “alerts” that predict
toxicity [53, 54], and chemical properties that suggest
scalable manufacture and formulation [55, 56]. If the
molecule has these encouraging properties, its absorp-
tion, distribution, metabolism, excretion, and toxicity
(ADMET) are determined in non-clinical models [57].
BBB penetration must be shown in humans in the

course of the drug development program during
phase 1 [53]. The human BBB has p-glycoprotein
transporters and other mechanisms that may not be
present in rodents, and central nervous system (CNS)
penetration in animal models of AD is not a suffi-
cient guide to human CNS entry [58]. Measurement
of CNS levels in non-human primates more closely
reflects the human physiology, but direct measures of
cerebrospinal fluid (CSF) levels in phase 1 human
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studies are required in a disciplined drug develop-
ment program. CSF levels allow the determination of
plasma/CSF ratios and help establish whether periph-
eral levels predict CNS exposures and whether CSF
levels are compatible with those showing therapeutic
effects in animal models of AD [59, 60]. CSF levels
are an acceptable proxy for brain levels but leave
some aspects of brain entry, neuronal penetration,
and target exposure unassessed [61]. Understanding
the PK/PD principles at the site of exposure of the
agent to the target is one of the three pillars of drug
development proposed by Morgan et al. [17]. Challen-
gesin achievingtarget exposure is one reason for drug
development failures in otherwise well-conducted pro-
grams. Tarenflurbil, for example, was shown to have
poor BBB penetration after the development program
was completed [62].
The “right drug” has shown efficacy in non-clinical

models of AD. These models have not predicted success
in human AD but advancing an agent to human testing
without efficacy in animal models would add additional
risk to the development program. A common strategy in-
volves using genetic technologies to establish tg species
bearing one or more human mutations leading to the
overproduction of Aβ [63, 64]. These animals develop
amyloid plaques similar to those of human AD but lack
neurofibrillary tangles or cell death and are only partial
simulacra of human AD [65]. They more closely resemble
autosomal dominant AD with mutation-related overpro-
duction of Aβ than typical late-onset AD where clearance
of Aβ is the principal underlying problem [66, 67]. Activity
in several AD models should be demonstrated to increase
confidence in the robustness of the mechanism of the can-
didate agent [68]. There are recent efforts to more closely
model human systems biology using human induced
pluripotent stem cell (IPSC) disease models for drug
screening [69–71].
Demonstration that the agent has neuroprotective ef-

fects is critical to the definition of DMT [33, 52], and
interference in the processes leading to cell death should
be established prior to human exposure. Many programs
have shown effects on Aβ without documenting an im-
pact on neuroprotection; more thorough exploration
and demonstration of neuroprotection in non-clinical
models may result in agents that exert greater disease
modification in human trials.
Phase 1 establishes the PK features and ADMET char-

acteristics of the candidate compound in humans. Sev-
eral drug doses are assessed, first in single ascending
dose (SAD) studies and then in multiple ascending dose
(MAD) studies. A maximum tolerated dose (MTD)
should be established in phase 1; without this, failure to
show efficacy in later stages of development will invari-
ably raise the question of whether the candidate agent

was administered at a too-low dose. In some cases, re-
ceptor occupancy studies with positron emission tomog-
raphy (PET), saturation of active transport mechanisms,
physical limits on the amount of drug that can be ad-
ministered, or dose-response curves that remain flat
above specific doses obviate the need or the ability to
demonstrate an MTD. In all other circumstances, an
MTD should be established during phase 1 [72]. MTDs
have been difficult to establish for monoclonal anti-
bodies (mAbs), and decisions are often based on feasibil-
ity rather than established PK/PD relationships [5]. The
decision to increase the doses of mAbs by several folds
in recent trials after phase 2 or 3 trials showed no drug-
placebo difference (e.g., solanezumab, crenezumab, gan-
tenerumab, aducanumab) demonstrates the difficulty of
establishing dose and PK/PD relationships of mAbs; the
absence of understanding of PK/PD for mAbs may have
contributed to the failure of development programs for
these agents. Formulation issues should be resolved
prior to evaluating the MTD to ensure that formulation
challenges do not prevent the assessment of a full range
of doses.
Phase 2 studies establish dose and dose-response rela-

tionships. Showing a dose-response association increases
confidence in the biological effects of an agent and de-
risks further development. The response may be a clinical
outcome or a target engagement biomarker linked to the
mechanism of action (MOA) of the agent [73–75]. An ac-
ceptable dose-response approach includes a low dose with
no or little effect, a middle dose with an acceptable bio-
logical or clinical outcome, and a high dose that is not well
tolerated or raises safety concerns. After the exploration
of the dose-response range in phase 2, one or two doses
are advanced to phase 3 and will include the final dose(s)
of the package insert of information for prescribers and
patients. Using a Bayesian dose-finding approach to decide
which of 5 BAN2401 doses to advance to phase 3 is an ex-
ample of dose-finding in phase 2 of a development pro-
gram [76].
The “right drug” has acceptable toxicity. Safety assess-

ment begins with a review of structural alerts of the
molecule predictive of toxicity such as hepatic injury
assessed as part of lead candidate nomination and pro-
ceeds through evaluations of target organ toxicity in sev-
eral animal species—typically a rodent species and a dog
species [77, 78]. Given an acceptable non-clinical safety
profile, the agent is advanced to phase 1 for a FIH as-
sessment of safety in the clinical setting with the deter-
mination of the MTD. Safety and tolerability data
continue to accrue in phase 2 and phase 3 trials. The
number of human exposures remains relatively low until
phase 3, and important toxicity observations may be de-
layed until the late phases of drug development. Semage-
cestat, avagecestat, and verubecestat were all in phase 3
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before cognitive toxicity was identified as an adverse
event [79–81]. Some toxicities may not be identified
until after approval and widespread human use. Vigi-
lance for toxic effects of agents does not stop with drug
approval and continues through the post-approval and
marketing period [82]. AD is a fatal illness and—like
life-extending cancer therapies—side effects of treatment
may be an acceptable trade-off for slowing cognitive de-
cline and maintaining quality of life [83].
The “right drug” at the end of phase 3 has demon-

strated the specified features of the TPP, including effi-
cacy and safety, and meets all the requirements for
approval by the FDA, the European Medicines Agency
(EMA), and other regulatory authorities as an AD ther-
apy [50]. From an industry perspective, the “right” drug
has substantial remaining patent life, is competitive with
other agents with similar mechanisms, and will be ac-
ceptable to payers with reimbursement rates that make
the development of the agent commercially attractive
[15, 21]. The “right” features of the candidate agent can
be scored with a translatability score that allows com-
parison and prioritization of agents for their readiness to
proceed along the translational pathway to human test-
ing and through the phases of clinical trials [84, 85].
Greater use of translational metrics may enhance the
likelihood of drug development success [86].

The right biomarker
Biomarkers play many roles in drug development and
are critical to the success of development programs
(Table 1) [48]. Including biomarkers in development
plans has been associated with greater success rates
across therapeutic areas [15, 21, 87]. The use of several
types of biomarkers (predictive, prognostic) in develop-
ment programs is associated with higher success rates in
trials compared to trials with no or few biomarkers [88].

The “right” biomarker varies by the type of information
needed to inform a development program and the spe-
cific phase of drug development. Despite their import-
ance, no biomarker has been qualified by the FDA for
use across development programs [89].
The amyloid (A), tau (T), and neurodegeneration (N)

framework provides an approach to diagnosis and moni-
toring of AD and helps guide the choice of biomarkers
for drug development [90, 91]. “A” biomarkers (amyloid
positron emission tomography [PET], CSF Aβ) support
the diagnosis of AD; “A” and “T” (tau PET; CSF phos-
pho-tau) biomarkers are pharmacodynamic biomarkers
that can be used to demonstrate target engagement with
Aβ or tau species; and “N” (magnetic resonance imaging
[MRI], fluorodeoxyglucose PET, CSF total tau) bio-
markers are pharmacodynamic markers of neurodegen-
eration that can provide evidence of neuroprotection
and disease modification [33]. Additional markers for
“N” are evolving, including neurofilament light (NfL)
chain, which has shown promise in multiple sclerosis
(MS) trials and preliminary AD trials [92]. Markers of
synaptic degeneration such as neurogranin may also
contribute to the understanding of therapeutic impact
on “N” in AD. Emerging biomarkers are gaining credibil-
ity and will add to or amplify the ATN framework ap-
plicable to drug development [93].
In AD trials, biomarkers are needed to support

the diagnosis. In prevention trials involving cogni-
tively normal individuals, genetic trait biomarkers
are used to establish the risk state of the individual
or state biomarkers are employed to demonstrate
the presence of AD pathology. In trials of treat-
ments for autosomal dominant AD, demonstration
of the presenilin 1, presenilin 2, or APP mutation is
required in the trial participants [94, 95]. Similarly,
in trials involving ApoE-4 homozygotes or

Table 1 Role of biomarkers in AD drug development

Role in trial Examples of biomarker used

Identification of trial population Presence of presenilin 1 (PS1), presenilin 2 (PS2), or amyloid precursor protein (APP) mutations; ApoE-4 plus
TOMM40; trisomy 21

Confirmation of diagnosis; exclude non-
AD diagnoses

Amyloid imaging; CSF AD signature

Prognosis and course projection In MCI, ApoE-4 carriers progress more rapidly

Amyloid production and clearance
(target engagement)

Stable isotope-labeled kinetics (SILK); BACE activity reduction with BACE inhibitor; CSF Aβ reduction by
BACE inhibitor or gamma-secretase inhibitor

Impact of therapy on brain circuit and
network function

fMRI; EEG

Impact of therapy on intermediate
targets

Amyloid imaging; CSF amyloid; tau PET; CSF phospho-tau

Disease modification MRI atrophy; CSF total tau; FDG PET; neurofilament light

Stratification for trial analysis ApoE-4 genotype

Side effect monitoring MRI surveillance for amyloid-related imaging abnormalities (ARIA); liver function tests; complete blood
counts; electrocardiography
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heterozygotes or AD in Down syndrome, appropri-
ate testing of chromosome 19 polymorphisms or
chromosome 21 triplication is required [96]. A com-
bination of ApoE-4 and TOMM-40 has been used
to attempt to show the risk and age of onset of AD
[97]. State biomarkers useful in preclinical diagnosis
include amyloid PET and the CSF Aβ/tau signature
of AD [98, 99]. Tau PET may be useful in identify-
ing individuals appropriate for tau-targeted interven-
tions or for measuring success in reducing the
propagation of tau pathology [100].
A substantial number of individuals with a clinical

diagnosis of AD have been shown to lack amyloid
plaque deposition when studied with amyloid imaging.
Forty percent of patients diagnosed clinically with
prodromal AD and 25% of those diagnosed with mild
AD dementia lack evidence of amyloid pathology
when studied with amyloid PET [52, 101]. Those with
suspected non-amyloid pathology (SNAP) have un-
determined underlying pathology and may not re-
spond to proposed AD therapies. SNAPs may not
decline in the expected manner in the placebo group,
compromising the ability to demonstrate a drug-pla-
cebo difference [102]. SNAPs should be excluded
from AD trials; the “right” biomarker for this includes
amyloid imaging, the CSF AD signature, or tau im-
aging in patients with the AD dementia phenotype. In
the idalopirdine development program, no enrichment
strategies were used and power calculations showed
that more than 1600 participants per arm would be
needed to show a drug-placebo difference. With en-
richment based on amyloid abnormalities, the decline
was more rapid and the predicted sample size per
arm to show a drug-placebo difference was 148 [103].
Target engagement biomarkers are the “missing link”

in many development programs. Having shown that the
candidate agent affects the target pathology in preclinical
models and is safe in phase 1, sponsors have sometimes
advanced through minimal phase 2 studies or directly to
phase 3 [22] without showing that the drug treatment
has meaningfully engaged the target in humans. Well-
conducted phase 2 studies are a critical element of prin-
cipled drug development and will provide two key pieces
of information: target engagement and doses to be
assessed in phase 3 [73, 74]. Phase 2 provides the plat-
form for deciding if the candidate agent is viable for fur-
ther development [75]. Target engagement may be
shown directly, for example, with PET receptor occu-
pancy studies or indirectly through proof-of-pharmacol-
ogy [104, 105]. Examples of proof-of-pharmacology in
AD drug development include the demonstration of re-
duced Aβ production using stable isotope-labeled kinet-
ics (SILK) [106], reduced CSF Aβ with BACE inhibitors
[107], glutaminyl cyclase enzyme activity with

phosphodiesterase inhibitors [108], and increased Aβ
fragments in the plasma and CSF with gamma-secretase
inhibitors and modulators [109]. Candidate target en-
gagement/proof-of-pharmacology biomarkers include
peripheral indicators of inflammation and oxidation for
use in trials of anti-inflammatory and antioxidant com-
pounds. Sponsors of drug development should advance
markers of target engagement in concert with the candi-
date therapy; these may be used after regulatory ap-
proval as companion or complementary biomarkers
[110, 111]. Demonstration of target engagement does
not guarantee efficacy in later stages of development,
but target engagement shown by the “right” biomarker
provides important de-risking of a candidate treatment
by showing biological activity that may translate into
clinical efficacy. Semagecestat’s effect on Aβ production
in the CSF and aducanumab’s plaque-lowering effect are
examples where target engagement was demonstrated in
phase 2 or phase 1B, and the agents still failed to show a
beneficial drug-placebo difference in later-stage trials
[32, 109]. Target engagement and proof-of-pharmacol-
ogy are “pillars” of successful drug development [17].
Changes in the basic biology of AD—amyloid gener-

ation, tau aggregation, inflammation, oxidation, mitochon-
drial dysfunction, neurodegeneration, etc.—are linked to
human cognition through neural circuits whose integrity
is critical to normal memory and intellectual function
[112]. Two techniques of assessing neural networks are
electroencephalography (EEG) and functional magnetic
resonance imaging (fMRI). In cognitively normal individ-
uals with positive amyloid PET and low levels of tau as
shown by tau PET, fMRI measures of the default mode
network (DMN) reveal hyperactive circuit functions. In
those with elevated amyloid and elevated tau levels, the
circuits become hypoactive compared to age-matched
controls [113, 114]. Decline in circuit function predicts
progressive cognitive impairment [115]. Disrupted DMN
function is present in prodromal AD and in AD dementia
[116, 117]. Assessment of DMN integrity may be an im-
portant biomarker with predictive value for the impact of
the intervention on clinical outcomes [112]. EEG is
dependent on the intact network function and may have
applications in AD drug development similar to, but more
robustly, than those of fMRI [108, 118, 119]. Both EEG
and fMRI require procedural and interpretative
standardization to be implemented in multi-site trials. A
recent alternative for the assessment of circuit integrity in
AD is SV2A PET, targeting and visualizing the synaptic
network and currently under study as a possible measure
of target engagement for drugs aiming to influence synap-
tic function [120].
Amyloid imaging is a target engagement biomarker es-

tablishing reduction of plaque amyloid [111]. Several
monoclonal antibodies have shown a dose and time-
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dependent plaque reduction. In a phase 1B trial, aduca-
numab achieved both significant plaque reduction and
benefit on some clinical measures with evidence of a
dose-response relationship [32]. The beneficial effect
was not recapitulated in a phase 3 trial. Bapineuzumab
and gantenerumab decreased plaque Aβ but had no cor-
responding impact on cognition or function in the doses
studied [121, 122]. Removal of plaque amyloid may be
necessary but not sufficient for a therapeutic benefit of
anti-amyloid agents or may be a coincidental marker of
engagement of a broad range of amyloid species includ-
ing those required for a therapeutic response. Tau PET
assesses target engagement by anti-tau therapeutics; re-
duced tau burden or reduced tau spread would indicate
a therapeutic response [123]. Aβ and tau signals do not
measure neuroprotection and are not necessarily evi-
dence of disease modification (DM).
Biomarkers play a critical role in demonstrating DM

in DMT development programs. Evidence of neuro-
protection is essential to support DM, and structural
magnetic resonance imaging (MRI) is the current bio-
marker of choice for this purpose. Hippocampal atro-
phy has been linked to progressive disease and to
nerve cell loss [124–126]. In clinical trials, MRI has
often not fulfilled expectations, and atrophy has
sometimes been greater in the treatment groups than
in the placebo controls [127, 128]. Recent studies
have shown drug-placebo differences on MRI in the
anticipated direction suggesting that MRI may be an
important DM marker depending on the underlying
MOA of the agent. As noted, serum and CSF bio-
markers of neurodegeneration such as NfL and synap-
tic markers have promise to assess successful DMTs
but have been incorporated into relatively few AD tri-
als [129]. CSF measures of total tau may be closely
related to neurodegeneration and provide useful evi-
dence of the impact on cell death [130, 131].
Biomarkers could eventually have a role as surrogate

outcomes for AD trials if they are shown to be pre-
dictive of clinical outcomes. Currently, no AD bio-
marker has achieved surrogate status, and biomarkers
are used in concert with clinical outcomes as measures
of treatment effects.
Biomarkers have a role in monitoring side effects in the

course of clinical trials. Liver, hematologic, and cardiac ef-
fects are monitored with liver function tests, complete
blood counts, and electrocardiography, respectively. Ata-
becestat, for example, is a BACE inhibitor whose develop-
ment was interrupted by the emergence of liver toxicity
[132]. Amyloid-related imaging abnormalities (ARIA) of
the effusion (ARIA-E) or hemorrhagic (ARIA-H) type may
occur with MAbs and are monitored in trials with serial
MRI [133]. ARIA has been observed with bapineuzumab,
gantenerumab, aducanumab, and BAN2401 [32, 134, 135].

The right participant
AD progresses through a spectrum of severity from cog-
nitively normal amyloid-bearing preclinical individuals,
to those with prodromal AD or prodromal/mild AD de-
mentia and, finally, to those with more severe AD de-
mentia [136, 137] (Fig. 2). Based on this model, trials
can target primary prevention in cognitively normal in-
dividual with risk factors for AD but no state biomarkers
indicative of AD pathology, secondary prevention in pre-
clinical AD participants who are cognitively normal but
have positive state biomarkers (positive amyloid PET,
low CSF Aβ), and treatment trials aimed at slowing dis-
ease progression in prodromal or prodromal/mild AD
dementia or mild, moderate, and severe AD dementia
(Fig. 2). Although AD represents a seamless progression
from unaffected to severely compromised individuals,
participants can be assigned to the progressive phases
based on genetic markers, cognitive and functional as-
sessments, amyloid imaging or CSF Aβ and tau mea-
sures, tau imaging, and MRI [52, 136, 137]. The ATN
Framework is designed to guide the identification of the
“right” participant for clinical trials [90, 91]. Early inter-
vention has proven to be associated with better out-
comes in other disorders such as heart failure [138]
suggesting that early intervention in the “brain failure”
of AD may have superior outcomes compared to later-
phase interventions. However, available cognitive-enhan-
cing agents have been approved for mild, moderate, and
severe AD and have failed in trials with predementia
participants; some DMT mechanisms may require use
earlier in the disease process before pathologic changes
are extensive [139–141].
The right participant also relates to the MOA of the

agent being assessed. Cognitive enhancing agents will be
examined in patients with cognitive abnormalities; agents
reducing amyloid production may have the optimal
chance of success in primary or secondary prevention; tau
prevention trials may focus on the preclinical participants;
tau removal agents might be appropriate for prodromal
AD or AD dementia; combinations of agents may be
assessed in trials with participants with corresponding bio-
marker changes. Experience with a greater array of agents
in a variety of disease phases will help inform the match
between the “right” participant and specific agent MOAs.
Development of more biomarkers such as those indicating
CNS inflammation, excessive oxidation, or the presence of
concurrent pathologies such as TDP-43 or alpha-synu-
clein may assist in matching treatment MOA to the
pathological form of AD.

The right trial
The “right trial” is a well-conducted clinical experiment
that answers the central question regarding the superior-
ity of the drug over placebo at the specified dose in the
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time frame of observation in the defined population.
Poorly conducted or underpowered trials do not resolve
the central issue of drug efficacy and should not be con-
ducted since they involve participant exposures and po-
tential toxicity without the ability to provide valid
informative scientific data. Trial sponsors incur the re-
sponsibility to report the results of trials to allow the
field to progress by learning from the outcome of each
experiment. Participants have accepted the risks of un-
known drug effects and placebo exposure, and honoring
this commitment requires that the learnings from the
trial be made available publically [142].
A key element includes a sample size based on thor-

oughly vetted anticipated effect sizes. Trial simulations
are available to model the results of varying effect sizes
and the corresponding required population size [143].
Participation criteria critical to the trial success include

defining an appropriate population of preclinical, pro-
dromal, or AD dementia using biomarkers as noted
above [136, 137]. Other key participation criteria include
the absence of non-AD neurologic diagnoses, physical
illness incompatible with trial requirements, or use of
medications that may interact with the test agents.
Fewer exclusions from trials lead to more generalizable
results. Inclusion of diverse populations representative of
the populations to which the agent will be marketed en-
hances the generalizability of trial results.
Clinical outcomes will be chosen based on the spe-

cific population included in the trial. The Preclinical
Alzheimer Cognitive Composite (PACC) and the

Alzheimer Preclinical Cognitive Composite (APCC)
used in the Alzheimer’s Prevention Initiative, for ex-
ample, are used as outcomes in studies of preclinical
AD [137, 144, 145]. The Clinical Dementia Rating-
Sum of Boxes (CDR-sb) is commonly used as an out-
come in prodromal AD [146]. The AD Assessment
Scale-Cognitive subscale (ADAS-cog) [147] or the
neuropsychological test battery (NTB) [148] and the
CDR-sb or Clinical Global Impression of Change
with Caregiver Input (CIBIC+) are common dual out-
comes in trials of mild-moderate AD dementia [40,
146]. The AD Composite Score (ADCOMS) is an
analytic approach including items from the CDR-sb,
ADAS-cog, and Mini-Mental State Examination
(MMSE) that is sensitive to change and drug effects
in prodromal AD and mild AD dementia [149]. The
severe impairment battery (SIB) is the outcome as-
sessment most commonly used in severe AD [150].
Having tools with sufficient sensitivity to detect
drug-placebo differences in predementia phases of
AD is challenging. Commonly used tools such as the
ADAS-cog were developed for later stages of the dis-
ease. Newer instruments such as the PACC and
APCC detect changes over time in natural history
studies, but their performance in trials is unknown.
The Alzheimer’s Disease Cooperative Study (ADCS)

Activities of Daily Living (ADL) scale is commonly used
to assess daily function in patients with MCI and mild to
severe AD dementia [151]. The Amsterdam Instrumen-
tal Activities of Daily Living (IADL) Questionnaire is

Fig. 2 Spectrum of AD and the corresponding cognitive and biomarker state of trial participants (A, amyloid abnormalities; T, tau abnormalities;
N, neurodegeneration)
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increasingly employed for this purpose in MCI/pro-
dromal AD and mild AD dementia [152, 153]. Table 2
summarizes the instruments currently used in trials of
each major phase of AD.
The trial duration may vary from 12 months to 8

years for DMTs or 3–6 months for symptomatic agents
based on the anticipated duration of exposure needed
to demonstrate a drug-placebo difference. Preclinical
trials may involve observing patients for up to 5 years
to allow sufficient decline in the placebo group to be
able to demonstrate a drug-placebo difference. These
trial duration choices are arbitrary; a basic biological
understanding linking the changes in the pathology to
the duration of drug exposure is lacking. Using an
adaptive design approach, it is possible to adjust trial
durations based on emerging patterns of efficacy [76,
154]. Adaptive designs may be used to optimize sample
size, trial duration, and dose selection and have been
successful in trials of chemotherapy and in trials for
treatments of diabetes [155]. Adaptive designs are cur-
rently in use in the European Prevention of AD (E-
PAD), the Dominantly Inherited Alzheimer Network-
Treatment Unit (DIAN-TU), and a study of oxytocin in
frontotemporal dementia [156]; broad exploration of
the approach is warranted [157, 158].
Globalization of clinical trials with the inclusion of

trial sites in many countries is a common response to
slow recruitment of trial participants. By increasing
the number of trial sites, recruitment can be acceler-
ated and drug efficacy demonstrated more promptly.
Globalization, however, increases the number of lan-
guages and cultures of participants in the trials as
well as increasing the heterogeneity of background
experience among the trial sites and investigators.
These factors may increase measurement variability
and make it more difficult to demonstrate a drug-pla-
cebo difference [159–161]. The “right trial” will limit
these factors by minimizing the number of regions,
languages, and trial sites involved. Within diverse
countries such as the USA, the inclusion of minority
participants is key to insuring the generalizability of
the findings from trials [162].

The right trial will include the right doses selected in
phase 2 and the right biomarkers as noted above. The
biomarker will be chosen to match the questions to be
answered for each trial phase. Target engagement bio-
markers are critical in phase 2, and DM biomarkers are
critical in phase 3 of DMT trials.
The right trial is also efficiently conducted with

rapid start-up, certified raters, a central institutional
review board (IRB), and timely recruitment of appro-
priate subjects. Programs such as the Trial-Ready Co-
hort for Prodromal and Preclinical AD (TRC-PAD),
Global Alzheimer Platform (GAP), and the EPAD ini-
tiative aim to enhance the efficiency with which trials
are conducted [157, 163]. Development of online
registries and trial-ready cohorts may accelerate trial
recruitment and treatment evaluation [164–166].
Registries have been helpful in trial recruitment to
non-AD disorders [167].
Inclusion of the right number of the right participants

is of key importance in successfully advancing AD thera-
peutics. Compared to other fields, there is a reluctance
by patients and physicians to participate in clinical trials
for a disease that is considered by some to be a part of
normal aging. Advocacy groups throughout the world
strive to overcome this attitude; success in engaging par-
ticipants in trials will become more pressing as more
preclinical trials involving cognitively normal individuals
are initiated. Sample size is related to the magnitude of
the detectable effect which is in turn related to the effect
size of the agent and the sensitivity of the measurement
tool (clinical instruments or biomarkers); these factors
require optimization to allow the conduct of trials with
feasible sample sizes.
Hallmarks of poorly designed or conducted trials in-

clude failure of the placebo group to decline in the
course of a trial (assuming an adequate observation
period), failure to show separation of the placebo group
from an active treatment arm such as donepezil, exces-
sive measurement variability, or low levels of biological
indicators of AD such as the percent of ApoE-4 carriers
or the presence of fibrillar amyloid on amyloid imaging
[22]. Trials with these features would not be expected to

Table 2 Instruments appropriate as the outcome assessments in different phases of AD

Domain Prevention trials Prodromal AD trials AD dementia trials

Cognition PACC; APCC NTB ADAS-cog in mild to moderate AD;
SIB in moderate to severe AD

Global/composite None CDR-sb; ADCOMS; iADRS CIBIC+ in shorter trials; CDR-sb in
longer trials

Function None ADCS ADL MCI scale; Amsterdan IADL scale ADCS ADL scale

Behavior NPI NPI NPI

ADAS-cog Alzheimer’s Disease Assessment Scale-cognitive subscale, ADCOMS Alzheimer’s Disease Composite Scale, Alzheimer’s Disease Cooperative Study
Activities of Daily Living scale, APCC Alzheimer’s Prevention Initiative (API) Composite Cognitive, CDR-sb Clinical Dementia Rating-Sum of Boxes, CIBIC+ Clinical
Interview-Based Impression of Change with Caregiver Input, IADL Instrumental Activities of Daily Living, iADRS Integrated Alzheimer’s Disease Rating Scale, NPI
Neuropsychiatric Inventory, NTB neuropsychological test battery, PACC Preclinical Alzheimer Cognitive Composite, SIB severe impairment battery

Cummings et al. Alzheimer's Research & Therapy           (2019) 11:76 Page 9 of 14



detect drug-placebo differences or to inform the drug
development agenda.
A well-designed phase 3 trial builds on observa-

tions made in phase 2. Drugs have often been ad-
vanced to phase 3 based on the interpretation of
apparent effects observed in phase 2 unprespecified
subgroup analyses that are derived from small non-
randomized samples and are rarely if ever repro-
duced in phase 3 [22].

Summary and conclusions
AD drug development has had a high rate of failure [7].
In many cases, BBB penetration, dose, target engage-
ment, or rigorous interrogation of early-stage data has
not been adequately pursued. Agents have been ad-
vanced to phase 3 with little or no evidence of efficacy
in phase 2. Better designed and conducted phase 2 stud-
ies will inform further development and enable stopping
earlier and preserving resources that can be assigned to
testing more drugs in earlier stages (preclinical and
FIH), as well as promoting better drugs with a greater
chance of success to phase 3 [168]. Deep insight into the
biology of AD is currently lacking, and predicting drug
success will continue to be challenging; optimizing drug
development and clinical trial conduct will reduce this
inevitable risk of AD treatment development. Table 3
provides a summary of the integration of the “rights” of
AD drug development across the phases of the develop-
ment cycle.
This “rights” approach to drug development will en-

able the precision medicine objective of the right drug,
at the right dose, for the right patient, at the right
time, tested in the right trial [11–13, 16]. Approaches
such as these when used in other therapeutic areas

have improved the rate of success of drug develop-
ment in other settings [15, 21]. Adhering to the “rights
of AD drug development” will de-risk many of the
challenges of drug development and increase the like-
lihood of successful trials of critically needed new
treatments for AD.
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Table 3 Five “rights” implemented across the spectrum of drug development

Right
element

Target
identification

Drug
candidate
optimization

Non-clinical
assessment

Phase 1 Phase 2 Phase 3

Target Druggable
target identified
in AD biology

PD effect
supported

PD effect may be assessed
with biomarkers

PD effect supported
by biomarkers

PD effect supported by
biomarkers and clinical
outcomes

Drug Chemical
properties

ADME; toxicity;
efficacy in
animals

PK, ADME in healthy
volunteers; MTD established;
BBB penetration established

PK, PD in AD PD in AD

Biomarker Development of
biomarkers
useful in trials

Toxicity biomarkers Patient selection;
target engagement
biomarkers

Patient selection; DM;
toxicity; predictive biomarkers

Patient Healthy volunteers; AD for
immuuno-therapy trials

Prodromal AD, AD
dementia

High-risk normal subjects;
prodromal AD; AD dementia

Trial Single ascending dose;
multiple ascending dose

Drug-placebo
difference at
endpoint; adaptive
designs

Drug-placebo difference at
endpoint; adaptive designs;
delay to milestone

AD Alzheimer’s disease; ADME absorption, distribution, metabolism, excretion; DM disease modification; PK pharmacokinetics; PD pharmacodynamic
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