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Abstract

Background: Retinal thickness can be measured non-invasively with optical coherence tomography (OCT) and may
offer compelling potential as a biomarker for Alzheimer’s disease (AD). Retinal thinning is hypothesized to be a
result of retrograde atrophy and/or parallel neurodegenerative processes. Changes in the visual pathway are of
particular interest in posterior cortical atrophy (PCA), the most common atypical AD phenotype predominantly
affecting the parietal-occipital cortices. We therefore evaluated retinal thickness as non-invasive biomarker of
neurodegeneration in well-characterized participants with posterior cortical atrophy (PCA) and typical Alzheimer's
disease (tAD).

Methods: Retinal thickness measures were acquired from 48 patient participants (N =25 PCA; N =23 tAD) fulfilling
consensus diagnostic criteria and 70 age-matched controls. Participants were recruited between 2014 and 2016. All
participants underwent optical coherence tomography (OCT) imaging, including measurement of peripapillary
retinal nerve fiber layer (pRNFL) thickness and total macular thickness (mRT). Participants did not show evidence of
any significant ophthalmological conditions. Subgroup analyses were performed in participants with available MRI
and CSF measures, providing evidence of neurodegeneration and underlying AD pathology respectively.

Results: There was no evidence of overall between-group differences in pRNFL thickness (mean PCA 98.7 +12.2;
tAD 99.9 +8.7; controls 99.6 + 10.0 um, one-way analysis of variance (ANOVA) p =0.92) or total mRT (mean PCA
266.9 + 16.3; tAD 267.8 £ 13.6; controls 269.3 + 13.6 um, one-way ANOVA p =0.75). Similarly, subgroup analysis with
MRI biomarkers (PCA =18, tAD = 17, controls = 31) showing neurodegeneration, and CSF biomarkers (PCA = 18,
tAD = 14, controls = 13) supporting underlying AD pathology did not provide evidence of overall between-group
differences in pRNFL or mRT measures (all p > 0.3).

Conclusions: Retinal thickness did not discriminate tAD and PCA from controls or from one another despite unequivocal
differences on standard clinical, neuro-imaging and CSF measures. Findings from this well-characterized sample, including
cases with PCA, do not support the hypothesis that retinal neurodegeneration, measured using conventional OCT, is a
useful biomarker for AD or PCA.
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Introduction

There is an urgent need for non-invasive Alzheimer’s
disease (AD) biomarkers. The retina, sharing its embryo-
logical origin with the brain, may reflect AD hallmark
pathology [1, 2]. Ocular manifestations of AD may in-
clude retinal thinning [3, 4], vascular changes [5] and
amyloid-beta [6] and tau [7] retinal deposition. Retinal
thinning has been proposed as a promising non-invasive
imaging biomarker, purportedly mirroring cortical atro-
phy owing to trans-synaptic retrograde neurodegenera-
tion, and/or reflecting parallel processes in both retinal
and cortical neurons [8]. However, conflicting study
findings of retinal thinning in AD [3] have prompted
recommendations for investigations comprising well-
characterized participants, controlling for confounding
factors and comparing purported ocular biomarkers with
established AD biomarkers [9].

Retinal thinning is of particular interest in posterior
cortical atrophy (PCA), the canonical ‘visual dementia,
and the most common atypical presentation of AD [10].
PCA is a neurodegenerative syndrome presenting with
progressive cortico-visual problems in contrast to rela-
tively well-preserved memory, language and insight [11].
PCA preferentially affects parietal-occipital and occipito-
temporal lobes, key areas for visual processing that
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receive input from retino-cortical projections mainly
through the lateral geniculate nucleus and optical radia-
tions [12, 13]. Consequently, PCA represents a patient
group uniquely positioned to evaluate the hypothesis of
retrograde atrophy from cortical visual areas following
neurodegeneration.

We assessed retinal thickness measured with optical
coherence tomography in PCA, typical AD (tAD) and
control participants. Consistent with the hypothesis of
trans-synaptic retrograde neurodegeneration, we hypothe-
sized that particular reductions in retinal thickness would
be observed in PCA relative to both tAD and control par-
ticipants, and in tAD relative to control participants.

Methods

Participants

We enrolled 48 patients, 25 patients with posterior cor-
tical atrophy (PCA) and 23 with typical Alzheimer’s dis-
ease (tAD), in addition to 70 cognitively healthy controls.
Participants were recruited from a tertiary specialist
centre, the University College London (UCL) Dementia
Research Centre (DRC), between 2014 and 2016. Partici-
pant groups were well-matched for demographic charac-
teristics, and there was no evidence of between-group
differences in age or gender (Table 1). PCA and tAD

Table 1 Demographic characteristics and proposed and established biomarker data for PCA, tAD and control groups

Demographics Posterior cortical  Typical Alzheimer's Controls p value
atrophy disease
Number 25 23 70
Sex (m/f) 11/14 14/9 29/41 0.26°
Age 67.0 (£7.1) 64.5 (£6.8) 66.3 (£7.7) 047°
MMSE 22.1 (£54) 19.8 (£5.6) 295 (£0.8) <0.001°
Biomarkers Posterior cortical  Typical Alzheimer's Controls Linear regression models®
atrophy disease PCA AD
Beta p value Beta  p value
ocT! Mean peripapillary retinal nerve 98.8 (£12.2) 99.9 (+8.7) 99.6 (£10.0) —-002 080 —-001 0.89
fibre layer thickness (pRNFL) (um)
Mean macular retinal thickness (mRT) (um) 266.9 (£16.3) 2678 (£13.6) 269.3 (+13.6) —-007 050 —-0.09 038
MRI subset’ AD Signature Thickness (mm) 2.5 (+0.2) 25 (+0.2) 2.8 (0.1) -073 <0001 —-060 <0001
Hippocampus volume (mm?) 66314 (£7139) 64116 (£1072.1) 78478 (£873.5) —044 <0001 —-061 <0001
PCA signature thickness (mm) 1.7 (£0.2) 19 (+0.1) 2.1 (+0.1) -0.78 <0001 —-035 <0001
Estimated intracranial volume (*10°mm?®) 1.5 (x0.1) 15 (x0.2) 1.5 (0.2) -0.14 021 -0.15 0.17
CSF subset® AR (Ng/L) 3959 (£140.1) 300.1 (£133.2) 9009 (£2219) —-070 <0007 -090 <0001
Tau_qg7 (Ng/L) 5734 (£306.4) 7782 (£359.1) 265.1 (£1192) 032 0.07 065 <0001
Tau_1g1/AB_4; ratio 1.6 (£1.0) 3.1 (1.8) 0.3 (+0.1) 0.22 0.18 0.68 <0.001

Overall cohort characteristics, and proposed OCT and established biomarkers (MRI, CSF) for posterior cortical atrophy (PCA), typical Alzheimer’s disease (tAD) and
control groups including between-group comparisons. MRI and CSF data were available in subset cohorts

'0CT-imaging was available in 25 PCA cases, 23 tAD cases and 70 controls for pRNFL peripapillary ring scans and in 23 PCA cases, 22 tAD cases and 66 controls
for macular scans. 2MRI was available in 18 PCA cases, 17 tAD cases and 31 controls. >CSF was available in 14 PCA cases, 18 tAD cases and 12 controls
2Chi-square test, one-way ANOVA, “Linear regression models assessing relationships between biomarkers (dependent) and diagnosis (independent) with controls
as reference group, corrected for age, sex (and estimated intracranial volume (eTIV) for hippocampal volume). Reported betas are standardized betas. Significant

results are indicated in italics.
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patients were assessed by consultant neurologists with ex-
pertise in cognitive neurology and fulfilled consensus cri-
teria for PCA and NIA-AA criteria for tAD respectively
[11, 14]. PCA patients fulfilled Mendez et al. [15] and
Tang-Wai et al. [16] proposed clinical criteria based on
available information at baseline visit and expert retro-
spective clinical review. Controls did not show evidence of
cognitive impairment as assessed by MMSE (>27). PCA
patients did not fulfil clinical criteria for dementia with
Lewy bodies (DLB), corticobasal degeneration (CBD) or
prion disease or exhibit associated clinical features (e.g.
visual hallucinations, pyramidal signs, reduplicative phe-
nomena, parkinsonism, alien limb syndrome, asymmetric
dystonia and myoclonus, ataxia), and cases were therefore
classified as PCA due to AD pathology. As an inclusion
criterion, memory was the cognitive domain predomin-
antly affected in tAD patients; tAD patients did not fulfil
clinical criteria for logopenic variant of primary progres-
sive aphasia [17] or frontal variant Alzheimer’s disease
[18]. Exclusion criteria were a history of other neurological
or major psychiatric diseases. Ethical approval was pro-
vided by the National Research Ethics Service Committee
London Queen Square; all participants provided written
informed consent.

Ophthalmological assessment and OCT imaging

Ophthalmological history and use of medication were
reviewed. Ocular exclusion criteria were a history of glau-
coma or the presence of pathology that could affect retinal
thickness such as glaucoma, retinoschisis, epiretinal mem-
brane, age-related macular degeneration, hypertensive and
diabetic retinopathy and retinal microcysts. All participants
underwent non-midriatic optical coherence tomography
with a spectral domain Optos OCT/SLO and included the
following two protocols: (i) peripapillary ring scan (diameter
of 12°, average of 3 b-scans, centred on the optic disk with
live tracking), to measure peripapillary retinal nerve fibre
layer (pRNFL) thickness (measured between vitreo-retinal
interface and the outer boundary of the RNFL) and (ii) radial
macular scan (diameter of 30°, 6 high-resolution b-scans
centred on the fovea) to measure macular retinal thickness
(mRT) (measured between vitreo-retinal interface and the
mid RPE reflectance) (Fig. 1). Individual scans were quality
controlled (QC) by excluding scans with a signal to noise ra-
tio (SNR) < 6 and assessing misalignment (peripapillary ring
scans) and segmentation errors. Mean pRNFL as well as in
four quadrants (superior, nasal, inferior, temporal), mRT in
the fovea, the inner ring [@ 1-3 mm around fovea] and outer
ring [@ 3-6 mm around fovea] of the Early Treatment in
Diabetes Retinopathy Study (ETDRS) grid were extracted.
The means of both eyes (if available) were calculated for data
analysis (both eyes available: peripapillary ring scan: PCA
21(84%), AD 20(87%), HC 63(90%); Macula: PCA 15(69%),
AD 19(83%), HC 58(88%)). Ophthalmological assessment of
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OCT scans was performed by an ophthalmologist (TP),
blinded to disease status. Two controls were excluded be-
cause of bilateral epiretinal membrane. For peripapillary ring
scans, one tAD case failed QC. For macular scans, two PCA
cases, three tAD cases and three controls failed QC.

Magnetic resonance imaging (MRI)

A subset of participants (PCA =18; tAD = 17; controls =
31) underwent 3-Tesla (3 T) MRI on a Siemens Magne-
tom Trio (Siemens, Erlangen, Germany) scanner with 32-
channel phased array receiver head coil Sagittal 3D
MPRAGE T1-weighted volumetric MRI sequence (TE/TI/
TR =2.9/900/2200 ms, matrix size 256 x 256 x 208, voxel
size 1.1 x 1.1 x 1.1 mm). Scans were converted to Nifti for-
mat and processed using Freesurfer version 6.0.0’s cross-
sectional analysis pipeline (recon-all). Estimates of cortical
thickness for cortical regions of interest (ROIs) were ex-
tracted using the Desikan-Killiany Atlas [19], while esti-
mates of subcortical grey matter volumes were calculated
using the Fischl atlas [20] (Fig. 1). Segmented scans were
visually assessed for quality control purposes following
Freesurfer QC guidelines and included assessment of pial
and white-matter borders and subcortical boundaries.
Composite ROI's were formed by merging anatomical la-
bels using Freesurfer’s mri_mergelabels command. The
following ROTI's were calculated: (1) AD signature thick-
ness [21] (bilateral entorhinal, middle and inferior tem-
poral and fusiform cortices), (2) bilateral hippocampal
volume [22], (3) PCA signature thickness [12, 23] (bilat-
eral lateral occipital, cuneus, pericalcarine and lingual cor-
tices). Composite ROI’s represented areas predominantly
involved in tAD (1, 2) or PCA (3).

Cerebrospinal fluid analysis

As clinical diagnosis is not confirmed by amyloid PET in
5-38% percent of cases [24—26], we performed subgroup
analysis in cases with biomarker evidence of underlying AD
pathology to rule out diagnostic uncertainty. A subset of
participants (PCA =18; tAD =14; controls = 13) provided
cerebrospinal fluid for clinical- and/or research purposes.
CSF was analysed using Innotest ELISA (Fujirebio Europe
N.V,, Gent, Belgium), and tau_ 15 and amyloid-
beta 1 42(AP1_42) were measured. CSF profiles of AP; 45 <
630 ng/L and/or tau_ 15;/AP;_4, ratio > .88 were considered
compatible with AD [27].

Statistical analysis

Power calculation

In a previous meta-analysis, we found pRFNL thinning
of 7um in 553 AD cases compared to 486 controls,
when exclusively selecting SD-OCT scanners [3]. With a
true effect of 7 um and a standard deviation of 8 um, 21
participants in each group are needed to reject the null
hypothesis of no difference between the disease and
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Fig. 1 Imaging cohort. Overview of DRC imaging cohort. Abbreviations: DRC, Dementia Research Centre; OCT, optical coherence tomography; MRI,
magnetic resonance imaging; ONH, optic nerve head; ETDRS, Early Treatment Diabetic Retinopathy Study
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control group with a power of 0.80. We enrolled >21
participants in each diagnosis group.

Data analysis

Normality of data distribution was visually assessed using
histograms and Q-Q plots. Between-group differences were
assessed with one-way ANOVA and Chi-Squared tests for
measures that were normally distributed or binary respect-
ively. Linear regression models were used to assess whether
changes in retinal (layer) thickness were attributable to diag-
nosis adjusting for age and sex. All reported beta coefficients
(B) are standardized S. Level of significance for all test was
p =0.05, using two-sided tests. Data analysis was performed
with IBM SPSS Statistics (version 22.0), and GraphPad Prism
(version 6.0) was used to generate graphs.

Results

Table 1 includes summaries of demographic, retinal
measures in the overall cohort and CSF and neuro-
imaging biomarkers of sub cohorts.

Retinal (layer) thickness does not discriminate between
disease groups in the overall cohort

Overall cohort analysis did not find evidence that patient
and control groups differed on any pRNFL measure:
total mean; sectoral: temporal, superior, nasal and infer-
ior (one-way ANOVA, all p >0.17) (Fig. 2). Furthermore,
overall cohort macular analysis also did not provide evi-
dence that patient and control groups differed on mea-
sures of mean mRT and mRT in the fovea, the inner
ring, and outer ring of the ETDRS grid (one-way

ANOVA, all p>0.65) (Table 2). There was no evidence
that signal to noise ratios (SNR) differed between groups
for pRNFL ring scans (one-way ANOVA, F (2, 115) =
0.81, p=0.45) or macular measures (one-way ANOVA,
F (2,107) =0.89, p = 0.41).

Regression analyses adjusting for age and gender did
not find evidence that patient and control groups
differed on pRNFL or mRT measures (Table 1). While
there were significant associations between age and
measures of retinal (layer) thickness (pRNFL: 3= -0.28,
p<0.01; mRT: 5=-0.26, p<0.01), there were no statis-
tically significant associations between MMSE and
measures of retinal (layer) thickness (pRNFL: 5 =0.001;
p=0.94; mRT: f=0.10, p = 0.29).

Retinal (layer) thickness does not discriminate between
groups in MRI and CSF sub cohorts

Table 1 shows comparisons of cortical thickness, subcor-
tical volumes and CSF measures between PCA, tAD and
control groups.

MRI sub cohort

Visual assessment of available T1 MRI scans showed pre-
dominant parietal-occipital cortical atrophy in PCA cases,
parietal-temporal cortical and hippocampal atrophy in AD
cases, while controls showed no signs of cortical atrophy.
Figure 3 shows an example of neurodegenerative features in
representative PCA and tAD cases. Quantitative as-
sessment of cortical thickness and subcortical volumes
using Freesurfer software found cortical thinning of
AD signature thickness and decreased bilateral



den Haan et al. Alzheimer's Research & Therapy (2019) 11:62

Page 5 of 9

1401

120+

PRNFL thickness (um)
©
e .2

D
o
1

40

=0

— Posterior Cortical Atrophy
— Alzheimer's Disease ’

— Controls

Temporal Superior

in different sectors (temporal, superior, nasal, inferior)

Fig. 2 Peripapillary retinal nerve fiber layer thickness. Peripapillary retinal nerve fiber layer (pRNFL) thickness in pm in posterior cortical atrophy
(PCA, n=25, red), typical Alzheimer's disease (tAD, n = 23, blue) and controls (n = 70, green) (means and SD) in a TSNIT plot showing pRNFL thickness

1 1 T
Nasal Inferior Temporal

hippocampal volume in tAD and PCA relative to con-
trols groups, but not different in tAD compared to
PCA (one-way ANOVA both p<0.001, post hoc
Tukey p=0.17). There was greater cortical thinning
in the PCA signature region in PCA relative to tAD
and control groups (one-way ANOVA p<0.001 and
post hoc Tukey p <0.001).

Despite clear group differences on MRI measures, ret-
inal measures in the MRI sub cohort found no evidence
of between-group differences in mean pRNFL and mRT

measures (one-way ANOVA, F (2, 63)=0.29, p=0.75,
and F (2, 63) =0.61, p = 0.55, respectively).

CSF analysis sub cohort

All PCA and tAD cases met criteria for a CSF AD profile
[27] (Table 1). Assessing retinal measures in the CSF sub co-
hort found no evidence of between-group differences in
mean pRNFL and mRT measures (one-way ANOVA F (2,
41)=1.23, p=0.30 and F (2, 38) = 0.39, p = 0.68 respectively).
There were no statistically significant associations between

Table 2 Macular retinal thickness in the overall cohort for PCA, tAD and control groups

Posterior Typical Controls PCA tAD

cortical atrophy (n=23)  Alzheimer's disease (1=22)  (n=66) Beta pvalue Beta p value
Total macular retinal thickness (mRT) 2669 (+16.3) 2678 (£13.6) 2693 (+136) —007 050 -009 038
Fovea 223.0 (£19.1) 227.7 (£21.5) 2243 (£238) —-002 080 0.01 0.89
Superior inner 286.8 (+20.3) 2896 (+15.9) 2900 (+189) —007 049 -006 056
Temporal inner 276.0 (£17.0) 2782 (+12.1) 2760 (£174)  0.00 1.00 0.01 0.92
Inferior inner 287.8 (+18.3) 2880 (+11.5) 2896 (+172) —004 068 -009 035
Nasal inferior 286.5 (£19.8) 287.9 (+15.1) 2895 (£198) —-006 053 -008 038
Superior outer 2634 (£18.2) 269.3 (£204) 2684 (£155 —012 023 -001 089
Temporal outer 246.2 (£15.9) 246.8 (£13.9) 2477 (£148) —004 067 —-006 057
Inferior outer 2590 (£19.8) 2586 (+14.5) 3(+152) -005 060 -009 035
Nasal outer 2813 (£17.8) 280.5 (+£16.7) 2850 (+16.1)  —008 040 -014 015
Signal to noise ratio 8.6 (+0.8) 86 (+0.7) 84 (+0.8) 0.11 0.26 0.10 034

Total macular retinal thickness (mRT) in Early Treatment in Diabetes Retinopathy Study (ETDRS) regions in posterior cortical atrophy (PCA), typical Alzheimer’s

disease (tAD) and control participants. Means (+SD) are shown together with standardized betas and p-values from linear regression models with macular

measures as dependent variable and diagnosis as an independent variable, adjusted for age and sex
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mean pRNFL and mean mRT with CSF amyloid-beta
(pRNEFL: f=-0.01, p=0.94; mRT: f=-0.13, p=041) and
tau levels (pRNFL: 5 =0.13, p = 0.59; mRT f3 = 0.05, p = 0.76).

Discussion

In this study, we assessed retinal (layer) thickness mea-
sured with OCT as a non-invasive biomarker for neuro-
degeneration in PCA and tAD compared to control
participants. To our knowledge, we are the first to report
retinal thickness in PCA cases, the most common atyp-
ical phenotype of AD preferentially affecting parietal-
occipital cortices involved in visual processing [10]. In
contrast to earlier studies in AD, we found no evidence
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of overall differences in retinal thickness between con-
trols and either patient group. Our findings thus strongly
question the utility of cross-sectional retinal thickness
measurements with OCT as a diagnostic biomarker of
AD.

This sample represents one of the largest, well-
characterized samples of both PCA and tAD that in-
cludes OCT imaging. As PCA primarily affects cortices
involved in visual processing, this cohort is well posi-
tioned to test the hypothesis of retrograde atrophy ori-
ginating from visual cortices. In addition to fulfilling
clinical criteria, we performed additional analysis on pa-
tients with quantified neurodegeneration and patients

/

Posterior Cortical Atrophy

\\\

\

Healthy control

Fig. 3 Neurodegenerative features on T1 MRI. Transverse (a, ¢, €) and coronal (b, d, f) representative T1-weighted volumetric MRI scans in a control, a
posterior cortical atrophy (PCA) and a typical Alzheimer's disease (tAD) case (left hemisphere is shown on the right and vice versa). The PCA case shows
predominant parietal-occipital atrophy (c) and relatively preserved hippocampal volume (d) while the tAD case shows evidence of more widespread
neocortical atrophy, although with relatively preserved occipital volume (e) and more extensive hippocampal volume loss (f)
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with a CSF profile consistent with AD, to provide insight
regarding effect sizes of retinal versus established
biomarkers. Consistent with our findings in the overall
cohort, our subgroup analysis showed that despite un-
equivocal neurodegeneration on MRI and amyloid posi-
tivity based on CSF, retinal (layer) thinning was not
observed in tAD and PCA.

There are a number of considerations for the inter-
pretation of results from the current study, as they were
inconsistent with earlier studies showing retinal (layer)
thinning in AD [3]. In the current cohort, both tAD and
PCA patients were relatively young (mean age 65 years),
as compared to previous studies (mean age 74 years) [3].
Despite similar underlying proteinopathies (B-amyloid,
tau), clinico-radiological differences exist between pa-
tients with early and late onset AD (EOAD, LOAD) [28].
For example, atypical presentations are more common
in EOAD (33% vs. 6%) and cortical atrophy patterns dif-
fer [28-30]. We previously found that retinal thickness
did not discriminate EOAD from controls in a well-
characterized sample from an independent center [31],
consistent with other studies involving EOAD cases [32].
While it is possible that the retina is less affected in
EOAD, differences between EOAD and LOAD could
also be interpreted as an age effect or a synergistic effect
between AD and age in LOAD cases. The current
unique cohort enabled assessment of cases with AD
pathology with minimal contribution of ageing and age-
related comorbidities such as AMD and glaucoma [33].
Indeed, findings include robust associations between age
and retinal measures rather than between AD and ret-
inal measures. However, differentiating age from disease
effects ultimately requires future studies directly com-
paring EOAD and LOAD.

Previous study samples have tended to comprise pa-
tients at more advanced stages of AD relative to the
current sample, based on general measures of disease se-
verity (MMSE score). Retinal thinning may occur late in
the disease course, following cortical atrophy. In the
current cohort, reliable discrimination of patient from
control participants based on MMSE scores, structural
neuro-imaging and CSF biomarkers queries the additive
diagnostic value of cross-sectional OCT measurements
in the clinic in the early to moderate stage of dementia.

The current study used the Optos OCT/SLO device.
Direct comparison of different OCT devices is challen-
ging, due to differences in scan area, axial resolution,
imaging protocols, and segmentation methods between
devices [34]. As our device is a SD-OCT scanner with
similar resolution and acquisition times as previously re-
ported OCT scanners, we do not expect this to have in-
fluenced results. In addition, as both patients and a large
control sample were scanned with the same device, the
current lack of evidence for between-group differences
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cannot be accounted for
measurements.

A limitation of our study is a relatively limited oph-
thalmological examination of participants, as no detailed
eye examination was conducted, and therefore subtle,
pre-clinical changes of glaucoma and diabetic retinop-
athy cannot completely be ruled out. OCT and fundus
photographs from all our participants were, however,
assessed for ophthalmological comorbidity by an inde-
pendent ophthalmologist in order to establish any rele-
vant pathology. Secondly, assessment of individual layer
thickness of the macula could not be delineated with the
OCT system used in this study, ruling out the possibility
of establishing that different retinal layers changed in
subtle ways without influencing total macular thickness.
Future studies should assess the value of measuring indi-
vidual macular layer thickness, including the RNFL.
While representing a limitation of the current study,
comparisons of individual or total macular layer thick-
ness between amyloid proven EOAD, LOAD and control
participants from the independent Amsterdam Dementia
Cohort have not provided evidence of group differences
[35]. Thirdly, MRI and CSF subgroup analyses were
slightly underpowered to detect pairwise group differ-
ences, and conclusions from these analyses should be
interpreted with caution. Fourthly, the focus of the
current study was on relative biomarker differences in
two patient groups compared to a control comparator
group. However, particularly given the emergence of at-
rophy in healthy ageing, future studies might evaluate
MRI and OCT measures over time, and study how these
relate to purported biomarker group differences either
cross-sectionally or longitudinally. Lastly, we did not
systemically acquire information on vascular risk factors.
As these may influence retinal thickness directly or
through diabetes mellitus and hypertensive retinopathy,
future studies should consider collecting these, thereby
taking vascular risk factors into account as a possible
confounder in the relationship between neurodegenera-
tive disease and retinal thinning. Nevertheless, these lim-
itations do not appear to be sufficient to challenge the
lack of evidence of retinal (layer) thinning in AD and
PCA participants in the presented study.

It is worth noting that retinal (layer) thickness is highly
variable among the normal population [36]. Retinal
(layer) thinning is a nonspecific finding and is affected
by ageing [37], diabetes mellitus [38—43], AMD [44] and
glaucoma [45], as well as in other neurodegenerative dis-
eases such as Parkinson’s disease [46] and multiple scler-
osis [47]. An additional, possibly small, disease effect
from AD is therefore likely to be challenging to detect
cross-sectionally. Longitudinal measurements might be
more sensitive to detect such small disease effects and
‘normalize’ for interpersonal differences. In addition,

by discrepancies in
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future research should focus on molecular imaging of
the retina in AD, such as tau, B-amyloid and neuro-
inflammation. Molecular biomarkers could have a larger
effect size and specificity like in CSF [48], and answer
the need for therapeutic read-outs focused on patho-
logical molecular pathways in AD. Presence of these mo-
lecular changes in the retina remains controversial,
however, and needs confirmation in post-mortem
cohorts [7, 49-51]. If proven unequivocally, emerging
optical techniques such as fluorescent imaging [52], two-
photon microscopy [53], (stimulated) Raman [54] and
hyperspectral imaging [55] might be tools to image these
molecular changes in the retina in vivo in the future.

Conclusions

In the current study, we did not find evidence that ret-
inal thickness discriminates well-characterized cases of
PCA and tAD from control participants despite un-
equivocal differences on standard clinical, neuro-
imaging and CSF measures. Findings do not support the
utility of cross-sectional retinal thickness measurements
with OCT as an AD biomarker and underline the need
for rigorous validation studies for clinical and scientific
purposes. Future studies should also focus on more spe-
cific AD retinal biomarkers on a molecular level such as
amyloid and tau.
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