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Functional connectivity in cognitive control
networks mitigates the impact of white
matter lesions in the elderly
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Abstract

Background: Cerebrovascular pathology, quantified by white matter lesions (WML), is known to affect cognition in
aging, and is associated with an increased risk of dementia. The present study aimed to investigate whether higher
functional connectivity in cognitive control networks mitigates the detrimental effect of WML on cognition.

Methods: Nondemented older participants (≥ 50 years; n = 230) underwent cognitive evaluation, fluid-attenuated
inversion recovery (FLAIR) magnetic resonance imaging (MRI), and resting state functional magnetic resonance
imaging (fMRI). Total WML volumes were quantified algorithmically. Functional connectivity was assessed in
preselected higher-order resting state networks, namely the fronto-parietal, the salience, and the default mode
network, using global and local measures. Latent moderated structural equations modeling examined direct and
interactive relationships between WML volumes, functional connectivity, and cognition.

Results: Larger WML volumes were associated with worse cognition, having a greater impact on executive functions
(β = −0.37, p < 0.01) than on memory (β = −0.22, p < 0.01). Higher global functional connectivity in the fronto-parietal
network and higher local connectivity between the salience network and medial frontal cortex significantly mitigated the
impact of WML on executive functions, (unstandardized coefficients: b = 2.39, p = 0.01; b = 3.92, p = 0.01) but not on
memory (b = -5.01, p = 0.51, b = 2.01, p = 0.07, respectively). No such effects were detected for the default mode network.

Conclusion: Higher functional connectivity in fronto-parietal and salience networks may protect against detrimental
effects of WML on executive functions, the cognitive domain that was predominantly affected by cerebrovascular
pathology. These results highlight the crucial role of cognitive control networks as a neural substrate of cognitive reserve
in older individuals.
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Background
Cerebrovascular pathology, as quantified through white
matter lesions (WML), is present in more than 50% of the
elderly population [1]. WML are known to affect brain
structure [2, 3] and cognitive performance [4–7], and have
been associated with an increased risk of stroke and de-
mentia [8]. Identifying beneficial lifestyle factors and brain
mechanisms that protect against the negative effects of
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cerebrovascular pathology may be beneficial in preventing
cognitive failure.
Cognitive dysfunction related to WML has been

shown to be attenuated by protective lifestyle factors,
such as educational attainment, cognitive enrich-
ment, and physical activity [3, 9, 10], adding to the
growing body of evidence for the concept of cogni-
tive reserve (CR) [11]. Neuroimaging studies have
extended the concept of CR to the level of func-
tional brain mechanisms [12, 13]. It is suggested that
those individuals with high CR have brain activation
patterns that reflect higher neural efficiency, which
may help maintain cognitive functions in the face of
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brain pathology [14]. While the reserve hypothesis
has been well established in the context of WML
with behavioral measures of CR [9, 15–17], the func-
tional mechanisms within neural networks that may
convey reserve in cerebrovascular pathology remain
to be understood.
Some neuroimaging studies have provided an indication

of active neuronal compensation in the context of WML.
For example, in a working memory task, older individuals
with higher WML volumes showed higher task-related
brain activation across different levels of task complexity
in anterior cingulate and middle frontal regions [18]. Fer-
nández-Cabello et al. [19] found that older individuals
with a high CR and a high WML load over-recruited
fronto-parietal areas during task performance when com-
pared with young individuals. These findings imply that
higher neural capacity in brain regions subserving cogni-
tive control could buffer the negative impacts of WML.
More clarification is needed, however, on the moderating
role of functional brain networks.
Recently, higher functional connectivity within major

hubs of cognitive control networks have been proposed
as neural correlates of CR [20]. Cognitive control net-
works are linked to reserve-associated protective factors
[21], and have been suggested to play a compensatory
role in the presence of early Alzheimer’s disease (AD)
pathology [22]. More specifically, it was demonstrated
that higher global connectivity in the fronto-parietal net-
work [23] and higher local connectivity from the anter-
ior cingulate cortex (a central hub of the salience
network) [24, 25] may offer protection against the detri-
mental effects of age-related neuropathology. All to-
gether, these results motivated us to choose cognitive
control networks, the fronto-parietal and the salience
network, to examine reserve mechanisms and their
moderating role in cerebrovascular pathology.
In the present study, we investigate whether resting

state functional connectivity in cognitive control net-
works, as a proxy of CR, plays a role in mitigating the
negative effect of cerebrovascular pathology on cognitive
performance (Fig. 1, panel A). To this end, we assessed
the relationships between the extent of WML (WML
load), cognition, and functional connectivity using struc-
tural equation modeling (SEM) and tested for moder-
ation effects in a sample of 230 nondemented
individuals. We hypothesized the following: 1) a detri-
mental effect of WML on cognitive domains, such as ex-
ecutive functions and memory [6]; and 2) a moderating
role of global and local functional connectivity in the
fronto-parietal and salience networks, with the default
mode network as control. More precisely, we expected
that the negative relationship between WML load and
cognitive performance would be reduced in individuals
with higher levels of functional connectivity.
Methods
Participants
In total, 230 nondemented older participants, healthy
older individuals (n = 140), and individuals with mild
cognitive impairment (MCI; n = 90) were included in
this study. Participants were aged between 50 and
80 years and were native German speakers. The healthy
older individuals were recruited from the general com-
munity via advertisement. The Mini-Mental State Exam-
ination (MMSE) [26] was used to exclude pre-existing
cognitive impairment (a score < 26 led to exclusion).
Amnestic MCI patients were recruited from the memory
clinic of the Department of Neurology at the Charité
University Hospital, Berlin, and a Neurology specialist
practice in Berlin (Dr. J. Bohlken). Individuals with MCI
were diagnosed according to the standardized Mayo
Clinic criteria [27]. Exclusion criteria for both groups in-
cluded severe medical, neurological, or psychiatric dis-
ease. Detailed information of the samples has been
provided previously [28, 29].

Neuropsychological testing
Participants underwent a full neuropsychological test
battery focused on a variety of cognitive domains. Based
on their relevance for the present research questions,
the following psychometric tests were selected for fur-
ther analysis: learning and memory performance was
evaluated by the German version of the Auditory Verbal
Learning Test (VLMT) [30], providing subscores for
learning ability (total immediate recall), delayed recall,
and recognition. Executive functions were measured by
the Trail Making Test (TMT) version A and B [31, 32]
and the interference score from the Stroop Color-Word
interference test [33]. In addition, working memory and
language abilities, respectively, were measured using the
forward and backward digit span conditions from the
Wechsler Digit span task [34] and phonemic and alter-
nating word fluency [35].

Acquisition preprocessing and analysis of the
neuroimaging data
Magnetic resonance imaging (MRI) acquisition
Scans were acquired using a 3-Tesla Magnetom Trio (Tim
Trio; Siemens AG, Erlangen, Germany) at two different
sites using identical imaging protocols. T1-weighted im-
ages were acquired with magnetization-prepared rapid ac-
quisition gradient-echo (MPRAGE) with the following
parameters: repetition time (TR = 1900 ms; TE = 2.52 ms;
192 sagittal slices; size = 1.0 × 1.0 × 1.0 mm3; flip angle =
9°). Functional scans were obtained at rest using
T2*-weighted EPI sequence (TR = 2300 ms; TE = 30 ms;
34 slices; size = 3.0 × 3.0 × 4.0 mm3; flip angle = 90°). Sub-
jects were instructed to keep their eyes closed and not
think of anything in particular. Fluid attenuated inverse
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Fig. 1 Panel A: Hypothesized relationships. The relationships analyzed in this study are shaded in gray. Functional connectivity, as a proxy of
cognitive reserve (CR), may act as a moderator between white matter lesions and cognition. Panel B.0: Regions of interest (ROIs) for each resting
state network as provided by CONN atlas. ROIs selected as seeds in the local connectivity measure are presented in grey. Panel B.1: Schematic
representation of the assessment of global connectivity measures. Panel B.2: Assessment of local connectivity measure with our behavioral
measure of CR indicated by years of education, premorbid intelligence, and lifestyle index. ACC anterior cingulate cortex, AI anterior insula, LP
lateral parietal, LPFC lateral prefrontal cortex, MPFC medial prefrontal cortex, PCC posterior cingulate cortex, PPC posterior parietal cortex, WML
white matter lesions
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recovery (FLAIR) T2-weighted images (TR = 8000 ms; TE =
100 ms; 2370 inversion time; 232 × 256 matrix size = 0.86 ×
0.86 × 5.0 mm3; flip angle = 130°; slice gap = 5.0 mm) were
acquired to measure WML. Neuroimaging measurements
and neuropsychological test sessions were obtained in close
proximity (mean time delay, 12.9 days; range, 1–40 days).

Assessment of WML and vascular risk
Total WML volumes were segmented automatically using
the FLAIR images and the “lesion growth algorithm” of the
lesion segmentation toolbox (LST) under the freely avail-
able Statistical Parametric Mapping (SPM) software pack-
age (version SPM8, Wellcome Trust Centre for
Neuroimaging, Institute of Neurology, UCL, London, UK;
[36]). Processing and parameter settings (kappa = 0.30, bi-
narization threshold = 0.50) were exactly as described previ-
ously [37]. The total WML volume was obtained by
multiplying the number of WML voxels according to the
binary WML map by the voxel volume. For each subject,
WML volume ratio was computed as the volume of WML
divided by the total intracranial (TIV) volume. Individual
TIV was assessed with the Tissue Volumes utility in SPM
12 (Wellcome Trust Centre for Neuroimaging, London,
UK; www.fil.ion.ucl.ac.uk/spm). It computes the total by
summing the volumes of grey matter, white matter, and
cerebrospinal fluid (CSF) from the corresponding seg-
mented images [38]. Frequency maps were calculated for
each group, both separately and for the entire sample. To
this aim, the frequency (i.e., number of participants with
WML in specific voxels relative to total number of partici-
pants) was computed voxel-wise based on binarized WML
segmentation maps previously warped to the anatomic
Montreal Neurologic Institute reference space.
In addition, we computed the validated Framingham

risk index of cardiovascular disease (CVD) as a com-
bined measure of vascular risk to validate the WML
measure based on the present sample [39]. This measure
involves age, sex, total cholesterol, high-density lipopro-
tein (HDL) cholesterol, systolic blood pressure, medical
history of diabetes, treatment for hypertension, and
smoking status.

Preprocessing and analysis of resting state functional MRI
The publicly available CONN Functional Connectivity
Toolbox version 17C (www.nitrc.org/projects/conn), in
conjunction with SPM 12 (Wellcome Department of
Cognitive Neurology, London, UK; www.fil.ion.ucl.ac.uk/
spm), was used to perform all preprocessing steps [40]. In
detail, we used the default preprocessing pipeline: raw
functional images were slice-time corrected, realigned
(motion corrected), and coregistered to each participant’s
MPRAGE image. Images were then normalized to the
Montreal Neurological Institute (MNI) standard space
and spatially smoothed with an 8-mm Gaussian filter.
Identification of outlier scans was performed using
Artifact Detection Tools (http://www.nitrc.org/projects/
artifact_detect; [40]). Specifically, this regresses out scans
as nuisance covariates in the first-level analysis exceeding
3 standard deviations (SD) in mean global intensity and
frame-to-frame differences exceeding 0.5 mm (combin-
ation of translational and rotational displacements). There
were no significant differences between the two groups in
the number of outlier scans (p = 0.6) or mean motion (p =
0.2); details in Additional file 1 (Table S2). Resting state
images were band-pass filtered (0.008–0.09 Hz) and cor-
rected with the implemented component correction
(CompCor) strategy [41], including the removal of white/
CSF time series, motion, and artifact-outlier regressors, to
reduce the influence of blood oxygen level-dependent
(BOLD) signals unrelated to neural activity. This approach
limits the influence of confounds such as head motion,
peripheral physiology, and other imaging artifacts.

Functional connectivity assessment
Functional connectivity was assessed within preselected
cognitive control networks, namely the fronto-parietal
network and the salience network, using global and local
connectivity measures (Fig. 1, panel B.0). The default
mode network was added for comparison reasons. Glo-
bal network connectivity was estimated within each rest-
ing state network, using the atlas network region(s) of
interest (ROI) (8-mm radius spheres) provided by
CONN. ROI-to-ROI connectivity values (Fisher-trans-
formed correlation coefficients) at false discovery rate
(FDR)-corrected level were extracted for each ROI pair
within each network [40] The ROI-to-ROI connectivity
values were used as indicators of latent variables (one
for each network) in SEM (see below) for estimating glo-
bal functional connectivity within each resting state net-
work (Fig. 1, panel B.1).

http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/conn
http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://www.nitrc.org/projects/artifact_detect
http://www.nitrc.org/projects/artifact_detect
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Local network connectivity was assessed within each
resting state network by extracting those brain re-
gions that significantly correlated with our behavioral
measure of CR (explained in detail below), similar to
previous approaches [24]. Individual connectivity
maps were derived using seed-to-voxel analyses from
CONN (Fig. 1, panel B.2). Whole brain correlational
maps were generated by extracting the mean resting
state BOLD time course for each seed ROI and calcu-
lating the Fisher-transformed correlation coefficients
with the BOLD time course throughout the whole
brain. For each network the following ROIs (Fig. 1,
Panel B.0) were used as seeds: fronto-parietal network
(left posterior parietal cortex (LPPC): –46,–58,49), sa-
lience network (anterior cingulate cortex (ACC):
0,22,35), and default mode network (medial prefrontal
cortex (MPFC): 1,55,−3). We chose these seeds as they
are characterized as core network hubs [42, 43] and are
areas involved in reserve-related functional connectivity
findings [20, 24, 44]. Individual connectivity maps were
then subjected to voxel-wise second-level analysis with our
behavioral measure of CR as a predictor of local connectiv-
ity related to reserve. Significant clusters were extracted at
a cluster-level threshold of p < 0.05, FDR-corrected for mul-
tiple comparison, and a voxel-level threshold of p < 0.005.
Finally, the average Z scores across each individual cluster
for each subject were used as a local connectivity measure.

Modeling procedure and measurement models
The SEM builds upon multiple observed variables to esti-
mate latent variables. We used the software Mplus for the
purpose of modeling [45]. Structural equational modeling
allows estimation of the relationship between observed
variables and the latent variable they intend to measure
(measurement models), and relationships between mul-
tiple latent variables (structural models). The advantage of
latent variables is that they represent the shared variance
among multiple observed variables that are conceivable
realizations of cognitive ability as a construct. Thus, latent
variables are adjusted for measurement error and for the
specificity of applied assessment methods in a given study.
Due to this adjustment, results based on latent variables
are generalized above measurement methods.
To that end, we established the best fitting measure-

ment models, separately for cognition, CR, and each
resting state network, aiming to estimate the number
and structure of latent variables that are necessary to ex-
plain the relationships across all these measured vari-
ables at the levels of brain and behavior.

Cognition, connectivity, and cognitive reserve estimate
models
The cognitive model included a latent variable of global
cognition (G), indicated by all selected psychometric tests.
Above G, executive functions and memory were modeled
as nested latent variables under G. As mentioned previ-
ously, executive functions were indicated by TMT versions
A and B, and Stroop interference, while memory was indi-
cated by VLMT total immediate recall, delayed recall, and
recognition. The first model postulated G with the specific
nested variables added in a stepwise fashion and testing
for model fit improvement through latent variable
addition. For subsequent analyses of specific relationships
within a given cognitive domain, the latent variables mem-
ory and executive functions were assessed as separate la-
tent factors. Additional file 1 (Table S1) provides the fit of
all estimated measurement models.
For each resting state network, global network connect-

ivity was estimated as a latent variable, as indicated by the
functional ROI-to-ROI connectivity among the major net-
work nodes. To account for the shared variance of pairs of
ROI-to-ROI connectivity values, some residual covariance
between connectivity indicators was introduced (i.e.,
MPFC-right lateral parietal (LP) with MPFC-left LP). The
model fit for each resting state network is provided in
Additional file 1 (Table S1).
Finally, we estimated a behavioral measure of CR as a

latent variable based on the following observed mea-
sures: years of education, premorbid intelligence, and a
combined measure of self-reported healthy lifestyle be-
haviors (referred to as lifestyle index). Premorbid verbal
intelligence was assessed by the German multiple vo-
cabulary test [46]. The lifestyle index included a sum
score of body mass index, dietary habits, physical exer-
cise, smoking, and alcohol consumption, described in
detail elsewhere [47, 48]. A high lifestyle index score in-
dicated normal weight, never smoking, intense physical
activity, moderate alcohol consumption, and a dietary
pattern rich in fruits, vegetables, and whole-grain prod-
ucts, as well as unsaturated fatty acids.
Several statistical test and fit indices were used for

assessing model fit: the ratio between χ2 and degrees of
freedom (χ2/df ratio < 2), root-mean square error of ap-
proximation (RMSEA) ≤ 0.08, standard root mean square
residual (SRMR) ≤ 0.05, and comparative fit index
(CFI) ≥ 0.95 [49]. Competing models were compared by
evaluating the difference of their likelihoods, using the
χ2-difference test. Missing data were dealt with by the
full information maximum likelihood (FIML) algorithm,
as implemented in Mplus (details of missing data pro-
vided in Table 1).
Additional statistical analyses were conducted with

SPSS (version 24) to evaluate the reproducibility of our
results when simplified modeling is applied. Restricted
regression models were computed to control for covari-
ates such as age and total grey matter volume. Cook
distance (> 1) was used to detect potential influential
cases [50].



Table 1 Characteristics of the study group showing means, standard deviation, and range of the total sample and dichotomized by group
Total sample HO MCI

N (n women) 230 (115) 140 (71) 90 (44)

Age (years) 65.2 ± 7.6
(50–80)

63 ± 6.9
(50–79)

68.6 ± 7.5
(50–80)

**

APOE4 carrier (%) 71 (30%)
(n = 228)

27 (19%) 44 (49%) **

WML/TIV 0.17 ± 0.37
(0–2.8)
(n = 229)

0.11 ± 0.25
(0–1.5)

0.28 ± 0.48
(0–2.8)

**

Cognitive reserve

Education 15.8 ± 3.3
(6–29)

16 ± 3.1
(10–25)

15 ± 3.7
(6–29)

MWT 31.9 ± 2.7
(21–37)

32.4 ± 2
(24–37)

31.1 ± 3
(21–37)

Lifestyle index 16.2 ± 2.6
(7–22)
(n = 139)

16.3 ± 2.5
(7–20)

16.1 ± 2.7
(9–22)

Cognition

MMSE 28.7 ± 1.2
(24–30)

29.0 ± 1.1
(26–30)

28.3 ± 1.4
(24–30)

**

G factor score – 0.35 ± 0.8
(−1.6 to 1.8)

−0.55 ± 0.9
(−1.3 to 2.6)

**

Executive function factor score – 0.25 ± 0.6
(−1.2 to 2.7)

−0.39 ± 1.1
(−1.1 to 4.7)

**

Memory factor score – 0.33 ± 0.8
(−1.9 to 1.7)

−0.52 ± 0.9
(−2.5 to 1.3)

**

Numbers are expressed as mean ± standard deviation, the ranges shown in parenthesis
Cognition variables are the factor scores estimated in the latent variable models. Because the latent variables of cognition were scaled by standardization (M = 0;
σ = 0), they are not displayed for the whole group. Group-specific average factor score can be thus interpreted as deviations from the whole sample average
White matter lesions (WML) data were missing in one participant (mild cognitive impairment (MCI): n = 1), and lifestyle index was missing in 91 participants
(healthy older (HO): n = 61, MCI: n = 12)
APOE4 apolipoprotein E, MMSE Mini-Mental State Examination, MWT German multiple vocabulary test, TIV transcranial intracranial volume
**p < 0.01, independent sample test for continuous variables and chi-square test for categorical variables
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Statistical analysis
The analysis objectives of this study can be summarized
as follows. First, the direct effect of WML on cognitive
performance (G, memory, and executive function in the
overall cognitive model) was estimated. Next, we tested
whether functional connectivity (global and local mea-
sures) within each resting state network moderated the
relationship between WML and executive function and
memory, respectively (Fig. 1, panel A). To this aim, we
estimated latent moderated structures implemented in
Mplus [51]. The moderation was assessed through an
interactive term, modeled by the product of WML and
functional connectivity values, respectively. Latent vari-
ables of executive functions and memory were then
regressed onto WML volumes, functional connectivity
measures, and their interactive term.
All models were estimated based on the whole sample

of nondemented individuals, which includes healthy
older individuals and individuals with MCI. This was
done to include a larger spectrum of individuals in
whom there is sufficient pathology to cause cognitive
impairment. We furthermore conducted sensitivity ana-
lysis using multigroup structural equation modeling to
explore, post hoc, the significant moderation effects
within each group (healthy older individuals vs. MCI).
Thus, latent interactions for testing moderation effects
of functional connectivity on the relationship between
WML and cognition were estimated separately, but sim-
ultaneously for healthy older individuals vs MCI. Be-
cause the model included a latent interaction between
functional connectivity and the relationship between
WML and cognition, such a model can be established as
a latent interaction model using the mixture modeling
framework of Mplus. In this framework the groups
(healthy older individuals and MCI) are treated as
known latent classes whereas the latent interaction is es-
timated simultaneously, but separately for the two clas-
ses (participant groups).
Factor scores, extracted from each latent variable, were

used to visualize selected interactive relationships from re-
gression models to better understand their directionality
using the R package Jtool (available at: https://cran.r-pro-
ject.org/web/packages/jtools/). Centered mean predicted
scores were estimated for executive function and memory
on two levels of low and high (–1 SD and +1 SD) func-
tional connectivity measures. Finally, a mediation model
was included to further validate our WML measure with
CVD risk score and cognition [51].

https://cran.r-project.org/web/packages/jtools/
https://cran.r-project.org/web/packages/jtools/


HO

Fig. 2 White matter lesion frequency maps for the entire sample
and dichotomized by group in anatomic Montreal Neurologic
Institute reference space. HO healthy older, MCI mild cognitive impairment

Benson et al. Alzheimer's Research & Therapy          (2018) 10:109 Page 7 of 13
Results
Sample characteristics
Descriptive information on the total sample of nonde-
mented older participants as well as participants dichot-
omized by group is provided in Table 1. The MCI group
had a higher frequency of APOE4 carriers, was signifi-
cantly older, and performed significantly worse on the
cognitive measures (cognitive scores for each test are
provided in Additional file 1: Table S3). The groups did
not otherwise differ demographically. The lesion fre-
quency maps of participants for the total sample and for
each group category are provided in Fig. 2. The figure
shows lesions situated predominately in periventricular
areas with more pronounced lesions in the frontal
regions.

Relationships between WML and cognition
Structural equational modeling confirmed negative rela-
tionships between WML volumes and cognitive per-
formance (Model fit: χ2 = 73.06, df = 36, χ2/df = 2.02,
RMSEA = 0.06, SRMR = 0.04, CFI = 0.96). Larger WML
volumes were significantly related to lower G (β1 =
−0.27, p < 0.01), having an even higher impact on execu-
tive functions (β2 = −0.37, p < 0.01) compared with mem-
ory (β3 = −0.22, p < 0.01) (Fig. 3). These effects remained
significant when controlling for age and grey matter
volume.
In a follow-up analysis, we added CVD risk to the

model defined as a predictor of WML volumes and cog-
nition to further validate our WML measure (model fit:
χ2 = 74, df = 43, χ2//df = 1.72 RMSEA = 0.05, SRMR =
0.04, CFI = 0.97). CVD risk was related to worse cogni-
tion (executive functions β = −0.30, p < 0.01 and memory
β = −0.26 p < 0.01). This relationship was mediated by
WML load, as indicated by a significant indirect effect
(β = −0.12, confidence interval (CI) −0.244 to −0.001,
and β = −0.08, CI −0.154 to −0.002) for executive func-
tions and memory, respectively. Finally, there was no
significant relationship between CVD risk factor and our
behavioral measure of CR (r = −0.046, p = 0.49).

Relationships between WML, connectivity, and cognition
Global connectivity
First, we modeled global functional connectivity as a latent
variable for each resting state network. The model fit for
each resting state network is provided in Additional file 1
(Table S1). All standardized factor loadings were statisti-
cally significant. Next, we tested whether global connectiv-
ity measures moderated the relationship between WML
and cognition. Global connectivity of the fronto-parietal
network showed a significant moderating effect on the re-
lationship between WML and executive function (non-
standardized coefficient: b = 2.39, p = 0.01), but not for
memory (nonstandardized coefficient: b = −5.01, p = 0.51).
Specifically, the negative impact of WML on executive
functions was reduced in individuals with higher levels of
global connectivity in the fronto-parietal network (Fig. 4a).
No significant interactions between WML and global con-
nectivity were found for the salience network (nonstan-
dardized coefficients: b = 0.24, p = 0.89; b = 0.15, p = 0.64)
and the default mode network (nonstandardized coeffi-
cients: b = 0.19, p = 0.55; b = 0.05, p = 0.80) for executive
functions and memory, respectively.

Local connectivity
For our local connectivity measure, we first used the
behavioral measure of CR (modeled as a latent variable) as
a predictor of local connectivity. Specific regions within
the fronto-parietal network, the salience network, and the
default mode network were positively related with CR at
the given statistical threshold (with clusters in Additional
file 1: Table S4). When testing for moderation effects, local
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connectivity in the salience network (cluster shown in Fig.
4b, medial frontal cortex, cingulate gyrus; peak voxel
MNI: −12 + 38–4, p < 0.01) showed a significant moder-
ation effect on the relationship between WML volumes
and executive functions (nonstandardized coefficient: b =
3.92, p = 0.01) and a trend for memory (nonstandardized
coefficient: b = 2.01, p = 0.07). The negative impact of
WML on executive functions was reduced in individuals
with higher local connectivity in the ACC (Fig. 4b). No
significant interactions between WML and local connect-
ivity in the fronto-parietal network (nonstandardized coef-
ficient: b = −0.41, p = 0.85; b = −1.10, p = 0.31) and the
default mode network (non-standardized coefficient: b =
−0.82, p = 0.52; b = 0.38, p = 0.70) were found for executive
functions and memory, respectively (data not shown). All
the effects reported above remained significant after con-
trolling for age and grey matter volume.

Post-hoc multigroup analysis
Multigroup SEM examined the associations (moder-
ations) across each diagnostic group, where the groups
are handled as a higher-order moderator variable and
interaction effects of functional connectivity on the rela-
tionship between WML and cognition are estimated
within groups (see the explanation in the methods
section). In the MCI sample, the moderating effect for
global connectivity of the fronto-parietal network
between WML and cognition remained significant for
executive function (nonstandardized coefficient: b = 3.10,
p < 0.01). Likewise, the moderating effect of local con-
nectivity within the salience network remained signifi-
cant for both executive function and memory
(nonstandardized coefficient: b = 8.97, p < 0.01; b = 5.65,
p < 0.01, respectively). However, these moderating effects
were not statistically substantial in the sample of healthy
older individuals, for either the global fronto-parietal
connectivity on executive function (nonstandardized co-
efficient: b = 0.96, p = 0.31), or for the local connectivity
of the salience network (nonstandardized coefficient: b
= 1.28, p = 0.35; b = −0.34, p = 0.78) executive functions
and memory, respectively.

Discussion
The present study evaluated the moderating impact of
functional connectivity on the relationship between
WML and cognitive performance in nondemented older
individuals. Our results indicated that higher levels of
functional connectivity in the fronto-parietal network
and salience network in part mitigate the negative effect
of WML on executive functions, the cognitive domain
most affected by cerebrovascular pathology. Analyses
were performed with SEM, allowing us to abstract from
measurement error and task specificity [45]. Our results
support the notion that higher functional connectivity in
cognitive control networks may serve as protective
neural mechanism that allow better preservation of
cognitive ability in the presence of cerebrovascular
pathology.



Fig. 4 Moderations of functional connectivity on the effect of white matter lesions (WML) on cognition. Regression line plots showing the mean
predicted scores of cognition on two levels of functional connectivity (FC), high (1 SD) and low (–1 SD) on WML. a The negative impact of WML
on executive functions was reduced in individuals with higher levels of global functional connectivity in the fronto-parietal network. A similar
moderation effect was not found for memory. b The local connectivity cluster from the salience network extracted as the multiple regression
between our behavioral measure of cognitive reserve and the anterior cingulate cortex seed (p < 0.005, FDR corrected). Regression line plots
show a significant moderation of local functional connectivity in the salience network on the negative impact of WML on executive functions
and a trend for memory. Shaded area indicates 80% confidence intervals; p values of the interaction terms are displayed for each graph. LPFC
lateral prefrontal cortex, PPC posterior parietal cortex
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Our results are consistent with the established litera-
ture, suggesting an association between higher WML
load and lower cognitive performance in the domains of
both memory and executive functions [1, 7]. WML tend
to primarily affect processing speed and executive tasks
in older participants with Alzheimer’s disease, MCI, and
normal cognition [5, 6, 52, 53]. Our results confirmed
the stronger association with executive cognitive dys-
functions, with similar path coefficients as reported pre-
viously [17]. Although not always present [6], we found
an association between lower memory performance and
higher WML load, consistent with previous findings [5,
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52]. The topography of WML (Fig. 2) show a higher
frequency of lesions in frontal and periventricular
regions, which is consistent with studies that report an
association between WML frequency in these regions
and decreased executive function and processing speed
[6, 52]. In general, WML have been associated with a de-
cline in cognitive domains linked to prefrontal cortex
function and, to a lesser extent, with medial temporal
lobe-associated memory tasks [4].
Consistent with our hypothesis, we found a significant

moderating effect of the global functional connectivity in
the fronto-parietal network. Thus, the negative impact of
WML on executive functions was attenuated in individ-
uals with higher global functional connectivity in this net-
work. Our results are in line with previous findings that
support the protective role of fronto-parietal network con-
nectivity as a neural substrate of CR in both normal and
pathological aging [54]. Higher functional connectivity
(particularly in the left hub) has been associated with
higher education and higher cognitive function in cogni-
tively normal individuals and MCI patients [54] and has
been shown to diminish the effect of Alzheimer’s disease
pathology on cognition [23, 55]. Our results further con-
verge with the previous findings of Franzmeier and col-
leagues [23, 44]. These authors have repeatedly found
evidence for a compensatory effect of the global
connectivity in the fronto-parietal network in Alzheimer’s
disease pathology. Our results extend the evidence by
demonstrating a protective role of the global fronto-parietal
network against the detrimental impact of cerebrovascular
pathology in the elderly.
At the local level, functional connectivity from the sali-

ence network showed a significant moderation on the
impact of WML on cognition. More specifically, func-
tional connectivity between the ACC (as seed) and the
medial frontal cortex significantly mitigated the negative
impact of WML on executive functions and, as a trend,
this moderation effect was present for the memory do-
main. The regions involved in the local connectivity
measure of the salience network (connectivity cluster in
Fig. 4b) are in line with previous reports that show a
positive correlation between connectivity from the ACC
and the medial frontal cortex with higher levels of edu-
cation and preserved cognitive performance in healthy
elders [24]. Furthermore, a previous study [20] compar-
ing MCI patients with low and high CR showed that the
ACC was involved in regions showing connectivity
changes at the local level. Our findings extend the pos-
sible beneficial effects of functional connectivity against
WML to include the salience network regions.
Results from the post-hoc multigroup analysis showed

the estimated interactions to be significant in the whole
sample and in the MCI sample alone. There may not
have been enough pathology in the healthy older group,
compared with the MCI, to yield a moderating relation-
ship of functional connectivity on cognition. The smaller
sample size of the subgroups may have also led to insuffi-
cient power to identify the effect with the healthy control
group only. Our findings nevertheless support the idea
that compensatory mechanisms are pronounced at the
prodromal disease stage, where more neuropathology is
present [56].
Both the salience and the fronto-parietal network are

considered as important cognitive control networks cru-
cial for regulation and healthy brain functioning. The
fronto-parietal network is important for flexibly regulating
activity to other functional networks [42], just as the sali-
ence network is crucial for integrating input from various
sources [57]. Both networks support successful cognition
with increased functional hub connectivity linked to better
cognition [25, 58]. Higher or more efficient functional
connectivity in these networks may facilitate adaptive
functional connectivity to other brain regions when neu-
rodegenerative insults occur. Our results show that, in-
deed, functional neural mechanisms convey reserve in the
presence of cerebrovascular pathology and substantiate
the notion that cognitive control networks may play an
important role in resilience mechanisms.
The detection of resilient or protective mechanism are

of increased recent interest given the rapidly aging popula-
tion [59, 60]. Functional mechanisms underlying reserve
may be suitable targets for therapeutic intervention to pre-
vent further cognitive decline. For example, combining
cognitive training and noninvasive brain stimulation over
task-relevant brain areas may offer a means for cognitive
enhancement in older adults, as demonstrated both in
healthy older adults [61] as well as in patients with MCI
[62] (see also [63] for a recent review). The present study
suggests that targeting hubs specifically involved in resili-
ent mechanisms may provide an additional approach to
protect cognitive function against age-related conditions
in the elderly.
There are several caveats that must be taken into consid-

eration when interpreting our results. First, although our
measure of WML is reliable, our sample was prescreened
for cerebrovascular disease and included individuals with
MCI. Thus, the compensatory mechanisms of functional
connectivity should be replicated in a sample with higher
WML load. Second, our measure of global functional
connectivity as a latent variable may be specific to our SEM
analysis. Our findings need to be completed by other
functional connectivity measures, such as inter-network
functional connectivity and degree of centrality and ex-
tended to other intrinsic brain networks [64]. A future line
of work might specifically explore inter-network functional
connectivity in order to elucidate the relationship of
functional connectivity between networks. Third, the
present study focused on functional connectivity; however,
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structural measures of white matter tracts through diffu-
sion tensor imaging (DTI) should also be tested for at-
tenuation effects underlying reserve. Recent work has
explored the disruption of tract-specific WML on the de-
fault mode network [65]. However, the fronto-parietal and
salience networks and their moderation effects should also
be explored in this modality. Fourth, WML represent only
one entity of the umbrella term of cerebrovascular disease;
other pathologies (i.e. lacunes, small infarcts and micro-
bleeds) should also be considered. More pronounced ef-
fects could be observed by the incorporation of these
pathologies into the model. Finally, longitudinal studies
are necessary to assess the neuroprotective trajectories of
functional connectivity and whether there are nonlinear
relationships with the increase in further pathology.

Conclusion
The results from the current study highlight the role of func-
tional connectivity in cognitive control networks in attenuat-
ing the detrimental effects of cerebrovascular pathology in
the elderly. Our findings shed light on neural mechanisms
underlying reserve in the face of cerebrovascular path-
ology and suggest that the fronto-parietal network and the
salience network may be suitable targets for early inter-
vention strategies that aim to enhance CR in the elderly.
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