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Abstract

Background: Cerebrovascular disease (CVD) and amyloid-β (Aβ) often coexist, but their influence on neurodegeneration
and cognition in predementia stages remains unclear. We investigated the association between CVD and Aβ on
neurodegenerative markers and cognition in patients without dementia.

Methods: We included 271 memory clinic patients with subjective or objective cognitive deficits but without dementia
from the BioBank Alzheimer Center Limburg cohort (n= 99) and the LeARN (n= 50) and DESCRIPA (n= 122) multicenter
studies. CSF Aβ1–42 and white matter hyperintensities (WMH) on magnetic resonance imaging (MRI) scans were used as
measures of Aβ and CVD, respectively. Individuals were classified into four groups based on the presence (+) or absence
(−) of Aβ and WMH. We investigated differences in phosphorylated tau, total tau (t-tau), and medial temporal lobe atrophy
(MTA) between groups using general linear models. We examined cognitive decline and progression to dementia using
linear mixed models and Cox proportional hazards models. All analyses were adjusted for study and demographics.

Results: MTA and t-tau were elevated in the Aβ−WMH+, Aβ+WMH−, and Aβ +WMH+ groups. MTA was most severe in
the Aβ +WMH+ group compared with the groups with a single pathology. Both WMH and Aβ were associated with
cognitive decline, but having both pathologies simultaneously was not associated with faster decline.

Conclusions: In the present study, we found an additive association of Aβ and CVD pathology with baseline MTA but not
with cognitive decline. Because our findings may have implications for diagnosis and prognosis of memory clinic patients
and for future scientific research, they should be validated in a larger sample with longer follow-up.
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Background
Cerebrovascular disease (CVD) often coexists with
Alzheimer’s disease (AD), and both conditions add to
cognitive decline [1, 2]. The influence of coexisting CVD
and AD pathology on neurodegeneration and cognitive
decline in predementia stages of AD, however, remains
uncertain. Understanding the role CVD pathology in

early AD is key to understanding and preventing cogni-
tive decline in AD.
In subjects with dementia, coexistent AD and CVD path-

ology at autopsy is associated with more rapid cognitive de-
cline and often a more severe form of dementia than
isolated AD pathology [3, 4]. A combination of AD
and CVD has also been associated with a lower
burden of amyloid-β (Aβ) pathology than in isolated AD
[5, 6], suggesting that less AD pathology is needed for
cognitive impairment in individuals who also have
CVD [7, 8]. In cognitively normal subjects, it was
shown that Aβ and CVD pathology are independent
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contributors to cognitive decline and that both in-
crease the risk of dementia [7, 9]. Studies on the con-
tribution of Aβ and CVD pathology on cognitive
decline in individuals with subjective cognitive decline
(SCD) and mild cognitive impairment (MCI) have
shown conflicting results [10, 11]. Also, how each of
these pathologies relates to different markers of neu-
rodegeneration is less well understood, because previ-
ous studies point in different directions or were
focused on only a single marker instead of investigat-
ing multiple neurodegenerative markers using various
modalities (e.g., magnetic resonance imaging (MRI)
and cerebrospinal fluid CSF)) [12–15]. Clarity regard-
ing the relationship between coexisting AD and CVD
pathology, neurodegenerative markers, and cognition
will improve diagnostic and prognostic accuracy of
early AD.
The aim of this study was to investigate whether in

patients with SCD and MCI there is an additive effect of
CVD and Aβ on neurodegeneration measured by total
tau (t-tau) and phosphorylated tau (p-tau) in CSF and
medial temporal lobe atrophy (MTA) visualized by MRI,
as well as on cognitive decline during follow-up.

Methods
Subjects
Two hundred seventy-one subjects were selected from
memory clinics of the single-center BioBank Alzheimer
Center Limburg (BBACL; n = 99) cohort and the LeARN
(n = 50) [16] and DESCRIPA (Development of screening
guidelines and criteria for predementia Alzheimer’s
disease; n = 122) [17] multicenter studies. Inclusion cri-
teria were (1) no diagnosis of dementia at baseline and
(2) baseline data available for MRI and CSF measures.
When subjects participated in more than one study, we
included the data from the study with the longest
follow-up. The medical ethics committee at each site
approved the study. All subjects provided informed
consent.

Clinical assessment
Clinical assessment included neuropsychological assess-
ment and an assessment of medical history. Information
on medical history (e.g., hypertension, diabetes, obesity)
was provided by patients and/or their caregivers, or it
was extracted from medical files. Neuropsychological
assessment was performed according to local routine
protocol of each site, including the Mini Mental State
Examination (MMSE) and at least one test in the cogni-
tive domains of memory and executive functioning. The
delayed recall of a word list test was used to examine
memory. For the BBACL and LeARN studies, the Rey
Auditory Verbal Learning Test (RAVLT) was used [18].
For the DESCRIPA cohort, the RAVLT and Consortium

to Establish a Registry for Alzheimer’s Disease word list
were the primary memory tests used. DESCRIPA tests
per center are described elsewhere [17]. The Trail
Making Test part B (TMT-B) [19] was used to examine
executive functioning. Raw scores on each test were
converted to z-scores using local normative data. Z-
scores below −5 (n = 7) were rounded to −5 to avoid bias
through outliers in the data.
Diagnosis of MCI at baseline was made according to the

criteria of Petersen [20]. Subjects with a z-score below
−1.5 on the immediate recall or delayed recall of a word
list test were classified as having amnestic MCI. Subjects
with a z-score below −1.5 on any of the nonmemory tests
were classified as nonamnestic MCI. Diagnosis of AD-
type dementia at follow-up was made according to
the criteria of the Diagnostic and Statistical Manual
of Mental Disorders, Fourth Edition [21], and the
National Institute of Neurological and Communica-
tive Disorders and Stroke-Alzheimer’s Disease and
Related Disorders Association [22]. Etiological diag-
noses of other types of dementia were made accord-
ing to standardized clinical criteria for vascular
dementia [23], frontotemporal dementia (FTD) [24],
and dementia with Lewy bodies [25].

CSF analyses
CSF was collected by lumbar puncture and thereafter
centrifuged and stored at −80 °C in polypropylene tubes.
CSF Aβ1–42, t-tau, and p-tau were analyzed using the
Innotest sandwich enzyme-linked immunosorbent assay
(Innogenetics, Ghent, Belgium) in Gothenburg for the
DESCRIPA cohort [17], in Amsterdam for the LeARN
project [26], and in Nijmegen for the BBACL study [27].
To define abnormality of the CSF measures, the follow-
ing predefined cutoffs were used: Aβ1–42 ≤ 550 pg/ml,
t-tau > 375 pg/ml, and p-tau181 > 52 pg/ml [28].

Genetic analyses
The apolipoprotein E (APOE) genotype was determined
in a subgroup of the sample (n = 165). Assessments were
performed according to routine protocol at each site, as
described elsewhere [17, 29].

MRI analyses
All subjects were scanned according to the routine MRI
protocol at each site (Additional file 1). Scanning was
performed at 1.0 (n = 14), 1.5 (n = 108), or 3.0 (n = 149)
Tesla, and all scans included a three-dimensional T1-
weighted gradient echo sequence and a fast fluid-
attenuated inversion recovery sequence. To determine
MTA, the Scheltens MTA visual rating scale [30] was
used. The score on the MTA scale ranges from 0 to 4
for each hemisphere. The summed score of both hemi-
spheres was used, where an abnormal MTA was defined
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using a cutoff ≥ 2 [31]. White matter hyperintensities
(WMH) were measured with the visually rated age-related
white matter changes (ARWMC) scale (range 0–3) [32]
for the DESCRIPA cohort and with the visually rated
Fazekas scale (range 0–3) [33] for the BBACL and LeARN
cohorts. For the ARWMC scale, a cutoff score ≥ 2 in at
least one of the measured brain areas was used to define
WMH status [34, 35]. For the Fazekas scale, a cutoff
score ≥ 2 was also used to define WMH status [36].

Subject classification
To classify individuals into subgroups, we used Aβ as a
measure of AD and WMH as a measure of CVD. Sub-
jects were classified as Aβ + when CSF Aβ1–42 levels
were abnormal. Subjects were classified as WMH+ when
the WMH score was high. We created four groups based
on combinations of Aβ status and WMH status: Aβ −
WMH−, Aβ −WMH+, Aβ +WMH−, and Aβ +WMH+.

Statistical analyses
We analyzed differences in clinical baseline and follow-
up characteristics and neurodegeneration markers
between groups using analysis of variance for continuous
variables and chi-square tests for categorical variables.
Prior to the continuous comparisons of biomarker
values between groups (Tables 1 and 2), Aβ1–42, p-tau,
and t-tau values were log-transformed to approximate a
normalized distribution required for statistical compari-
sons. The raw biomarker values are shown in the tables.
Comparisons between Aβ/WMH groups regarding
neurodegenerative markers (Table 2) were all corrected
for demographics, study, and baseline diagnosis.
The associations between Aβ/WMH groups and

changes in MMSE scores, memory, and executive func-
tioning were assessed by slope analyses with linear
mixed models. The analyses included the baseline scores
and all available follow-up scores (up to 4 years). All

Table 1 Comparisons of baseline and follow-up characteristics by amyloid-β and white matter hyperintensities status

Aβ −WMH−
(n = 140)

Aβ −WMH+
(n = 39)

Aβ +WMH−
(n = 63)

Aβ +WMH+
(n = 29)

Baseline characteristics

Age, years 61.7 (8.3)a,b,c,d 71.3 (7.7)b,d 66.7 (7.8)a,c,d 74.1 (5.0)b,d

Female sex, n 94 (67)b 23 (59) 32 (51)d 16 (55)

Education, years 10.9 (3.1) 11.9 (3.3) 11.1 (3.1) 10.3 (2.9)

Hypertension, ne 43 (34) 9 (25) 15 (25) 9 (32)

Obesity, ne 15 (14) 3 (11) 4 (8) 4 (21)

Diabetes, ne 16 (21) 3 (15) 3 (7) 5 (28)

APOE ε4 allele carrier, ne 33 (51)a 5 (24)b,c 29 (62)a 10 (56)a

Diagnosis of MCI, n 70 (50)c 21 (54)c 40 (64) 22 (76)a,d

Amnestic MCI, % within MCI group 40 (57) 15 (71) 27 (68) 17 (77)

Nonamnestic MCI, % within MCI group 30 (43) 6 (29) 13 (33) 5 (23)

CSF Aβ1–42, pg/ml 973.6 (312.0)b,c 885.0 (242.0)b,c 404.3 (102.6)a,d 419.3 (97.2)a,d

White matter hyperintensitiesf 0.7 (0.5)a,c 2.3 (0.4)b,d 0.8 (0.4)a,c 2.4 (0.5)b,d

Follow-up characteristics

Follow-up duration, years 2.1 (1.5) 2.2 (1.3) 2.1 (1.2) 2.4 (1.2)

Time to progression to dementia, years 1.3 (0.5)a 2.0 (0.7)d 1.7 (0.7) 2.1 (1.2)

Progression to dementia, n 8 (6)a,b,c 9 (23)d 18 (29)d 11 (38)d

AD-type dementia, n 2 (1)a,b,c 7 (18)d 18 (29)d 10 (35)d

Vascular dementia, n 0 (0) 2 (5) 0 (0) 1 (3)

Frontotemporal dementia, n 4 (3) 0 (0) 0 (0) 0 (0)

Dementia with Lewy bodies, n 1 (1) 0 (0) 0 (0) 0 (0)

Dementia with unknown etiology, n 1 (1) 0 (0) 0 (0) 0 (0)

Abbreviations: Aβ Amyloid-β, AD Alzheimer’s disease, APOE Apolipoprotein E, CSF Cerebrospinal fluid, MCI Mild cognitive impairment, WMHWhite matter hyperintensities
Results are mean (SD) for continuous variables or number (%)
ap < 0.05 compared to Aβ - WMH-
bp < 0.05 compared to Aβ - WMH+
cp < 0.05 compared to Aβ +WMH-
dp < 0.05 compared to Aβ +WMH+
eHypertension, obesity, diabetes, and APOE ε4 genotype were available only in a subgroup of the sample
fWMH measured by the Fazekas scale, range 0-3
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slope analyses were adjusted for study. When the inter-
action between Aβ/WMH group, baseline diagnosis, and
time was significant, we added baseline diagnosis as a
covariate in the model. The models adjusted for baseline
diagnoses are reported in the tables and figures, and the
results stratified by diagnoses are reported in the text. For
the MMSE, we also adjusted for age, sex, and years of edu-
cation because these scores are not standardized. We also
tested the influence of APOE genotype in a subgroup of
the sample for whom this was available. Models were
fitted with random study-specific intercept and subject-
specific slopes and a first-order autoregressive correlation
structure. We chose this model because it provided the
best −2 log-likelihood ratio and the lowest number of
parameters. Cox proportional hazards models were used
to investigate the risk of progression to dementia for each
group after adjusting for demographics, study, and base-
line diagnosis. Statistical analyses were conducted with
IBM SPSS Statistics version 24.0 software (IBM, Armonk,
NY, USA) with the significance level set at p < 0.05. Owing
to the exploratory nature of the study, we did not control
for multiple comparisons. Post hoc power calculations
were conducted using IBM SPSS Statistics software and
the ‘simr’ package of R statistical software (version 3.3.3; R
Foundation for Statistical Computing, Vienna, Austria).

Results
Cohort characteristics
We included 271 individuals with a mean age of 65.6
(SD 9.0) years. One hundred sixty-five (61%) were
female, and 153 (57%) had a diagnosis of MCI at base-
line, of whom 99 (65%) were classified as having amnes-
tic MCI. Follow-up data were available for 233
individuals (86%). The availability of follow-up data was
not different among the Aβ/WMH groups (p = 0.396) or
studies (p = 0.730). After a mean follow-up of 2.5 (SD
1.2) years, 46 (17%) subjects had progressed to dementia.
The majority (80%) of the individuals who progressed to
dementia had a clinical diagnosis of AD-type dementia.

Table 1 shows baseline and follow-up characteristics of
the four Aβ/WMH groups. The group without pathology
was younger (p < 0.001) and progressed less frequently
to dementia than the other three groups (p < 0.001). We
found no difference in the prevalence of several vascular
risk factors between the four groups (hypertension, p =
0.563; obesity, p = 0.486; diabetes, p = 0.106). We found
no difference in Aβ load between the group with only
Aβ and the group with both Aβ and WMH pathologies
(p = 0.502). Likewise, the proportion of WMH was not
different between the two WMH+ groups (Aβ −WMH+
and Aβ +WMH+; p = 0.175).

Neurodegeneration markers
Table 2 shows the values and frequency of abnormal
neurodegenerative markers for the Aβ/WMH groups.
We found that, compared with the group without path-
ology, MTA was more severe in the groups with only Aβ
(p < 0.001) and with only WMH (p < 0.001), as well as in
the mixed pathology group (p < 0.001). The Aβ +WMH
+ group had higher MTA scores than the group with
only WMH (p = 0.025) and the group with only Aβ (p =
0.002). t-tau was increased in all three groups with a
form of pathology compared with the group without
pathology (Aβ −WMH+, p < 0.001; Aβ +WMH−, p <
0.001; Aβ +WMH+, p = 0.047), but this effect was influ-
enced by baseline diagnosis (Aβ/WMH group × baseline
diagnosis, F = 3.20, p = 0.024). When stratified by
diagnosis, the effect was found only in subjects with
MCI. There was no difference in t-tau levels between
the Aβ −WMH+, Aβ +WMH−, and Aβ +WMH+
groups, regardless of baseline diagnosis. p-tau was in-
creased only in the group with only Aβ compared with
the Aβ −WMH− group (p < 0.001), regardless of
baseline diagnosis. The association between p-tau and
Aβ/WMH group was influenced by APOE genotype
because we found that the elevated p-tau levels in the Aβ +
WMH− group were limited to APOE ε4 allele carriers (Aβ/
WMH group ×APOE status, F = 3.72, p = 0.013).

Table 2 Values of neurodegenerative markers by amyloid-β/white matter hyperintensities groups

Neurodegeneration markers Aβ −WMH− (n = 140) Aβ −WMH+ (n = 39) Aβ +WMH− (n = 63) Aβ +WMH+ (n = 29)

MTA score 1.2 (1.2)a,b,c 2.6 (1.6)c,d 2.1 (1.6)c,d 3.4 (1.8)a,b,d

MTA abnormal, n 62 (45)a,b,c 32 (82)d 41 (67)c,d 26 (93)b,d

p-tau, pg/ml 54.5 (27.7)b 63.2 (29.3) 77.0 (56.3)d 65.2 (38.2)

p-tau abnormal, n 53 (38)b 22 (58) 45 (71)d 15 (52)

t-tau, pg/ml 314.7 (202.0)a,b,c 438.4 (248.0)d 499.3 (413.8)d 426.2 (275.2)d

t-tau abnormal, n 36 (26)a,b,c 20 (53)d 36 (57)d 14 (48)d

Abbreviations: Aβ Amyloid-β, MTA Medial temporal lobe atrophy, p-tau Phosphorylated tau, T-tau Total tau, WMH White matter hyperintensities
Results are mean (SD) and number (%). All analyses were adjusted for study, baseline diagnosis, and demographics
ap < 0.05 compared to Aβ - WMH-
bp < 0.05 compared to Aβ - WMH+
cp < 0.05 compared to Aβ +WMH-
dp < 0.05 compared to Aβ +WMH+
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Baseline cognitive performance and cognitive decline
In the total sample, MMSE scores did not differ between
the Aβ/WMH groups at baseline (Table 3, Fig. 1). Base-
line MMSE scores of the individuals with MCI were
lower than those of individuals with SCD, regardless of
pathology (p < 0.001). In subjects with MCI, there was a
difference in baseline MMSE score only between the Aβ
−WMH− and the Aβ +WMH− groups (p = 0.020). In
subjects with SCD, there was no difference in baseline
MMSE scores. In the total sample, the groups with one
or both pathologies declined in MMSE score over time
(Aβ −WMH+, p = 0.014; Aβ +WMH−, p = 0.035; Aβ +
WMH+, p = 0.045), whereas scores remained stable in
the Aβ −WMH− group (p = 0.793). The rate of decline
was higher in the Aβ −WMH+ group than in the Aβ −
WMH− group (p = 0.035). There were no differences in
the rate of decline between the three groups with path-
ology. In subjects with SCD, the Aβ/WMH groups
showed no decline over time. In subjects with MCI, the
results were similar to those found in the total sample.
Baseline delayed recall memory scores were lower in the
three groups with pathology than in the group without
pathology (Aβ −WMH+, p = 0.004; Aβ +WMH−, p <
0.001; Aβ +WMH+, p = 0.009), which was not influ-
enced by baseline diagnosis. None of the groups showed
significant decline over time. TMT-B scores did not dif-
fer at baseline between the groups and did not change
during follow-up (Table 3, Fig. 1). APOE genotype did
not influence any of the baseline or longitudinal
associations.

Progression to dementia
Table 4 and Fig. 2 show the risk of progression to de-
mentia for the Aβ/WMH groups. Compared with the
group without pathology, the groups with a form of

pathology have an increased risk of progressing to de-
mentia (Aβ- WMH+ HR: 3.25, p = 0.021, Aβ +WMH-
HR: 4.89, p < 0.001, Aβ +WMH+ HR:3.00, p = 0.036),
but this was influenced by baseline diagnosis (Aβ/WMH
group*baseline diagnosis: HR = 2.89; p = 0.007) as the ef-
fect was mainly attributable to MCI subjects (Fig. 2).
There was no difference in progression rates between
the groups with isolated or coexisting Aβ/WMH path-
ology, when analyzing the total sample or only MCI sub-
jects. Results were similar when using progression to
AD-type dementia as outcome.

Post hoc analyses
Because both Aβ and WMH were associated with MTA,
we tested the interaction between the two pathologies
on MTA. General linear model analyses showed no
interaction between Aβ and WMH on MTA, using di-
chotomous variables created with cutoff points (p =
0.770) or continuous variables (p = 0.631).
We repeated the main analyses after exclusion of sub-

jects with CSF Aβ1–42 values 10% around the cutoff. The
results remained similar after this exclusion. The results
were also comparable after exclusion of the four subjects
in the Aβ −WMH− group who progressed to FTD at
follow-up, as well as when repeating the analyses using
Aβ and tau for classification of AD profiles instead of
only Aβ.
We conducted age sensitivity analyses in which we

age-matched the Aβ/WMH groups by selecting only in-
dividuals between 64 and 79 years of age. Most results
were similar to the original results. Results that were dif-
ferent are shown in Additional file 2. Associations that
showed a similar direction but no longer reached signifi-
cance because of a reduction in sample size (p values be-
tween 0.05 and 0.09) were considered unchanged.

Table 3 Cognitive performance and decline, by amyloid-β/white matter hyperintensities groups

Aβ −WMH− Aβ −WMH+ Aβ +WMH− Aβ +WMH+

MMSE No. of subjects 140 39 62 27

Baseline 27.79 (27.39, 28.19) 27.52 (26.83, 28.21) 27.20 (26.62, 27.78) 27.40 (26.54, 28.25)

Slope −0.01 (−0.15, 0.12) −0.29 (−0.55, −0.02) −0.22 (−0.44, −0.01) −0.31 (−0.62, 0.00)

Memory delayed
recall z-score

No. of subjects 133 37 58 27

Baseline −0.48 (−0.72, −0.24)b,c,d −1.04 (−1.48, −0.61)e −1.04 (−1.41, −0.68)A −1.33 (−1.86, −0.80)e

Slope 0.05 (−0.03, 0.13) 0.02 (−0.12, 0.17) 0.02 (−0.11, 0.14) −0.07 (−0.24, 0.09)

Executive functioning
z-score

No. of subjects 130 37 60 24

Baseline −0.48 (−0.76, −0.21) −0.41 (−0.92, 0.09) −0.78 (−1.18, −0.37) −1.12 (−1.73, −0.50)

Slope 0.06 (−0.02, 0.13) −0.00 (−0.15, 0.15) −0.03 (−0.16, 0.10) −0.04 (−0.23, 0.15)

Abbreviations: Aβ Amyloid-β, MMSE Mini Mental State Examination, WMH White matter hyperintensities
Results are mean (95% CI). Bold slope estimates = p < 0.05. All analyses were adjusted for study. The analyses of MMSE scores were also corrected for demographics and
baseline diagnosis
ap < 0.05 compared to Aβ - WMH-
bp < 0.05 compared to Aβ - WMH+
cp < 0.05 compared to Aβ +WMH-
dp < 0.05 compared to Aβ +WMH+
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Observed power calculations were done for the
main analyses. For the comparisons of neurodegenera-
tive markers (Table 2), the observed power ranged
from 0.71 to 0.99. For the comparisons of cognitive
performance and decline (Table 3), the observed base-
line power ranged from 0.37 to 0.67, and for the
slopes it ranged from 0.34 to 0.61. Regarding the
comparisons in progression to dementia (Table 4), the
observed power was 0.66.

Discussion
We investigated the relation of Aβ and CVD pathology
with markers of neurodegeneration and cognitive
decline. We found that the neurodegeneration markers
t-tau in CSF and MTA on MRI scans were associated
with both Aβ and CVD, as well as that there was an
additive association of the two pathologies on MTA. De-
cline of global cognition scores during follow-up was

seen in both Aβ and CVD, but there was no additive or
synergistic effect.

Medial temporal lobe atrophy
The association between AD pathology and MTA has
been well characterized in the literature. The first neuro-
pathological changes underlying AD are thought to
occur in the medial temporal lobe [37]. The relationship
between MTA and CVD, however, is still somewhat
controversial. Some studies have found that CVD was
associated with MTA [12, 15, 38], whereas others did
not find this relationship [7, 13]. Our results support an

Fig. 1 Cognitive decline by amyloid-β/white matter hyperintensities (Aβ/WMH) group for global cognition, memory, and executive functioning.
The graphs show mean scores and 95% CIs of cognitive decline over time for four different groups based on Aβ/WMH status. The left graph shows
cognitive decline for global cognition (Mini Mental State Examination [MMSE]) after adjusting for demographics, study, and baseline diagnosis. The
middle graph shows cognitive decline for memory (delayed recall of Rey Auditory Verbal Learning Test) after adjusting for study. The right graph shows
cognitive decline for executive functioning (Trail Making Test part B) after adjusting for study

Table 4 Risk of progression to dementia for amyloid-β/white
matter hyperintensities groups

Groups HR 95% CI p Value comparisons

Aβ −WMH− Reference Reference Aβ −WMH+ 0.021

Aβ +WMH− <0.001

Aβ +WMH+ 0.036

Aβ −WMH+ 3.30 1.21–8.98 Aβ −WMH− 0.021

Aβ +WMH− 0.358

Aβ +WMH+ 0.868

Aβ +WMH− 4.84 2.03–11.51 Aβ −WMH− < 0.001

Aβ −WMH+ 0.358

Aβ +WMH+ 0.294

Aβ +WMH+ 3.02 1.08–8.43 Aβ −WMH− 0.036

Aβ −WMH+ 0.868

Aβ +WMH− 0.294

Aβ Amyloid-β, WMH White matter hyperintensities
Analyses are adjusted for demographics, study, and baseline diagnosis

Fig. 2 Risk of progression to dementia over time for amyloid-β/white
matter hyperintensities (Aβ/WMH) groups, by baseline diagnosis. The
graph shows the probability of surviving without dementia during a
4-year follow-up period for the four Aβ/WMH groups after adjusting
for demographics and study, stratified by baseline diagnosis. MCI Mild
cognitive impairment, SCD Subjective cognitive decline
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association between CVD and MTA, although we mea-
sured only one aspect of CVD (i.e., WMH). Interestingly,
we found that MTA was most severe in the group with
mixed Aβ/WMH pathology compared with the groups
with a single form of pathology. In post hoc analyses, we
found no interaction between Aβ and WMH on MTA,
and therefore we conclude that WMH and Aβ are inde-
pendent determinants of MTA severity and that when
both are present, their effects are additive.

Tau
Increased CSF t-tau was associated with both WMH
and Aβ pathology, which is consistent with previous
studies where t-tau was considered a measure of
neuronal damage [14, 39]. Our finding that t-tau
levels were also elevated in patients with WMH and
no Aβ pathology contradicts a previous study in
which researchers concluded that elevated t-tau levels
in patients with vascular damage could be the result
of coexisting Aβ pathology [40]. That elevated t-tau
levels in the groups with one or both pathologies
were found only in subjects with MCI is in line with
previous work that strongly related tau to cognitive
dysfunction [41]. p-tau was significantly increased
only in the Aβ +WMH− group and only slightly in-
creased in the Aβ +WMH+ group, supporting the hy-
pothesis that this could be a specific biomarker for
AD [39].

Amyloid-β
We found similar levels of Aβ for the group with only
amyloid pathology and the group with mixed Aβ/WMH
pathology. This was in contrast to our expectations
based on the literature, because we expected the group
with mixed pathology to have a lower amyloid load (i.e.,
higher Aβ1–42 levels) [5, 6]. Possibly, the cognitive status
of the investigated population (i.e., individuals with SCD
or MCI vs. cognitively normal individuals) might play a
role, in particular in combination with the method of
measuring amyloid load (by CSF or amyloid positron
emission tomography), because a study comparing these
two methods showed that discordance was dependent
on disease stage [42]. Further studies should be done to
determine the associations of both factors with amyloid
load in mixed AD/CVD patients. The suggestion of
expanding the recently proposed “A/T/N” classification
system with a vascular component would be valuable in
addressing these and other research questions [43].

Cognitive performance and decline
The decrease in performance in global cognition over
time was similar for the three groups with pathology,
indicating that WMH and Aβ pathology are drivers of
cognitive decline. This is in line with findings derived

from a previous study of cognitively normal individ-
uals in which investigators also found that both path-
ologies contribute to cognitive decline [9]. However,
in contrast to this previous study, we did not find
any differences in cognitive trajectories between indi-
viduals with only Aβ pathology and those with mixed
Aβ/WMH pathology. This may relate to the fact that
we included subjects with SCD and MCI instead of
cognitively normal subjects or to the type of cognitive
measures used. Also, risk of progression to dementia
during follow-up did not differ between WMH and
Aβ, and having both pathologies simultaneously did
not increase the risk any further.

Strengths and limitations
This study has several limitations. First, using WMH as
a marker of CVD can be seen as a limitation because we
did not take other forms of CVD such as lacunar infarcts
or cortical microbleeds into account. Although using
only WMH reflects a method of defining vascular
damage frequently used in clinical practice [44], this
makes our findings less generalizable to CVD in general.
Also, WMH are heterogeneous in their etiology and
pathophysiology, and the underlying mechanisms
causing WMH are not yet completely understood [45].
However, in an aging population such as we used in the
present study, WMH are mostly considered a conse-
quence of cerebral vascular damage [46, 47]. Second,
our follow-up length ranged from 1 to 4 years, which
might have been too short to detect differences in cogni-
tive decline in nondemented individuals. Third, our
sample was derived from different studies, which might
have led to variability in the data, despite adjustment for
study in all of the analyses. However, our multistudy
design makes our findings more generalizable to other
memory clinic settings. Fourth, a methodological consid-
eration of this study was that our results were based on
both subjects with SCD and subjects with MCI. Al-
though we did examine the influence of the baseline
diagnosis in all analyses and when needed adjusted for
this and reported the differences, the smaller sample
sizes when analyzing per diagnosis could have influenced
the results. The smaller sample sizes in general could
reflect a lack of statistical power, and therefore our
results should be interpreted with caution and validated
in future studies. Although observed power calculations
should be interpreted with caution [48], we recommend
that researchers in future studies make group sizes more
balanced and include a larger number of complete
follow-up visits, in particular for outcome measures with
smaller effect sizes (e.g., executive functioning mea-
sures). The major strengths of this study were the longi-
tudinal setup, the reflection of clinical practice, and the
availability of different neurodegeneration markers to
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provide novel insights into the role of neurodegeneration
in relation to AD and CVD.

Conclusions
The findings of the present study may have implications
for the diagnosis and prognosis of memory clinic
patients but also for future scientific research. For clini-
cians, it is important to realize that MTA on MRI and
elevated t-tau values in CSF may reflect underlying AD
as well as CVD pathology, and that the effects of Aβ and
WMH on MTA could be additive. On the basis of data
derived from the present study, we conclude that the
short-term cognitive prognosis of patients with SCD or
patients with MCI with mixed amyloid/WMH pathology
may be similar to that of patients with solely Aβ or
WMH pathology. Future research with longer follow-up
and a larger sample size is needed to confirm these find-
ings and determine whether this is also the case when
focusing on long-term prognosis.
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