
Journal of Internet Services
and Applications

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3
DOI 10.1186/s13174-017-0075-y

RESEARCH Open Access

High-performance IP lookup using Intel
Xeon Phi: a Bloom filters based approach
Alexandre Lucchesi*, André C. Drummond and George Teodoro

Abstract

IP lookup is a core operation in packet forwarding, which is implemented using a Longest Prefix Matching (LPM)
algorithm to find the next hop for an input address. This work proposes and evaluates the use of parallel processors to
deploy an optimized IP lookup algorithm based on Bloom filters. We target the implementation on the Intel Xeon Phi
(Intel Phi) many-core coprocessor and on multi-core CPUs, and also evaluate the cooperative execution using both
computing devices with several optimizations. The experimental evaluation shows that we were able to attain high IP
lookup throughputs of up to 182.7 Mlps (Million packets per second) for IPv6 packets on a single Intel Phi. This
performance indicates that the Intel Phi is a very promising platform for deployment of IP lookup. We also compared
the Bloom filters to an efficient approach based on the Multi-Index Hybrid Trie (MIHT) in which the Bloom filters was
up to 5.1× faster. We also propose and evaluate the cooperative use of CPU and Intel Phi in the IP lookup, which
resulted in an improvement of about 1.3× as compared to the execution using only the Intel Phi.

Keywords: Longest prefix matching, Software router, Intel Xeon Phi

1 Introduction
The use of software-based routers is motivated by their
extensivity, programmability, and good cost-benefit. How-
ever, these routers need to attain high packet forwarding
rates, which may be achieved with efficient algorithms
and/or with the use of high-performance parallel comput-
ing devices. The next hop calculation for input packets is
a core operation in the forwarding phase of routers, and is
implemented via Longest PrefixMatching (LPM) since the
development of CIDR (Classless Inter-Domain Routing).
In this work, we investigate the use of the Intel Xeon

Phi processor as a platform for efficient execution of LPM
algorithms for IP lookup. The Intel Phi is a highly par-
allel platform that supports up to 72 computing cores
and 4-way hyperthreading. It is also equipped with 512-
bit SIMD instructions and has a high-bandwidth memory.
The Intel Phi may be attached as a coprocessor in a com-
puter through PCIe or it can be deployed as an indepen-
dent or standalone system in the newest Knights Landing
(KNL) generation.
The design of the Intel Phi as a standalone system was

a critical aspect that motivated its use in this work. The

*Correspondence: lucchesi@aluno.unb.br
Department of Computer Science, University of Brasília, Brasília, Brazil

use of PCIe to connect coprocessors (Graphics Process-
ing Unit (GPU) or Intel Phi) to the CPU has shown to be
a major bottleneck for attaining high performance in data
intensive applications, limiting the application throughput
to that of the PCIe channel used. Previous work that used
GPU for IP lookup reported this limitation [1, 2]. Thus,
even though the number of computing cores of current
Intel Phi processors is smaller than the one found inGPUs,
the Intel Phi is likely to emerge as a major platform for the
practical deployment of parallel and efficient IP lookup
algorithms.
We have designed a parallel algorithm that uses Bloom

filters (BFs) and hash tables (HTs) to efficiently find
the LPM for both IPv4 and IPv6. Our implementation
leverages the Intel Phi capabilities to mitigate the main
drawback of the algorithm – the high costs of comput-
ing hash functions during lookup/store operations. This is
achieved with the use of vectorization to reduce the costs
of hashing computations and thread-level parallelism to
increase throughput.
In order to evaluate our propositions, we have com-

pared the BFs-based algorithm to a parallel version of the
Multi-Index Hybrid Trie (MIHT). The MIHT is an effi-
cient sequential IP lookup algorithm that has been shown

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0075-y&domain=pdf
http://orcid.org/0000-0001-6289-3914
mailto: lucchesi@aluno.unb.br
http://creativecommons.org/licenses/by/4.0/

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 2 of 18

to attain better performance than well-known tree/trie-
based algorithms commonly used for IP lookup: the
Binary Trie, the Prefix Tree, the Priority Trie, the DTBM,
the 4-MPT and the 4-PCMST [3]. The experimental eval-
uation has shown that our optimized BFs-based algorithm
was able to outperformMIHT in both sequential and par-
allel settings on the Intel Phi. In a parallel execution using
IPv4 and IPv6 prefix datasets, our BFs algorithm was,
respectively, up to 3.8× and 5.1× faster than MIHT. The
results show that, although the MIHT is a very memory-
efficient algorithm, it benefits less from the Intel Phi. For
instance, the use of vector SIMD instructions available in
most of the modern device architectures can be used to
improve the BFs approach, but it is not effective for MIHT
because of the irregular nature of the data structures used.
The main contributions of this paper can be summa-

rized as:

• We design and implement an optimized BFs-based
LPM algorithm that fully exploits the Intel Phi and
modern CPU capabilities, such as SIMD instructions.
This algorithm performs better than MIHT even in a
sequential executions, and attains higher scalability in
a parallel setups.

• We propose a novel approach combining dynamic
programming and Controlled Prefix Expansion [4]
(DPCPE) to enhance the performance of IPv6
lookups. This optimization resulted in performance
gains of up to 5.1× in our BFs-based algorithm.

• We propose and evaluate a cooperative execution
model for IP lookup that uses Intel Phi and multi-core
CPUs available in the system. After optimizing PCIe
data transfers, we were able to achieve a speedup of
about 1.33× vs. the execution using only the Intel Phi.

• We show that the most efficient sequential algorithm
may not be the best solution in a parallel setting. The
results also show that the Intel Phi is a promising
platform for high-performance IP lookup. To the best
of our knowledge, this is the first work to
systematically evaluate the Intel Phi using multiple
algorithms and device architectures for IP lookup.

This paper is built on top of our previous work [5], and
has extended it with the introduction of techniques to
cooperatively use the CPU and Intel Phi, a thorough evalu-
ation using a larger number of datasets, the use of the new
KNL Intel Phi that is faster and is deployed as a standalone
processor, and a detailed description of the optimization
approaches used.

The rest of this document is organized as follows.
Section 2 describes the Intel Phi and related work.
Section 3 presents the use of BFs to solve the IP lookup
problem. Section 4 details of the Bloom Filters algorithm
design, optimizations, parallelization strategies, and rele-
vant implementation details. The MIHT algorithm used
for comparison purposes is presented in Section 5. We
experimentally evaluate our solution in Section 6, and we
conclude and present future directions in Section 7.

2 Background and related work
This section describes the Intel Xeon Phi accelerator used
to speedup the IP Lookup, and presents the closest related
work in the IP lookup domain.

2.1 Intel Xeon Phi
The Intel Phi processor is based on the Intel Many
Integrated Core (MIC) architecture, which consists of
many simplified, power efficient, and in-order comput-
ing cores equipped with a 512-bit vector processing unit
(SIMD unit). In this architecture, the computing cores are
replicated to create multicore processors with up to 72
cores (model 7290), which are placed in a high perfor-
mance bidirectional ring network with fully coherent L2
caches. The Intel Phi runs specific versions of the CentOS,
SuSE, and RedHat Linux OSs.
The MIC architecture combines features of general-

purpose CPUs and many-core processors or accelerators
to provide an easy to program and high-performance
computing environment [6]. It is based on the x86 instruc-
tion set and supports traditional parallel and commu-
nication programming models, such as OpenMP (Open
Multi-Processing), Pthreads (POSIX Threads Program-
ming), and MPI (Message Passing Interface).
The characteristics of the two Intel Phi used in this

work are presented in Table 1. As shown, the 7250 is
part of the newest KNL generation and, as a consequence,
has better computing capability and memory bandwidth.
The 7120P is only deployed as a coprocessor attached
to the CPU through a PCIe channel. The 7250, on the
other hand, is executed in a standalone mode in which
it is the machines’ bootable processor. The standalone
mode brings improvements for data-intensive applica-
tions because it removes the communication overheads of
the PCIe communication among CPU and coprocessors
to offload computations, which exists in the 7120P and is
still a major limitation with GPUs. The table also presents
the prices for the processor. Although the 7250 is more

Table 1 Characteristics of the Intel Phi processors used

Processor Name Cores Freq. Mem. bandwidth Exec. mode Price ($)

7120P KNC 61 1.33 GHz 352 GB/s (GDDR5) Coprocessor 1500

7250 KNL 68 1.60 GHz 500 GB/s (MCDRAM) Standalone 2400

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 3 of 18

expensive than the 7120P, the first one does not need to be
deployed with a host machine — thus reducing the cost of
the entire system.

2.2 Previous work
The trie/tree-based is a popular class of IP lookup
algorithms [3, 11–13], and finding the LPM in these
algorithms usually consists of sequentially traversing a
sequence of tree nodes. Generally, these algorithms strive
to reduce the number of required memory accesses
as a means to speed up the lookup process. For
instance, in order to achieve that, the Multi-Index Hybrid
Trie (MIHT) [3] employs space-efficient data structures,
such as B+ trees and Priority Tries [14]. Recently, the
use of compressed trie data structures have also been
proposed [15, 16]. Nevertheless, trie/tree-based schemes
commonly share the characteristic of being memory-
intensive and irregular. Another class of algorithms for
IP lookup is based on Bloom filters [17, 18]. These
algorithms are more compute-intensive and may require
many hash calculations during each lookup/store oper-
ation. Hashing is used within Bloom filters as a means
to avoid unnecessary memory accesses to hash tables
(where IP prefixes and next hop information are actually
stored).
A wide range of hardware architectures have been used

to implement IPv4 lookup algorithms, including CPU,
FPGA, GPU and many-cores [7–10]. While some GPU-
based implementations present, in specific configura-
tions, high IP lookup rates, they suffer from a high lookup
latency because of the required data transfers between
host and GPU. Table 2 roughly compares the main char-
acteristics of previous works using GPU accelerators.
Although the authors have used different hardware, data,
and testing methodologies, we have made our best effort
to provide an overall comparison between them. The table
presents the algorithm used in each work, the comput-
ing device employed, the maximum throughput attained
for both IPv4 and IPv6 using randomize input querying

addresses (worst case scenario), and whether they con-
sider the data transfers among CPU and coprocessor in
the experiments.
As shown in the table, a variety of proposals exist for IP

lookup using GPUs. The first two approaches have devel-
oped algorithms specifically for IPv4, whereas the other
approaches can deal with both IPv4 and IPv6. However, in
[1] different algorithms are used in each IP configuration.
Among other algorithms, the Multi-bit Trie based solu-
tion presented in [9] attained by far the highest through-
put. However, this solution does not consider the time
spent in the data transfers among CPU and GPU, which
makes the results attained unrealistic. The PCIe commu-
nication cost can not be ignored, because it may be the
performance limiting factor. As compared to the remain-
ing approaches [1, 10], it is noticeable that our approach is
more efficient than [1], whereas the throughput of GAMT
[10] is higher. However, the performance of GAMT is
reached with the cost of transferring data through PCIe,
which increases the delays in the packet forwarding. Also,
the performance of GAMT may be higher because it
employs a compacting scheme that greatly reduces the
routing table, and could also be used in our solution
because it is a preprocessing phase. In our approach with
the Intel Phi 7250, the data transfers using the PCIe
to offload computation to the coprocessor do not exist,
because the 7250 is deployed as the bootable or stan-
dalone processor. However, the PCIe will still be used by
the NIC to receive and transmit packets in a complete
router solution. Therefore, although the PCIe may con-
tinue to be a bottleneck in the case of very high forwarding
rates, it will saturate in higher forwarding rates for the
7250 as compared to other coprocessor based solutions.
Further, with the increase in the number of computing
cores of the Intel Phi, we expect that the computing capa-
bilities of this processor will improve rapidly, and it may be
able to attain similar performance to the best GPU algo-
rithm and keep the advantage of not requiring PCIe data
transfers.

Table 2 Comparison between previous work that employed accelerators in the IP lookup problem. We present the algorithm used,
the processor, and the maximum performance for IPv4 and IPv6. Finally, we also shown if the performance collected considered the
PCIe data transfers, which are not necessary on our algorithm when using the KNL Intel Phi

Algorithm Computing device IPv4 (Mlps) IPv6 (Mlps) Considers PCIe transfer?

Radix Tree [7] GTX280 0.035 – Yes

SAIL_L [8] Tesla C2075 547 – Yes

Multi-bit Trie [9] Tesla C2075 2,900 3,600 No

DIR-24-8-BASIC (IPv4)
2x GTX480 76.17 74.22

Yes

Binary search (IPv6) [1] Yes

GAMT [10] Tesla C2075 1,072 658 Yes

Bloomfwd Phi 7250 169.6 182.7 –

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 4 of 18

A Parallel Bloom Filter (PBF) was implemented in
the Intel Phi [19]. PBF was proposed to reduce syn-
chronization overhead and improve cache locality. How-
ever, the proposed implementation was not specialized
for IP lookup and, as such, our approach is differ-
ent both in the algorithmic and implementation levels.
Our approach is built on top of [17] and includes
several optimizations targeting efficient execution on
the Intel Phi. As presented in the experimental eval-
uation, these optimizations are crucial to attain high
performance.
Other interesting related work include Click [20],

RouteBricks [21], andOpen vSwitch [22]. Click proposes a
modular architecture to deploy software routers. In Click,
routers are built on top of fine-grain components chained
along the processing path, which provides the ability to
quickly implement extensions by creating new compo-
nents and connecting them to the computation workflow.
These components only have to implement a common
interface. RouteBricks is a solution based on Click, which
has been constructed with the goal of maximizing per-
formance of software routers. It proposed a number of
optimizations to minimize the costs of processing packets
and has also employed parallelism. Such as Click, Open
vSwitch is an interesting software-based switching plat-
form, which we will investigate in our future effort as
a target to integrate our Bloom Filters based approach
into a complete software router solution, as discussed in
Section 7.

3 Bloom filters for IP lookup
The use of BFs coupled with HTs for computing IP
lookups has been proposed in [17]. The naïve algorithm
uses 32 and 64 pairs of BFs and hash tables, respectively,
for IPv4 and IPv6 lookups. Dharmapurikar et al. have also
described the use of Counting Bloom Filters (CBFs) [23] to
enable dynamic forwarding tables (FIBs) and Controlled
Prefix Expansion (CPE) [4] to reduce the number of BFs
and HTs pairs for IPv4 to 2 pairs and a direct lookup
array (DLA). In Section 3.1, we present the naïve Bloom
Filters based algorithm in detail, whereas Section 3.2
details the CPE and other optimizations for IPv4 that
are incorporated into the Baseline version we use for
performance comparisons.

3.1 The Naïve Bloom filters algorithm
A BF is a data structure for membership queries with
tunable false positive errors [24] commonly used in web
caching, intrusion detection, and LPM [17]. In essence, a
BF is a bit-vector that represents a set of values. The BF
is programmed by computing hash functions on each ele-
ment it stores, and by setting the corresponding indices in
the bit-vector. Further, to check if a value is in the set, the
same hash functions are computed on the input value and

the bits in the bit-vector structure addressed by the hash
values are verified. The value is said to be contained in the
set with a given probability only if all bits addressed by
the hash values are set. Note that the actual prefix values
are stored in HTs, which are searched only when a match
occurs on their associated BF. A CBF is a BF variant that
adds a counter associated to each bit in the bit-vector, such
that each counter is incremented or decremented when an
element is added or removed, respectively.
The lookup operations in the naïve Bloom filters algo-

rithm are executed within multiple sets of filters and
hash tables — one for each possible IP prefix length. As
network addresses in IPv4 are 32-bit long, they require
the algorithm to employ 32 Bloom filters with their
respective 32 hash tables. Each hash table stores their
corresponding [prefix, next hop] pairs and any other
relevant routing information, such as metric, interface,
etc. If a default route exists, it is stored in a separate
field in the forwarding table data structure. Let F =
{(f1, t1), (f2, t2), . . . , (f32, t32)} be the set of Bloom filters (fi)
and associated hash tables (ti) that form an IPv4 forward-
ing table, where (f1, t1) corresponds to the data structures
that store 1-bit long prefixes, (f2, t2) corresponds to the
data structures that store 2-bit long prefixes, and so on.
In addition, let len(fi) be the length of the bit-vector of
the i-th Bloom filter, where 1 ≤ i ≤ 32. The forwarding
table construction is as follows. For every network prefix
p of length l to be stored, k hash functions are computed,
yielding k hash values: H = {h1, h2, . . . hk}. The algo-
rithm usesH to set the k bits corresponding to the indices
I = {hi mod len(fl) | 1 ≤ i ≤ 32} in the bit-vector of
the Bloom filter fl. It also increments the corresponding
counters in the array of counters of fl.

Algorithm 1: STORE(FIB, prefix, nextHop): Storing a
network prefix in the Naïve BFs algorithm
Input: FIB {forwarding table}, prefix {network prefix}, nextHop {next hop

address}.
Result: Updated FIB.
// FIB.BF - array of bit-vectors or Bloom filters.
// FIB.CT - array of counters.
// FIB.HF - array of sets of hash functions.
// FIB.HT - array of hash tables.

1 l := prefix.length

2 foreach h ← FIB.HF[l] do
3 i := h(prefix)

// Ensure i is within BFs size.
4 i := i mod FIB.BF[l] .size
5 FIB.BF[l] [i] := True

// Increment associated counter (CBF).
6 FIB.CT[l] [i]++

// Store routing information in the hash table.
7 FIB.HT[l] .store(prefix, nextHop)

The process of storing prefixes into the forwarding table
data structure of the Bloom filters algorithm is detailed
in Algorithm 1. The algorithm receives as input a triple

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 5 of 18

[FIB, prefix, nextHop], and iterates over the set of hash
functions associated to the Bloom filter that stores pre-
fixes whose length (l) is equal to that of the supplied
prefix (Lines 2-6). Each hash function is applied to the pre-
fix yielding indexes i used to set the corresponding bits
in the associated Bloom Filter (B[l] [i] - Line 5) and to
increment the counting Bloom Filter (Line 6). Finally, the
prefix contents, including its next hop (nextHop) and any
other relevant information, are stored in the associated
hash table (Line 7).
The lookup process is carried out as follows. Given an

input destination address DA, the algorithm first extracts
its segments or prefixes. Let SDA = {s1, s2, . . . , s32} be the
set of all the segments of a particular addressDA, where si
is the segment corresponding to the first 1 ≤ i ≤ 32 bits
of DA.
For each si ∈ SDA, k hash functions are computed, yield-

ing k hash values for each segment: H = {(h1, h2, . . . hk)1,
(h1, h2, . . . hk)2, . . . , (h1, h2, . . . hk)32}. The element H ′

i ∈
H is used to query the Bloom filter fi ∈ F . The algo-
rithm checks the k bits in the bit-vector of fi using the
indices I = {hj mod len(fi) | hj ∈ H ′

i , 1 ≤ j ≤ kand1 ≤
i ≤ 32}. The result of this process is a match vector
M = {m1,m2, . . . ,m32} containing the answers of each
Bloom filter, i.e., each mi ∈ M indicates whether a match
occurred or not in fi. The match vector M is used to
query the associated hash tables. The search begins by
sequentially performing queries to the associated hash
tables by traversing M backwards, i.e., starting in m32.
This is because we are interested in the LPM. If the algo-
rithm finds the next hop (a true match) for a given DA
in the pair (fi, ti), we have found the LPM and there is
no need to continue looking into smaller prefix sizes. As
Bloom filters may produce false-positives but never false
negatives, when a filter does not match a segment, i.e.,
mi ∈ M indicates a mismatch, the algorithm can safely
skip to the next Bloom filter fi−1 (if i ≥ 2) without touch-
ing its associated hash table ti. This process continues
until the LPM is found or all pairs (fi, ti) are unsuccess-
fully searched. Please, note that false-positives will only
lead to extra hash table searches, and the actual result
of the algorithm will remain the same regardless of that
ratio.
The actual lookup is presented in Algorithm 2. Start-

ing from the Bloom filter associated to the largest address
segment, the algorithm iterates on the filters backwards
(Lines 2 to 13). Within an iteration, it extracts the most
significant i bits of DA (Line 3), and checks whether that
segment is in the corresponding Bloom filter (Lines 4 to 8).
In this phase, a set of hash functions is applied to the seg-
ment p, and the resulting hash values are used to address
the i-th BF (Line 7). If the value in the filter is false for
any of the hash functions, then that particular segment is
certainly not stored in the associated hash table and the

algorithm can leave this phase (Line 8) and continue to
the next iteration checking for shorter segments of DA.
When the filter responds that the segment is in the set,
the search continues in the hash table associated (Line 10),
which may or may not contain the searched routing infor-
mation (e.g., it may a false positive). Further, if the next
hop address is not found in any hash table, the default
route is returned (Line 14).

Algorithm 2: LOOKUP(FIB,DA): The lookup phase
of Naïve IP lookup Bloom Filters algorithm
Input: FIB {forwarding table}, DA {destination address}.
Result: The next hop address.
// FIB.BF - array of bit-vectors or Bloom

filters.
// FIB.HF - array of sets of hash functions.
// FIB.HT - array of hash tables.
// FIB.BF.n - Number of BFs/HTs (32 for IPv4).
// FIB.g - Default route.

1 i := FIB.BF .n − 1
2 while i ≥ 0 do

// Extract the most significant i bits of DA
to p.

3 p := DA[0 : i]
// Loop on hash functions associated to i-th

BF.
4 foreach h ← FIB.HF[i] do
5 j := h(p)

// Ensure i is within the BF size.
6 j := j mod FIB.BF[i] .size

// Check the j-th bit of i-th BF.
7 if ¬FIB.BF[i] [j] then
8 break

// If p is in associated Bloom Filter.
9 if FIB.BF[i] [j] then

// Search hash table associated to i-th
BF.

10 nextHop := FIB.HT[i] .lookup(p)
// Check if segment was found in HT.

11 if nextHop �= ∅ then
12 return nextHop

// Try a shorter prefix.
13 i := i − 1
14 return FIB.g

3.2 Baseline Bloom filters algorithm
The Baseline Bloom Filters lookup algorithm we devel-
oped is built on top of the Naïve version and includes
optimizations to (i) reduce the amount of memory used
in each Bloom filters structure and to (ii) decrease the
number of Bloom filters employed. The first optimization
is implemented with the use of asymmetric Bloom filters
[17], which implies that len(fi) may be different of len(fj),
for 1 ≤ i, j ≤ 32 and i �= j. The goal of asymmetric
Bloom filters is to optimally allocate memory for each data
structure according to the expected number of elements
to be stored. Also, for each distinct prefix length in the
FIB, the algorithm allocates a CBF and a HT. As previ-
ously discussed, the CBF is intended to provide the ability
of removing addresses from the Bloom filter.

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 6 of 18

The optimization CPE allows the expansion of shorter
prefixes into multiple equivalent larger prefixes. Before
building an IPv4 FIB, we use this technique to ensure there
are only prefixes of length 20, 24, and 32. The first group is
stored in a direct lookup array (DLA), while the other two
are stored in separate sets consisting of one BF and one
HT (G1 andG2, respectively). The DLA is a flat array with
220 entries that stores the next hops associated to 20-bit
prefixes. When using this structure, the lookup algorithm
will sequentially searchG2 andG1 (starting fromG2, since
it stores the longest prefixes) and, if the LPM is not found,
the next hop stored in the DLA position indexed by the
first 20 bits of the input address is returned (it may be the
default route).
For IPv6, previous work has reported that CPE was inef-

ficient because of the longer “strides” between hierarchical
boundaries of addresses, which would result in a very high
memory use after expansion. It was suggested to use 64
sets of CBFs and HTs, one for each possible prefix length.
However, even though most lengths in realistic IPv6 FIBs
indeed are either empty or contain few prefixes, we have
proposed an algorithm (DPCPE) that uses dynamic pro-
gramming to group prefixes by length and perform the
expansions with limited additionalmemory demands. The
details of this algorithm are presented in Section 4.2.

4 Bloom filters optimizations and parallelization
This section describes the optimizations proposed in this
work that are implemented on top of the baseline BFs IP
lookup algorithm as well as its parallelization targeting
the Intel Phi. The parallel CPU version employs similar
parallelization strategies, but differs with respect to the
instruction-level parallelism that used auto-vectorization.
The baseline implementation on which our work is built
incorporates the following optimizations: the use of CBF
to allow FIB updates, asymmetric memory allocation pro-
posed in [17], and CPE to reduce the number of required
data structures.

4.1 Optimizing the hash calculations
Hashing is an important aspect of the algorithm because
it impacts the efficiency of BFs and HTs. In the BFs, it
affects both the false positive ratio (FPR) and the memory
utilization. With respect to the associated HTs, the better
the quality of the hash, the less collisions are likely to hap-
pen and, as a consequence, the lookup process will also be
faster.
In order to improve the algorithm, we have (i) accel-

erated the hash calculations with the use of instruction-
level parallelism or vectorization, as discussed in detail in
Section 4.3; (ii) reduced the cost of hashing by combin-
ing the output of two hash calculations to generate more
hashes; and (iii) implemented and evaluated the reuse of
hash values between BFs and HTs to minimize the overall

number of hash calculations. The reuse affects both the
lookup and update operations. The generation of extra
hashes was performed through the use of a well-known
technique that employs a simple linear combination of the
output of two hash functions h1(x) and h2(x) to derive
additional hash functions in the form gi(x) = h1(x) + i ×
h2(x). This technique results in faster hash calculations
and can be effectively applied in the BFs and HTs without
affecting the asymptotic false positive probabilities [25].
We have also proposed the reuse of one of the hashes cal-
culated to search or store a key in the BF to address its
associated HT, which avoids the calculation of another
hash whenever a HT is visited. This is possible because we
calculate the hash without taking into account the size of
the BF. Thus, during the actual access to the BF or the HT,
we compute the rest of the division of the hash value to
the data structures size.

4.2 The new dynamic programming CPE (DPCPE)
Another crucial optimization we have implemented for
IPv6 is the use of CPE to reduce the number of required
sets of Bloom filters and hash tables in the algorithm. This
technique consists of expanding every prefix of a shorter
length to multiple, equivalent, prefixes of a greater length,
so that the number of distinct prefix lengths and, con-
sequently, filters and hash tables, is reduced. In IPv4, as
previously discussed, we used CPE to expand prefixes into
two groups: G1 ∈ [21–24] and G2 ∈ [25–32]. After the
CPE, G1 has only 24-bit prefixes and G2 has only 32-bit
prefixes, and two sets of Bloom filters and hash tables are
allocated to store these prefixes.
A Direct Lookup Array (DLA) is allocated to store the

next hops of the remaining prefixes, whose lengths are
≤ 20 bits, using the prefixes themselves as the indices.
In this way, we are able to bound the worst-case lookup
scenario to two queries (G1, G2) and one memory access
(DLA), as detailed in [17]. Note that the trade-off of CPE
is faster search on the cost of increased memory footprint,
as shown in Table 4. It was also mentioned that this tech-
nique also not viable for the IPv6 case [17], but, in this
work, we proposed the DPCPE algorithm that builds the
CPE for IPv6.
The DPCPE algorithm works as follows. Let L =

{l1, l2, . . . , l64} be the prefix distribution of an IPv6 FIB,
where li is the number of unique prefixes of length i (in
bits). Given a desired number of expansion levels n (or
target number of BFs), DPCPE uses dynamic program-
ming to compute the set of lengths to be used so that the
total number of prefixes in the resulting FIB is minimized.
DPCPE always starts by picking the length 64, since it is
the largest prefix length for IPv6 and, as such, its inclu-
sion is required for correctness (i.e., every IPv6 prefix can,
theoretically, be expanded to one or more 64-bit prefixes).
Let S = {64} represent the initial set of resulting lengths

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 7 of 18

andC = {1, 2, . . . , 63} represent the initial set of candidate
lengths. While |S| < n, the algorithm removes an element
l ∈ C and inserts it into S. In each iteration, the length l
is selected by mapping a cost function f over all possible
sets of lengths and choosing the length associated with the
smaller cost. For instance, in the second iteration (assum-
ing n ≥ 2), f is mapped over the set Q = {{l, 64} | l ∈ C}
and the value l from the set that resulted in the minimum
cost is selected. The cost function f takes as input L and
a set of expansion levels Q′ ∈ Q. It then computes the
resulting number of prefixes after expanding L to Q′. The
(maximum) number of prefixes, resulting from expanding
a prefix of length li ∈ L to q ∈ Q′ (such that, i < q), is
defined as 2q−i × li. Note that f does not take into account
the problem of prefix capture [4], which happens when-
ever a prefix is expanded to one or more existing prefixes
in the database. In this case, the existing longer prefix
“captures” the expanded one, which is ignored. Therefore,
although DPCPE is not guaranteed to return the opti-
mal solution, it usually returns solutions that work better
in practice for the BFs algorithm than directly using the
database with no preprocessing (Section 6.6).

4.3 Parallelization
Our parallelization strategy employs both TLP and ILP to
fully utilize the Intel Phi computing power. These paral-
lelism strategies is described in the following sections.

4.3.1 Thread-level parallelism (TLP)
Due to its regular data structures, the Bloom filters algo-
rithm exposes multiple opportunities for parallelism. For
instance, in [17] it was suggested a parallel search over
the two sets of Bloom filters/hash tables and the DLA
(associated with the different prefix lengths) for a given
input address, which is mentioned to be appropriate for
hardware implementations. In this strategy, a final pass is
performed to verify if a match occurs in any of these data
structures and to select the next hop. The same approach
could be used for a software-based parallelization by dis-
patching a thread to search each data structure. However,
IPv4 prefix databases have the well-known characteristic
that prefixes are not uniformly distributed in the range
of valid prefix lengths and, as a consequence, it is more
likely that a match occurs to prefixes within lengths that
concentrate most of the addresses, i.e., the set of Bloom
filter and hash table that stores 24-bit prefixes. There-
fore, computing all Bloom filters in parallel may not be
efficient because, most of the times, the results from the
data structures associated with prefix lengths smaller or
greater than 24 bits will not be used. Instead, it is more
compute efficient to sequentially query the Bloom fil-
ters and the DLA. The other option for TLP, which is
used in our approach, is to perform the parallel lookup
computation for multiple addresses by assigning one or

multiple addresses to each computing thread available. In
this way, we can carry out the processing of each address
using the compute efficient algorithm, while we are still
able to improve the system throughput by computing the
lookup for multiple addresses concurrently. This is pos-
sible because the processing of addresses is independent
and, as such, there is no synchronization across the com-
putation performed for different addresses. The imple-
mentation of the parallelization at this level employed
the Open Multi-Processing API (OpenMP) [26], which
was used to annotate the main algorithm loop that iter-
ates over the input addresses to find their next hops. The
specific OpenMP settings used, which led to the better
results, were the dynamic scheduler with chunk size of
one.

4.3.2 Instruction-level parallelism (ILP)
The use of ILP is important to take full advantage of the
Intel Phi, which is equipped with a 512-bit vector process-
ing unit (see Section 2.1). We used its SIMD instructions
to efficiently compute the hash values for multiple input
addresses at the same time. The ILP optimization focused
on the hashing calculations because it is themost compute
intensive stage of the algorithm. The original work [27]
and previous implementations of algorithms employing
Bloom filters to the LPM problem [18, 19] do not discuss
their decisions and reasons on the hash functions used.
Thus, we have decided to implement, vectorize,

and evaluate three hash functions: MurmurHash3 [28]
(Murmur), Knuth’s multiplicative method [29] (Knuth),
and a hash function named to here as H2 [30]. Murmur is
widely used in the context of Bloom filters, but its original
version takes as input a variable-length string. In order to
improve its efficiency, we have derived versions of it spe-
cialized to work on 32-bit (for IPv4) and 64-bit (for IPv6)
integer keys. Knuth is a simple hash function of the form:
h(x) = x × c mod 2l, where c should be a multiplier in
the order of the hash size 2l that has no common factors
with it.
H2 takes as input a key and mixes its bits using a

series of bitwise operations, as shown in Algorithm 3.
Although simple, the H2 hash function has been shown to
be effective in practice [30].

Algorithm 3: Definition of the H2 hash function
Input : x {A 32-bit unsigned integer key}.
Output: The computed hash value.

1 x := ((x 	 16 ⊕ x) × 0x45d9f3b
2 x := ((x 	 16 ⊕ x) × 0x45d9f3b
3 x := ((x 	 16 ⊕ x)
4 return x

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 8 of 18

The hash implementations employed the low-level Intel
Intrinsics API [31] to perform a manual vectorization of
all the hash functions. We have also evaluated the use of
automatic vectorization available with the Intel C Com-
piler, but the manually generated code has proved to be
more efficient.

4.4 Cooperative execution and efficient data transfers
In this section, we present a variant of our algorithm
that cooperatively uses the CPU and Intel Phi when it is
deployed as a coprocessor (7120P) attached to the PCIe.
The use of hybrid machines equipped with CPUs and
accelerators has raised quickly in the recent years [32].
However, utilizing these systems adequately may require
the use of complex software stacks and scheduling strate-
gies. As such, a number of works have already been devel-
oped to provide techniques that simplify the use of such
machines [33–37].
In the case of IP lookup studied in this work, the IP

addresses are stored in the host memory and are trans-
ferred in batches through the PCIe channel to the Intel Phi
for processing. After the lookup algorithm is executed on
the coprocessor, the computed next hops are copied back
from the coprocessor devicememory to the host. The data
transfer times in this process may be significant to the
overall execution, and strategies to reduce transfer costs
should be used. Also, the availability of the CPU creates
opportunities for leveraging this processor as an addi-
tional computing device to carry out IP lookups. These
two optimizations are briefly described below. We argue
that the cooperative execution would benefit any appli-
cation domains in which the load on the router is higher
than the throughput delivered by a single processor.

4.4.1 Efficient CPU-Intel Phi data transfers
The limited bandwidth between CPU and Intel Phi may
represent a major bottleneck to the use of the coprocessor,
especially for data intensive applications [32]. The data
transfers necessary to run a computation in the Intel Phi
are typically carried out synchronously (sync), by pipelin-
ing the input data transfer (host to device), the compu-
tation in the coprocessor, and the output data transfer
(device to host).
A common approach used for reducing the impact of

such transfer costs to performance is to overlap data
transfer operations with the execution of other tasks. This
technique receives the name of double buffering [38, 39]
and has been used in several domains. In our problem,
it can be used to reduce both the CPU and Intel Phi idle
times during the transfers, and may be implemented using
an asynchronous data transfer (async) mechanism avail-
able in the Phi. In this strategy, while the Intel Phi is in the
computation stage of the sync pipeline, we concurrently
launch the input data transfer of a batch of IP addresses

while a second buffer is being processed in the Intel Phi.
The same also occurs for the output data transfers. This
will allow for the overlapping of computation and data
transfers.

4.4.2 Cooperative execution on CPU and Intel Phi
To cooperatively use both devices, we divide the input IP
addresses into two sets that are independently and con-
currently processed by the CPU and Intel Phi. The work
division must be computed in a way to minimize the load
imbalance between them. Otherwise, a processor may
take much longer to process its lookups, and this may off-
set the potential performance gains of this approach. In
order to carry out this partitioning, we take into account
the relative performance among the processors, which
should be the same as the relative sizes of the sets of
IP addresses assigned for computation with each of the
devices. The relative performance is computed in a pro-
filing phase before the execution. Additionally, in order to
avoid the CPU threads computing IP lookups to interfere
with the CPU thread responsible for managing the Intel
Phi, an entire CPU physical core is allocated to the lat-
ter. As such, in our system configuration, 15 CPU cores
are used for IP lookup computations and 30 threads are
launched in these cores. Similar strategies to cooperatively
use CPUs and coprocessors have been employed in other
application domains [33, 40]. In this work, we use these
techniques and demonstrate their performance in the IP
lookup domain.

5 MIHT algorithm and implementation
This algorithm uses a data structure named Multi-Index
Hybrid Trie (MIHT) [3]. The MIHT was built by combin-
ing the advantages of B+ trees and priority tries [14] to
design dynamic forwarding tables. It consists of one B+
tree and multiple priority tries. A B+ tree is a generaliza-
tion of a binary search tree in that a node can have more
than two children. A B+ tree of orderm is an ordered tree
that satisfies the following properties: (i) each node has
at most m children; (ii) each node, except the root, has
at least m

2 children; (iii) the root has at least 2 children;
(iv) all leaves occur on the same level; and (v) the satellite
information is stored in the leaves and only keys and chil-
dren pointers are stored in the internal nodes. Although
priority tries may be used alone to build dynamic forward-
ing tables, MIHT uses them as auxiliary substructures to
build a more efficient algorithm. A priority trie is sim-
ilar to a binary trie in that each node has at most two
children and the branch is based on the address bits. How-
ever, priority tries have two main advantages over binary
tries in the context of IP lookup. First, in a priority trie,
prefixes are reversely assigned, i.e., longer prefixes are
associated with higher levels nodes and shorter prefixes
are associated with lower level nodes, allowing the search

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 9 of 18

to finish immediately whenever a match occurs (a binary
trie always requires the traversal until a leaf). Second,
as opposed to the binary trie, there are no empty inter-
nal nodes in a priority trie — every node stores routing
information to improve memory usage.

5.1 Algorithm
In order to build the forwarding table in the MIHT, each
network prefix is split into two parts: a prefix (the key)
and a suffix. Let p = p0p1 . . . pl−1 be a network prefix
and q = pipi+1 . . . pl−1 for 0 ≤ i ≤ l − 1 be a suf-
fix of p. The length of a prefix p is denoted len(p). For
example, len(p0p1 . . . p∗

l−1) = l. For an integer k ≤ l,
the k-prefix key of p, denoted prefix_keyk(p), is the
value of (p0p1 . . . pk−1)2. The k-suffix of p, denoted by
suffixk(p), is defined as suffixk(p) = pkpk+1 . . . pl−1,
where 0 ≤ k ≤ l. For example, prefix_key4(00010∗) =
prefix_key4(00011∗) = (0001) = 1 and suffix4(00010∗) =
0∗ [3]. For all network prefix p whose len(p) ≥ k, its k-
prefix (or key) is stored in the B+ tree and a priority trie
is allocated. Remember that, in a B+ tree, data are stored
only in external nodes (or leafs). In MIHT, the data consist
of pointers to priority tries. If the key already exists in the
B+ tree, the pointer to the associated priority trie, which
was previously allocated, is retrieved and used instead.
The k-suffixes of all prefixes, along with their correspond-
ing next hops and other routing information, are stored in
priority tries. Network prefixes whose length is less than
k are “keyless”, i.e., they are stored directly as suffixes in
a separate priority trie, named PT[−1]. All the suffixes
stored in a particular priority trie share the same prefix.
The root of MIHT has two pointers: one to a B+ tree and
another one to PT[−1].
To search for a destination address DA, the algorithm

extracts its key by applying prefix_keyk(DA) and searches
the B+ tree in a top-down manner, starting from the root.
A tree traversal from the root to a leaf is performed with
a binary search using the key value to search each vis-
ited node. If a match occurs in a leaf, then the algorithm
searches suffixk(DA) in the corresponding priority trie
using the pointer stored in that node. If we find the best
matching of suffixk(DA) in some priority trie, then it is the
LPM, and the search is terminated. If the prefix_keyk(DA)

is not found in the B+ tree, the algorithm searches DA in
PT[−1].
IP lookup operations can be performed by associating

each network prefix with a key value of length k in the
MIHT. By associating each prefix with a key value, the
problem of searching for the longest matching prefix was
transformed into a problem of searching for a correspond-
ing index. Based on this transformation, the height of
the MIHT is less than W (the length of input addresses),
which accelerates the lookup speed. There are two param-
eters that affect the MIHT’s performance: the length k of

the keys and the order m of the B+ tree. A (k,m)-MIHT
is a data structure combining a B+ tree of order m and
priority tries, which contains two types of nodes: index
nodes (i-node) and data nodes (d-node). An i-node can be
either internal or external. An internal i-node is a node in
which each child is also an i-node. An external i-node is a
leaf node in the B+ tree, which stores keys and pointers to
d-nodes. Finally, a d-node is a priority trie which stores the
next hops. It has been shown in [3] that the best lookup
performance in IPv4 is obtained setting k = m = 16,
which is used in our evaluations.
This algorithm is already highly optimized for imple-

mentation in software, as described into greater detail in
[3]. Thus, our implementation of the baseline sequential
algorithm incorporated the optimizations originally pro-
posed by the algorithm as well as we developed a few
optimizations targeting Phi. For instance, in order to opti-
mize the throughput of memory, we have aligned all the
B+ tree nodes in addresses multiple of 64 bytes. Such
optimization is useful because it leverages the fact that
each node stores sixteen 32-bit integers, which matches
exactly the coprocessor’s word size. This allows an entire
node to be fetched from memory in one memory access,
accelerating the traversal of the structure. As suggested
in the original algorithm, the sixteen keys in a node
are ordered and we perform a binary search on each
visited node in order to quickly find the next child or
data node.

5.2 Parallelization
This section describes the parallelization of the MIHT for
IP lookup.

5.2.1 Thread-Level Parallelism (TLP)
The MIHT is built out of tree-based data structures and
the lookup process consists basically of traversing these
structures. Therefore, similarly to the the Bloom filters
approach, we have parallelized the execution of multi-
ple address lookups in MIHT. The implementation of the
parallelization at this level also employed the OpenMP
programming interface, and each computing thread is
responsible for independently processing one or multiple
input messages.

5.2.2 Instruction-Level Parallelization (ILP)
The MIHT is built from tree data structures, which
are irregular in nature and make the use of SIMD
operations very challenging and inefficient. Our anal-
ysis of the algorithm shows an opportunity for using
SIMD vector instructions in the search performed in
each node of the B+ tree. However, since this search
is very quick because of the small number of elements
in a node and the fact they are ordered, the MIHT
performance was not improved with the use of vector
instructions.

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 10 of 18

6 Performance evaluation
This section evaluates the performance of our optimized
BFs algorithm both for IPv4 and IPv6. We perform the
lookups using pseudo-random generated IP addresses
and addresses from a real packet trace in the “CAIDA
Anonymized Internet Traces 2016” dataset [41].

6.1 Experimental setup and databases
The CPU runs were performed in a machine equipped
with a dual socket Intel Xeon E5-2640v3 CPU (16 CPU
cores with Hyper-Threading), 64 GB ofmainmemory, and
CentOS 7. This machine also hosts the Intel Xeon Phi
7120P, and is deployed in a local machine in our labo-
ratory. The source codes were developed using C11 and
compiled with the Intel C Compiler 16.0.3 for both the
CPU and the Intel Phi using the -O3 optimization level.
We have used 7 real prefix databases for IPv4, whose

characteristics are summarized in Table 3. The databases
AS65000 and SYDNEY were obtained from [42, 43],
respectively. The remaining databases are from [44].
Table 3 presents the amount of addresses in each database
and the total number of prefixes before and after perform-
ing the CPE to group them into sets of 24-bit and 32-bit
long prefixes.
For IPv6, we use the AS65000-V6 [42], EQUINIX, LINX,

and NWAX datasets. Because IPv6 is still not widely used,
the available datasets have a small number of prefixes:
AS65000-V6 has 31,645 unique prefixes distributed in
34 distinct prefix lengths; EQUINIX has 42,663 unique

Table 3 Characteristics of the IPv4 prefix datasets used

Dataset Location
Original

≤20 21 −24 25 −32

AS65000 - 104,283 516,699 1625

SYDNEY Sydney 102,696 553,811 10,862

DE-CIX Frankfurt 102,984 535,074 9287

LINX London 100,331 519,503 354

MSK-IX Moscow 102,555 528,728 9529

NYIIX New York 102,085 528,455 3637

IX.br/SP Sao Paulo 103,733 544,703 4095

After CPE

≤20 21 −24 25 −32

AS65000 - 1,048,576 971,555 11,3397

SYDNEY Sydney 1,048,576 1,037,247 67,397

DE-CIX Frankfurt 1,048,576 1,007,513 209,488

LINX London 1,048,576 982,940 19,863

MSK-IX Moscow 1,048,576 1,004,073 203,360

NYIIX New York 1,048,576 1,000,128 151,391

IX.br/SP Sao Paulo 1,048,576 1,024,899 147,201

prefixes distributed in 43 prefix lengths; LINX has 44,103
unique prefixes distributed in 45 prefix lengths; and
NWAX has 42,227 unique prefixes distributed in 43 pre-
fix lengths. Table 4 shows the effects of DPCPE on these
datasets. The expansion with 3 levels was not possible
because of the high memory requirements. Because the
algorithm ignores the prefix capture problem (Section 4.2)
when computing the levels, its estimates are half of the
actual results for most of the configurations. We want to
highlight that the main goal of the algorithm was not to
provide an accurate estimate, but to reduce the number
of filters instantiated and, as a consequence, improve the
algorithm performance. Therefore, although not precise,
the provided estimation will serve as a lower bound for the
number of prefixes after expansion, and it can be used to
decide whether it is worth computing the expansion.
The experimental results are organized as follows:

• From Sections 6.2 to 6.5, we evaluate the performance
of the Bloomfwd as the hash configurations, input
query data characteristics, and prefix dataset sizes are
varied, and we compare our approach to the MIHT
algorithm. These analyses are intended to stress the
algorithm under different scenarios in order to
understand the aspects that affect its performance.
The experiments in this phase use the Intel Xeon
CPU and Intel Phi 7120P processors only, because
these processors are deployed in a local machine to
which we have unlimited access.

• Further, in Section 6.6, we analyze the performance
of the Bloomfwd and MIHT for multiple IPv4 and
IPv6 prefix datasets in the Intel Phi. This evaluation
uses the best parameters found in the previous
experiments, and also compares the performance of
the Intel Phi 7120P and 7250 devices. The 7250 Intel
Phi used is part of the Stampede 2 supercomputer
deployed in the Texas Advanced Computing Center
(TACC), which we had access through the The
Extreme Science and Engineering Discovery
Environment (XSEDE) program.

• Finally, the benefits of cooperative execution using
the CPU and Intel Phi 7120P are assessed in
Section 6.7. This evaluation has not included the Intel
Phi 7250 because it is a standalone bootable device
and, as such, it is not attached to a CPU.

6.2 The effect of the hash function and false positive ratio
The false positive ratio (FPR or f) is a key aspect for
the effectiveness of a Bloom filter because it affects the
memory requirements and the number of hash calcula-
tions per lookup. We highlight that the FPR does not
affect the results of the algorithm, but only the number of
times that a value is informed to be in the associated hash

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 11 of 18

Table 4 Results of performing CPE in four real IPv6 prefix datasets collected from Routeviews [43]

Dataset

CPE Expansion levels Estim. # of prefix. ×1000 Actual # of prefix. ×1000

level suggested by algorithm

AS65000-V6

CPE8 {24, 29, 33, 38, 40, 44, 48, 64} 61 60

CPE7 {29, 33, 38, 40, 44, 48, 64} 77 76

CPE6 {29, 33, 38, 44, 48, 64} 104 103

CPE5 {33, 38, 44, 48, 64} 385 380

CPE4 {33, 44, 48, 64} 1185 1166

CPE3 {44, 48, 64} 650,417 —

EQUINIX

CPE8 {30, 35, 41, 45, 49, 51, 57, 64} 137 236

CPE7 {30, 35, 41, 45, 51, 57, 64} 218 387

CPE6 {30, 35, 41, 45, 51, 64} 368 648

CPE5 {35, 41, 45, 51, 64} 962 1823

CPE4 {35, 45, 51, 64} 1586 2702

CPE3 {45, 51, 64} 672,373 —

LINX

CPE8 {17, 30, 33, 37, 43, 49, 57, 64} 194 216

CPE7 {17, 33, 37, 43, 49, 57, 64} 271 367

CPE6 {17, 33, 37, 43, 49, 64} 1079 942

CPE5 {17, 37, 43, 49, 64} 2550 3818

CPE4 {17, 37, 49, 64} 4301 6523

CPE3 {17, 37, 64} 60,364,260 —

NWAX

CPE8 {30, 35, 41, 45, 49, 51, 57, 64} 137 235

CPE7 {30, 35, 41, 45, 51, 57, 64} 217 386

CPE6 {30, 35, 41, 45, 51, 64} 338 587

CPE5 {35, 41, 45, 51, 64} 950 1763

CPE4 {35, 45, 51, 64} 1574 2640

CPE3 {45, 51, 64} 691,485 —

table by a Bloom filter without being. When this occurs,
the algorithm will unsuccessfully search in the hash table.
Probing a hash table consists in traversing a linked list,
which may become expensive as the FPR increases. On
the other hand, a very low FPR requires a larger number
of hash calculations and a high memory utilization. The
FPR is determined by three parameters: the number n of
entries stored in the filter, the size m of the filter, and the
number k of hash functions used to store/query the fil-
ters [24]. As detailed in [17], when FPR is minimized with
respect to k, we get the following relationship:

k = m
n
ln 2 (1)

At this point, FPR is given by:

f =
(
1
2

)k
(2)

For a desired false positive probability f, and knowing in
advance the total number of prefixes n to be stored in the
forwarding table for each prefix length, we compute the

size m of each Bloom filter using the following equation,
derived by substituting 1 in 2.

m =
n lg 1

f

ln 2
(3)

Then, we usem and n to calculate k from 1. Table 5 sum-
marizes how these parameters are affected for each IPv4
prefix dataset presented in Table 3.
The trade-off between increasing the hash calculations

and the applicationmemory footprint in order to avoid the
extra cost of a false positive is complex. Therefore, we have
evaluated it experimentally by measuring the execution
times for various FPRs and hash function configurations.
Hash functions are used in the Bloom filters algorithms
for querying the Bloom filters and to search the hash
tables associated to each filter. As such, we are able to
use combinations of hash functions to compute the mul-
tiple hashes within a Bloom filter or the single hash for a
particular hash table. The hash functions used were pre-
sented in Section 4, and we employ the AS65000 prefix

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 12 of 18

Table 5 Bloom filters parameters as FPR is varied. Two bloom filters (G1 and G2) are created

f 1% 10% 30% 60% 90%

AS65000

G1
m 9,312,412 4,656,206 2,434,631 1,032,974 213,057

k 7 4 2 1 1

G2
m 1,086,917 543,459 284,163 120,566 24,868

k 7 4 2 1 1

SYDNEY

G1
m 9,942,074 4,971,037 2,599,250 1,102,819 227,463

k 7 4 2 1 1

G2
m 646,005 323,003 168,891 71,658 14,780

k 7 4 2 1 1

DE-CIX

G1
m 9,657,071 4,828,536 2,524,739 1,071,205 220,942

k 7 4 2 1 1

G2
m 2,007,955 1,003,978 524,959 2,22,732 45,940

k 7 4 2 1 1

LINX

G1
m 9,421,538 4,710,769 2,463,161 1,045,079 215,553

k 7 4 2 1 1

G2
m 190,389 95,195 49,775 21,119 4356

k 7 4 2 1 1

MSK-IX

G1
m 9,624,099 4,812,050 2,516,119 1,067,548 220,188

k 7 4 2 1 1

G2
m 1,949,218 974,609 509,603 216,216 44,596

k 7 4 2 1 1

NYIIX

G1
m 9,586,286 4,793,143 2,506,233 1,063,353 219,323

k 7 4 2 1 1

G2
m 1,451,092 725,546 379,373 160,962 33,200

k 7 4 2 1 1

IX.br/SP

G1
m 9,823,717 4,911,859 2,568,307 1,089,690 224,755

k 7 4 2 1 1

G2
m 1,410,931 705,466 368,873 156,507 32,281

k 7 4 2 1 1

Fig. 1 Execution times for multiple hash functions and FPRs using 244 threads in the Intel Phi. The “Murmur + H2” entry means Murmur was used
within the Bloom filters and H2 was used to address the hash tables

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 13 of 18

Fig. 2 Lookup rate (Mlps) and scalability of the IPv4 algorithms on Intel Phi 7120P and CPU using the AS65000 prefix database

database and an input IP address dataset with 226 random
IP addresses.
The results presented in Fig. 1 show that the perfor-

mance of the application is affected by the FPR and hash
functions. As presented, the use of Knuth resulted in a
lower average performance as compared to other meth-
ods. The reason for the observed results is that this hash
function preserves divisibility, e.g., if integer keys are all
divisible by 2 or by 4, their hash values will also be. This is
a problem in Bloom filters or hash tables in general, where
many values will address the same bits in the bit-vector
and only a half or a quarter of the buckets will end up
being used, respectively.
On the other hand, Murmur and H2 are more sophis-

ticated functions that provide a smaller number of colli-
sions, hence all the configurations using any combination
of them attained similar execution times. However, the
best average performance was reached with 30% of FPR,
where the results are less scattered for all hash functions.
Furthermore, the best performance was attained when H2

was used in both stages of the algorithm. This occurs,
in part, because we are able to reuse the hash calculated
to probe the Bloom filter to address the hash table and,
as a consequence, hash calculations are saved. Therefore,
we use the configuration of 30% of FPR and H2 for both
stages in the remaining experiments for IPv4. Because H2
only works for 32-bit unsigned integers and Murmur also
resulted in good performance, we use 30% of FPR and
MurmurHash3 (64 bits) for IPv6. As shown, the compro-
mises of having a small or high FPR are complex. A small
FPR will perform less hash calculations and use smaller
data structures, whereas a high FPR will perform more
hash computations and employ larger data structures. As
such, the first is less expensive in the filter access, but may
result in extra HT accesses, whereas the high FPR has an
opposite compromise.

6.3 The scalability of BFs and MIHT
This section evaluates the optimized BFs algorithm for
IPv4, which we refer here to as Bloomfwd, as the number

Fig. 3 Performance as matching ratio is varied. The entry 80% means that this percentage of the addresses match with equal probability a prefix in
the forwarding table, while 20% of them end up in the default route

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 14 of 18

Fig. 4 Bloomfwd vs. MIHT using random and real IPs on AS65000
prefix dataset

of computing cores used is increased on the 7120P
Intel Phi and on the CPU. We compare Bloomfwd to a
Baseline implementation of the algorithm, introduced in
Section 4.1, and to the MIHT. The difference between
Baseline and Bloomfwd is on the hash functions, i.e.,
Baseline uses the standard C rand() function without vec-
torization [3, 17]. The MIHT is an algorithm that has out-
performed several other IP lookup algorithms [18]. Our
implementation of MIHT for IPv4 was tuned according to
the original work for the (16,16)-MIHT. The speedups for
the IPv6 dataset are similar and were omitted because of
space constraints.
The lookup rates (in log scale) and speedups for both

algorithms and processors are presented in Fig. 2. As
shown, the performance of MIHT (≈ 0.46 Mlps) is better
than Baseline (≈ 0.31 Mlps) for the sequential execution
on the Intel Phi. However, as the number of comput-
ing threads used increases, the performance gap reduces
quickly due to the better scalability of the BFs approach.
For instance, the maximum speedup of Baseline as com-
pared to its sequential counterpart is about 61×, whereas
MIHT attains a speedup of only up to 40× when com-
pared to its sequential version. The Bloomfwd, on the
other hand, is the fastest algorithm on a single core and is
still able to attain better scalability on the Intel Phi (116×).
Also, it is at least 3.7× faster than the other algorithms.
The differences between the lookup rates of Bloomfwd
and Baseline highlights the importance of the use of vec-
torization and the hash function choice to performance.
The analysis of the CPU results show that all algorithms

attained very similar lookup rates at scale in a multi-
threaded setup, though they attained different speedups.

We attribute the similar performance of the algorithms on
the CPU to the fact that the memory bandwidth of this
processor is much smaller than that of Intel Phi, which
limits the scalability of the solutions [45]. Because the
Bloomfwd is the fastest sequential algorithm, it reaches
the memory bandwidth limits earlier as the number of
cores used increases.

6.4 The impact of input address (queries) characteristics
on performance

In order to investigate the effects of the input addresses
on the performance, we performed the lookups using
pseudo-random generated datasets containing 226 IP
addresses with different matching ratios and the AS65000
prefix database. We call matching ratio the relation
between the number of addresses thatmatches at least one
prefix in the database and the total number of addresses,
thus a matching ratio of 80% implies that 20% of the input
addresses do not match any prefix in the database and,
as such, end up being forwarded to the default route.
This evaluation intended to vary the characteristics of the
input data and evaluate the algorithms under different
configurations.
We ensure that a given address has the same probabil-

ity to match any prefix stored in the database, and we also
filter out all the IETF/IANA reserved IP addresses. Please
note that a workload for forwarding could include other
characteristics, such as the arrival of packets in bursts. We
use random IP input addresses because it may be consid-
ered the worst-case scenario and it is the most commonly
method used in previous works.
The lookup rates obtained for the Bloomfwd algorithm

on both the CPU and on the Intel Phi are shown in Fig. 3.
As presented in Fig. 3, the matching ratio has little

impact in the overall performance of the application. The
reason for that is that the case of an address matching
some prefix in the database is not necessarily faster than
the case where the address end up in the default route, and
vice-versa. For example, consider an address that does not
match any prefix in the forwarding table. If no false posi-
tives occur, i.e., the two Bloom filters correctly answer not
to look in their associated hash tables, the search quickly
finishes with one additional memory access to the DLA.

Fig. 5 Performance of Bloomfwd as the number of prefixes in the forwarding table decreases

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 15 of 18

Fig. 6 Performance of Bloomfwd and MIHT for 5 IPv4 prefix datasets and both Intel Phi processors: 7120P and 7250

However, if for another prefix a false positive occurs in
the first, but not in the second Bloom filter, or if there are
plenty of values stored in the searched hash table buck-
ets, then this case of matching will likely be slower than
the former. As such, the speed and good statistical distri-
bution of the hash function to control the FPR and also
minimize the number of collisions in the hash tables is an
important aspect to limit variations in performance as a
result of dataset characteristics.
Further, in Fig. 4, we present the performance of Bloom-

fwd and MIHT for the AS65000 dataset using both ran-
dom and real IP addresses from CAIDA traces. This
comparison is interesting because it shows the impact, for
instance, of the cache on performance. In the case of IPs
from real trace, the same IP will be queried multiple times
as a consequence, for instance, of a continuous communi-
cation flow among pairs of nodes. In the Bloomfwd case,
the performance using the real IPs is about 1.16× higher
than the case that uses random IPs.

6.5 The impact of the lookup table size to the
performance

This section evaluates the impact of the lookup table
size to the performance of our Bloomfwd algorithm into
the 7120P Intel Phi processor. For sake of this anal-
ysis, we performed the lookups using pseudo-random
generated datasets containing 226 IP addresses and. Fur-
ther, to evaluate different table sizes we have used the
AS65000 prefix database as a reference (original) and have

randomly removed prefixes from this dataset to create
smaller tables.
The experimental results are presented in Fig. 5. As

expected, the performance of the algorithm improves
as the size of the table used is reduced. In this evaluation,
the lookup rate has increased from about 68 Mlps using
the original dataset for about 79 Mlps (1.16×) when the
number of prefixes is 1/16 of the original size.

6.6 The IP lookup performance for IPv4 and IPv6
This section evaluates the BFs algorithms on IPv4 and
IPv6 prefix datasets in both 7120P and 7250. First, we
discuss the performance for the 5 remaining IPv4 pre-
fix databases presented in Table 3 using a querying input
dataset with 226 random IP addresses. The results, pre-
sented in Fig. 6, show that the performance gains of our
Bloomfwd as compared to the MIHT is about 4× for
7120P, regardless of the dataset used. Further, we exe-
cute the Bloomfwd in the 7250 processor, and the algo-
rithm attained an additional speedup of about 2.4× as
compared to the execution in 7120P and a throughput
of up to 169.65 Mlps. This significant performance gap
between the processors could not be directly derived from
their different characteristics, presented in Section 2.1.
Therefore, we have benchmarked the processors using the
STREAM benchmark (data-intensive application) and we
have observed that, in practice, the 7250 attains a mem-
ory bandwidth that is about 2.7× higher than the 7120P,
which explains the gains of the Bloomfwd with the 7120P.

Fig. 7 Performance of Bloomfwd-v6 and MIHT-v6 for the AS65000-V6

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 16 of 18

Fig. 8 Performance of Bloomfwd-v6 for 3 real IPv6 datasets from Routeviews [43]

We further evaluate the performance of the Bloom
filters algorithm for IPv6 and the impact of using our
DPCPE optimization. This experiment compares the
lookup rates of our implementation (Bloomfwd-v6) with
the corresponding version of MIHT for IPv6 (MIHT-v6 –
the (32,32)-MIHT [18]).
Figure 7 shows the results for the AS65000-V6 with and

without the use of DPCPE for multiple expansion lev-
els and 226 random input addresses. As presented, the
performance of the Bloomfwd-v6 is greatly improved by
the use of DPCPE, and the expansion with 5 levels is
about 5.1× faster than the performance without CPE
in the 7120P. This version is also 4.5× faster than the
MIHT-v6 algorithm.
The performance of MIHT-v6 is similar in all cases

because it groups routes by keys in Priority Tries (PTs),
rather than prefix lengths (as in the Bloom filters
approach). In other words, the number of distinct prefix
lengths in the forwarding table does not directly affect the
performance of MIHT. The Bloomfwd-v6 on the Intel Phi
7250 attained a throughput of up to 182.75 Mlps, and as
presented there is a strong variation in performance as the
number of CPE levels used is varied. The choice of the
CPE levels is complex and involves many aspects such as
caching capabilities and its effects on FPR, which requires
an experimental evaluation for its adequate choice.
We have also evaluated the performance of MIHT-v6

and Bloomfwd-v6 using IP addresses from a real trace
from CAIDA and the AS65000-V6 dataset. The MIHT-v6
and Bloomfwd-v6 achieved lookup rates of 19.7 Mlps and

83.76 Mlps, respectively, on the 7120P. We further exe-
cuted the Bloomfwd-v6 in 7250 and it attained a lookup
rate of 179.6 Mlps. These results are consistent with the
ones using random queries and confirm the gains of our
propositions. Finally, we executed the Bloomfwd-v6 in the
Intel Phi 7120P for three other real IPv6 prefix datasets
collected from Routeviews [43]. As depicted in Fig. 8,
for each CPE configuration the algorithm attained similar
lookup rates regardless of the prefix dataset. Further-
more, the performance pattern matches the one obtained
for AS65000-V6 (Fig. 7), in which CPE5 was the best
configuration.

6.7 Cooperative execution and data transfers strategies
This section evaluates the performance gains resulting
from an implementation of Bloomfwd that employs an
asynchronous strategy to fill and process two IP address
buffers concurrently (double buffering) using the CPU and
the Intel Xeon Phi 7120P cooperatively. The results from
the synchronous execution were omitted because the per-
formance of the asynchronous version was better in all
cases, reaching speedups of up to 1.13× in comparison
to the former. In order to exploit double buffering, the
async strategy must choose an appropriate size for the
buffers, which we have defined experimentally focusing
on maximizing the IP lookup throughput. Figure 9 shows
the impact of the buffer size on the performance of the
application.
Figure 9 shows that the best performance is obtained

using a 4M (mebipackets) buffer. However, despite the

Fig. 9 Performance of async for different buffer sizes and a input containing 230 addresses

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 17 of 18

Fig. 10 Cooperative execution between CPU and Intel Phi 7120P for the AS65000 and 230 input addresses for the Bloomfwd algorithm

throughput, another aspect that must be taken into con-
sideration when choosing the buffer size is the trade-
off between the buffer size and the average latency to
compute lookups. Because the lookup rate attained with
buffers of 2M was very close to the best performance
(achieved with buffers of 4M), and considering that the
time to process a 2M buffer (about 28ms including lookup
and data transfers) is nearly 2× smaller than the 4M case,
we have chosen the 2M configuration in the next exper-
iments, which evaluates the cooperative execution using
the CPU and the Intel Phi 7120P to process 230 random
IPv4 addresses.
In the cooperative evaluation, the amount of work (% of

IP addresses) assigned for computation in the coprocessor
is varied. The rest of the IP addresses in each case are pro-
cessed by the CPU. The previous experiments show that
the Intel Phi is about to 4× faster than the CPU execu-
tion. As such, our workload division strategy assigns about
80% of the IP addresses to the Intel Phi and the rest to the
CPU. The results presented in Fig. 10 confirm that this is
the best configuration, leading to a speedup of 1.18× on
top of the Intel Phi only execution. The combined gain
with async and cooperative execution is about 1.33× vs.
the Intel Phi only execution.

7 Conclusions and future directions
In this work, we have designed, implemented, and evalu-
ated the performance of efficient algorithms for IP lookup
(MIHT and BFs approach) in multi-/many-core systems.
The MIHT is known to be an efficient sequential algo-
rithm [3]. However, it is also irregular, which typically
leads to reduced opportunities for optimized execution on
parallel systems. The baseline BFs algorithm, on the other
hand, is a more compute intensive and regular algorithm
with a less efficient sequential version. Nevertheless, it
offers more opportunities for optimizations, for instance,
due to SIMD instructions, and it is more scalable. As
presented, the optimized BFs algorithm significantly out-
performed the MIHT on the Intel Phi, and it was able
to compute up to 169.6 Mlps (84.8 Gbps for 64B pack-
ets) and 182.7 Mlps (119.9 Gbps for 84B packets). The
recent improvements in the Intel Phi, such as larger mem-
ory bandwidth, higher number of computing cores, and
the possibility of its use as a standalone processor, makes

it a very attractive and promising platform for the devel-
opment of high-performance software routers.
Finally, as a future work, we would like to evaluate the

use of our Bloom filters based approach in Open Flow
networks to perform Ethernet and TCP/UDP lookup (in
addition to IP). We argue this is a promising approach
because Bloom filters is capable of performing different
kinds of pattern matching algorithms [46]. Further, we
also want to integrate our accelerated lookup into a com-
plete software router solution as DPDK [47] or ClickOS
[20] running on top of Xeon Phi hardware to investigate
the efficiency of a low cost solution.

Acknowledgments
The authors thank the anonymous reviewers for helpful comments that
increased the quality of the article.

Funding
This work was supported in part by CNPq and CAPES/Brazil. This research used
resources of the XSEDE Science Gateways program under grant
TG-ASC130023.

Availability of data andmaterials
The source codes of our implementation of Bloomfwd and MIHT are publicly
available in the following repositories: https://bitbucket.org/gteodoro/
bloomfwd and https://bitbucket.org/gteodoro/miht. The datasets were not
shared because they are also public and are available in other websites.

Authors’ contributions
Conceived and designed the experiments: AL, AD, and GT. Performed the
experiments: AL. Analyzed the data: AL, AD, and GT. Wrote the manuscript: AL,
AD, and GT. All authors read and approved the final manuscript.

Ethics approval and consent to participate
No need. Only secondary and public data used.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 30 August 2017 Accepted: 30 November 2017

References
1. Han S, Jang K, Park K, Moon S. PacketShader: a GPU-accelerated software

router. ACM SIGCOMM Comput Commun Rev. 2011;41(4):195–206.
2. Kalia A, Zhou D, Kaminsky M, Andersen DG. Raising the Bar for Using

GPUs in Software Packet Processing. In: NSDI. Washington, DC: IEEE; 2015.
p. 409–23.

https://bitbucket.org/gteodoro/bloomfwd
https://bitbucket.org/gteodoro/bloomfwd
https://bitbucket.org/gteodoro/miht

Lucchesi et al. Journal of Internet Services and Applications (2018) 9:3 Page 18 of 18

3. Lin CH, Hsu CY, Hsieh SY. A multi-index hybrid trie for lookup and
updates. IEEE Trans Parallel Distributed Syst. 2014;25(10):2486–98.

4. Venkatachary S, Varghese G. Faster IP lookups using controlled prefix
expansion. Perform Eval Rev. 1998;26:1–10.

5. Lucchesi A, Drummond A, Teodoro G. Parallel and Efficient IP Lookup
using Bloom Filters on Intel® Xeon Phi™. In: Proceedings of the XXXV
Brazilian Symposium on Computer Networks and Distributed Systems
(SBRC). Porto Alegre: SBC; 2017. p. 229–42.

6. Jeffers J, Reinders J. Intel Xeon Phi Coprocessor High-performance
Programming. Amsterdam, Boston (Mass.): Elsevier Waltham (Mass.); 2013.

7. Mu S, Zhang X, Zhang N, Lu J, Deng YS, Zhang S. IP Routing Processing
with Graphic Processors. In: Proceedings of the Conference on Design,
Automation and Test in Europe. Washington, DC: European Design and
Automation Association; 2010. p. 93–8.

8. Yang T, Xie G, Li Y, Fu Q, Liu AX, Li Q, Mathy L. Guarantee IP lookup
performance with FIB explosion. ACM SIGCOMM Comput Commun Rev.
2015;44(4):39–50.

9. Chu H-M, Li T-H, Wang P-C. IP Address Lookup by using GPU. IEEE Trans
Emerg Top Comput. 2016;4:187–98.

10. Li Y, Zhang D, Liu AX, Zheng J. GAMT: A Fast and Scalable IP Lookup
Engine for GPU-based Software Routers. In: Proceedings of the Ninth
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. Washington, DC: IEEE Press; 2013. p. 1–12.

11. Ruiz-Sanchez M, Biersack EW, Dabbous W, et al. Survey and Taxonomy of
IP Address Lookup Algorithms. IEEE Netw. 2001;15(2):8–23.

12. Hsieh SY, Yang YC. A classified Multisuffix Trie for IP lookup and update.
IEEE Trans Comput. 2012;61(5):726–31.

13. Sahni S, Lu H. Dynamic Tree Bitmap for IP Lookup and Update.
In: Networking, 2007. ICN’07. Sixth International Conference On.
Washington, DC: IEEE; 2007. p. 79–9.

14. Lim H, Yim C, Swartzlander Jr EE. Priority tries for IP address lookup. IEEE
Trans Comput. 2010;59(6):784–94.

15. Rétvári G, Tapolcai J, Kőrösi A, Majdán A, Heszberger Z. Compressing IP
Forwarding Tables: Towards Entropy Bounds and Beyond. In: ACM
SIGCOMM Computer Communication Review, vol. 3. New York: ACM;
2013. p. 111–22.

16. Asai H, Ohara Y. Poptrie: a compressed trie with population count for fast
and scalable software IP routing table lookup. In: ACM SIGCOMM
Computer Communication Review, vol. 45. New York: ACM; 2015.
p. 57–70.

17. Dharmapurikar S, Krishnamurthy P, Taylor DE. Longest Prefix Matching
Using Bloom Filters. IEEE/ACM Trans Netw. 2006;14(2):397–409.

18. Lim H, Lim K, Lee N, Park KH. On Adding Bloom Filters to Longest Prefix
Matching Algorithms. IEEE Trans Comput. 2014;63(2):411–23.

19. Ni S, Guo R, Liao X, Jin H. Parallel bloom filter on xeon phi many-core
processors. In: International Conference on Algorithms and Architectures
for Parallel Processing. Cham: Springer; 2015. p. 388–405.

20. Kohler E, Morris R, Chen B, Jannotti J, Kaashoek MF. The Click Modular
Router. ACM Trans Comput Syst (TOCS). 2000;18(3):263–97.

21. Dobrescu M, Egi N, Argyraki K, Chun BG, Fall K, Iannaccone G, Knies A,
Manesh M, Ratnasamy S. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In: Proc. of the ACM SIGOPS 22nd Symposium on
Operating Systems Principles. New York: ACM; 2009. p. 15–28.

22. Open vSwitch: An Open Virtual Switch. 2017. http://openvswitch.org/.
Accessed 25 Aug 2017.

23. Fan L, Cao P, Almeida J, Broder AZ. Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol. IEEE/ACM Trans Netw (TON).
2000;8(3):281–93.

24. Bloom BH. Space/time trade-offs in hash coding with allowable errors.
Commun ACM. 1970;13(7):422–6.

25. Kirsch A, Mitzenmacher M. Less hashing, same performance: building a
better bloom filter. Random Struct Algorithms. 2008;33(2):187–218.

26. OpenMP API for Parallel Programming, Version 4.0. 2016.
http://openmp.org/. Accessed 25 Aug 2017.

27. Dharmapurikar S, Krishnamurthy P, Taylor DE. Longest prefix matching
using bloom filters. In: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communications. New York: ACM; 2003. p. 201–12.

28. Appleby A. MurmurHash3 Hash Function. 2011. https://code.google.
com/p/smhasher/wiki/MurmurHash3. Accessed 25 Aug 2017.

29. Knuth DE. The Art of Computer Programming: Sorting and Searching,
vol. 3. Boston: Pearson Education; 1998.

30. Mueller T. H2 Database Engine. 2006. http://h2database.com. Accessed
25 Aug 2017.

31. Intel. Intel Intrinsics Guide. 2015. https://software.intel.com/sites/
landingpage/IntrinsicsGuide/. Accessed 25 Aug 2017.

32. Sundaram N, Raghunathan A, Chakradhar ST. A framework for efficient
and scalable execution of domain-specific templates on GPUs. In: IPDPS
’09: Proceedings of the 2009 IEEE International Symposium on Parallel
and Distributed Processing. Washington, DC: IEEE; 2009. p. 1–12.
doi:10.1109/IPDPS.2009.5161039.

33. Luk CK, Hong S, Kim H. Qilin: exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In: 42nd International
Symposium on Microarchitecture (MICRO). Washington, DC: IEEE; 2009.

34. Augonnet C, Thibault S, Namyst R, Wacrenier PA. StarPU: a unified
platform for task scheduling on heterogeneous multicore architectures.
In: Euro-Par ’09: Proceedings of the 15th International Euro-Par
Conference on Parallel Processing. Berlin: Springer-Verlag Publisher; 2009.
p. 863–74. doi:10.1007/978-3-642-03869-3_80.

35. Teodoro G, Sachetto R, Sertel O, Gurcan MN, Meira W, Catalyurek U,
Ferreira R. Coordinating the Use of GPU and CPU for Improving
Performance of Compute Intensive Applications. In: IEEE International
Conference on Cluster Computing and Workshops, 2009. CLUSTER’09.
Washington, DC: IEEE; 2009. p. 1–10.

36. Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Martorell X,
Planas J. OmpSs: a proposal for programming heterogeneous multi-core
architectures. Parallel Process Lett. 2011;21(02):173–93.

37. Teodoro G, Pan T, Kurc TM, Kong J, Cooper LA, Podhorszki N, Klasky S,
Saltz JH. High-throughput analysis of large microscopy image datasets on
CPU-GPU cluster platforms. In: 2013 IEEE 27th International Symposium
on Parallel and Distributed Processing (IPDPS). Washington, DC: IEEE;
2013. p. 103–14.

38. Sancho JC, Kerbyson DJ. Analysis of Double Buffering on two Different
Multicore Architectures: Quad-core Opteron and the Cell-BE. In:
International Parallel and Distributed Processing Symposium (IPDPS).
Washington, DC: IEEE; 2008.

39. Teodoro G, Kurc T, Kong J, Cooper L, Saltz J. Comparative Performance
Analysis of Intel(R) Xeon Phi(tm), GPU, and CPU: a Case Study from
Microscopy Image Analysis. In: 2014 IEEE 28th International Parallel and
Distributed Processing Symposium. Washington, DC: IEEE; 2014.
p. 1063–72.

40. Teodoro G, Kurc T, Andrade G, Kong J, Ferreira R, Saltz J. Application
performance analysis and efficient execution on systems with multi-core
CPUs, GPUs and MICs: a case study with microscopy image analysis. Int J
High Perform Comput Appl. 2017;31(1):32–51.

41. The CAIDA UCSD Anonymized Internet Traces 2016. 2016. http://www.
caida.org/data/passive/passive_2016_dataset.xml. Accessed 25 Aug 2017.

42. BGP Potaroo. 2016. http://bgp.potaroo.net/. Accessed 25 Aug 2017.
43. University of Oregon RouteViews Project. 2017. http://www.routeviews.

org/. Accessed 25 Aug 2017.
44. RIPE Network Coordination Centre. 2016. http://data.ris.ripe.net/.

Accessed 25 Aug 2017.
45. Gomes JM, Teodoro G, de Melo A, Kong J, Kurc T, Saltz JH. Efficient

irregular wavefront propagation algorithms on Intel (r) Xeon Phi (tm). In:
2015 27th International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD). Washington, DC: IEEE; 2015.
p. 25–32.

46. Broder A, Mitzenmacher M. Network applications of bloom filters: a
survey. Internet Math. 2004;1(4):485–509.

47. DPDK. 2017. http://dpdk.org/. Accessed 25 Aug 2017.

http://openvswitch.org/
http://openmp.org/
https://code.google.com/p/smhasher/wiki/MurmurHash3
https://code.google.com/p/smhasher/wiki/MurmurHash3
http://h2database.com
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://dx.doi.org/10.1109/IPDPS.2009.5161039
http://dx.doi.org/10.1007/978-3-642-03869-3_80
http://www.caida.org/data/passive/passive_{2}016_{d}ataset.xml
http://www.caida.org/data/passive/passive_{2}016_{d}ataset.xml
http://bgp.potaroo.net/
http://www.routeviews.org/
http://www.routeviews.org/
http://data.ris.ripe.net/
http://dpdk.org/

	Abstract
	Keywords

	Introduction
	Background and related work
	Intel Xeon Phi
	Previous work

	Bloom filters for IP lookup
	The Naïve Bloom filters algorithm
	Baseline Bloom filters algorithm

	Bloom filters optimizations and parallelization
	Optimizing the hash calculations
	The new dynamic programming CPE (DPCPE)
	Parallelization
	Thread-level parallelism (TLP)
	Instruction-level parallelism (ILP)

	Cooperative execution and efficient data transfers
	Efficient CPU-Intel Phi data transfers
	Cooperative execution on CPU and Intel Phi

	MIHT algorithm and implementation
	Algorithm
	Parallelization
	Thread-Level Parallelism (TLP)
	Instruction-Level Parallelization (ILP)

	Performance evaluation
	Experimental setup and databases
	The effect of the hash function and false positive ratio
	The scalability of BFs and MIHT
	The impact of input address (queries) characteristics on performance
	The impact of the lookup table size to the performance
	The IP lookup performance for IPv4 and IPv6
	Cooperative execution and data transfers strategies

	Conclusions and future directions
	Acknowledgments
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

