Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

DOI 10.1186/513174-015-0042-4

® Journal of Internet
Services and Applications

a SpringerOpen Journal

RESEARCH Open Access

PuLSaR: preference-based cloud service

@ CrossMark

selection for cloud service brokers

loannis Patiniotakis, Yiannis Verginadis and Gregoris Mentzas

Abstract

Over the last few years, the vast increase of cloud service offerings that are available from heterogeneous cloud
vendors, has made the evaluation and selection of desired cloud services, a cumbersome task for service
consumers. In that respect, there is an increasing need for user guidance and intermediation during the
service selection process but also during the cloud service consumption that should always refer to the best
possible choice based on user preferences. In this paper, we discuss the Preference-based clLoud Service
Recommender (PulLSaR) that uses a holistic multi-criteria decision making (MCDM) approach for offering
optimisation as a brokerage service. The specification and implementation details of this proposed software
mechanism are thoroughly discussed while the background method used is summarised. Both method and
brokerage service allow for the multi-objective assessment of cloud services in a unified way, taking into
account precise and imprecise metrics and dealing with their fuzziness. We cope with the fuzziness of
imprecise metrics in the sense that this approach deals with linguistically expressed preferences and cloud
service characteristics that lack a fixed or precise value and entail a level of vagueness which can only be
captured using the Zadeh's Fuzzy Set Theory. Furthermore, this paper reports on a number of experiments
that were conducted in order to measure PulSaR's performance and scalability.

Keywords: Cloud Service Broker, Optimisation, Service Ranking, MCDM

1 Introduction

Nowadays, enterprises are increasingly moving their IT
environments into the cloud, reducing operating costs
by converting from a business model reliant on hard-
ware and software ownership, to one based on utility
service consumption. This has resulted in an unprece-
dented rise of cloud providers that serve their offerings
as a service but at the same time has created additional
challenges (e.g., regarding the quality-of-service [1],
security etc.). Examples of such additional challenges
include: i) conducting and monitoring service level
agreements that refer to cloud applications composed of
heterogeneous service offerings from different cloud
service vendors, ii) efficiently comparing available
cloud offerings, using appropriate methods that con-
sider all the dimensions of cloud consumers’ require-
ments but also the unified and fair use of comparable
criteria across heterogeneously described services, iii)

* Correspondence: jverg@mail.ntua.gr
Institute of Communications and Computer Systems, National Technical
University of Athens, 9, Iroon Polytechniou Str, Zografou 15773, Greece

@ Springer

addressing in a unified way security aspects (e.g.,
access control, authentication etc.) of composed cloud
applications from offerings that may comply to differ-
ent vendor’s standards. As the multitude and com-
plexity of heterogeneous cloud services increases, the
role of cloud brokers in the cloud service ecosystems
becomes increasingly important. Technology analysts
such as Gartner [2] and Forrester [3] foresee an in-
creasing role for cloud service brokers, intermediaries
who already offer related brokerage capabilities such
as integration, customization or aggregation of soft-
ware services. Their analysis regarding cloud service
brokers is based on the fact that the unprecedented
rise of available cloud services from different vendors,
dictate the need for intermediating entities that their
sole purpose will be to cope with the challenges
mentioned above thus alleviate the heterogeneity
existing among such offerings. Nevertheless, even in
the emergent commercial cloud services, there is still
lack of standard mechanisms that allow for the com-
parison of cloud service specifications against user

© 2015 Patiniotakis et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0042-4&domain=pdf
mailto:jverg@mail.ntua.gr
http://creativecommons.org/licenses/by/4.0/

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

requirements, taking into account the implicit uncer-
tainty and vagueness, during the cloud service evalu-
ation and selection.

Recent research work has focused on developing
methods and mechanisms to allow the comparison and
ranking of competitive cloud services and help the user
during the cloud service selection. According to the
existing work [4, 5], service evaluation may be affected
by a set of quantitative and qualitative service character-
istics. Quantitative characteristics are those that can be
measured without any uncertainty, e.g., response time,
while qualitative characteristics refer mainly to non-
functional service characteristics and cannot be quanti-
fied in an objective manner, as they are based typically
on user experience such as service usability. Although
the existence and significance of qualitative characteris-
tics are identified, existing approaches up to now do not
provide models and methods to handle qualitative
service characteristics in an efficient and objective
way. Furthermore, current approaches use quantitative
models to insert user requirements [4]. However, im-
precise models are closer to the human needs when
expressing preferences, since they can capture the
vagueness of the user requirements. We define an im-
precision model as a set of qualitative cloud service
metrics that cannot be objectively quantified or mea-
sured. These metrics can be used for both describing
a cloud service and expressing requirements during
the cloud service selection phase. This imprecision
can be entered in the cloud consumer’s requirements
side even if it refers to quantitative metrics. For in-
stance, while availability is a quantitative metric, it is
obviously more intuitive for the user to express her
requirements by using expressions such as High or
Medium, rather than specifying precise numerical
thresholds. For that reason for the rest of the paper,
we use the notion of precise metrics/criteria and im-
precise metrics/criteria for either describing a cloud
service or capturing the cloud consumer’s require-
ments. The precise metrics refer to those that include
only crisp values (i.e., quantitative/measurable without
any uncertainty) while the imprecise metrics refer to
those that cannot be objectively quantified or mea-
sured and usually include fuzzy or linguistic values,
for both describing and expressing a requirement for
a cloud service offering. Fuzzy numbers that we argue
they can be used for expressing imprecise criteria, are
based on Zadeh’s pioneer work on Fuzzy Set Theory
[6]. Fuzzy sets are sets of ordered pairs A ={(x,
pa(x)),x €A, ue R}, where p(x) is called the member-
ship function. They extend the notion of membership
of an element in a set, from binary (belongs or not
belongs) to a grade of membership, expressed as a
real number, usually in /0,1] interval.

Page 2 of 14

In this paper, we aim to tackle the aforementioned
limitations in cloud service ranking and thus optimize
cloud service use, by providing a preference-based cloud
service recommender as a brokerage service that allows
cloud service evaluation based on a heterogeneous
model of service characteristics. We focus on imprecise
metrics and on a unified method to manage them along
with the precise ones for providing cloud service
rankings. Examples of such imprecise metrics include:
Provider’s Brand Name Reputation - the linguistic
expression of the reputation of the cloud service pro-
vider as perceived by its consumers; Support Satisfac-
tion — the linguistic expression that indicates the
aggregated perception of the cloud consumers regard-
ing the support that they have received from the
vendor; Provider’s business stability — the fuzzy de-
scription of the likelihood that the service provider
will continue to exist throughout the contracted term.
Cloud consumers need to declare their preferences in
a way that retains their inherent vagueness, such as
using linguistic terms, which are easier, more intuitive
and more comprehensible than using numbers. In
order to cope with all the meaningful metrics that
should be used for an optimised use of cloud service
offerings, we developed the Preference-based cLoud
Service Recommender (PuLSaR). PulLSaR is a cloud
consumer preference based recommender that uses a
holistic multi-criteria decision making approach for
offering optimisation as brokerage service.

This paper is structured as follows: In Section 2, we
present the related state-of-the-art while in section 3, a
discussion on the meaningful attributes for comparing
cloud service offerings and optimizing their selection
and use, is given. In Section 4, we summarise our pro-
posed cloud service recommendation method, while in
Section 5, we propose a formal way to express prefer-
ences using a Linked Unified Service Description Lan-
guage (Linked — USDL) extension. In Section 6, we
give technical details about the preference-based
cloud service recommender. Section 7 accommodates
the details of our proposed mechanism’s performance
evaluation and we conclude with the next steps in
Section 8.

2 Related work

The majority of the existing approaches focus on opti-
misation issues before or during the cloud migration
process from the legacy systems and mostly target cost
optimisation issues [7] in terms of resource allocation
and deployment [8]. For example, Litoiu et al. [7] have
presented a business driven cloud optimization architec-
ture, called CERAS that enables cross-layer services
optimization which considers platform profit and hard-
ware utilization as main optimization goals. They

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

implement approximate optimization using available
techniques such as linear programming, to balance com-
plex business factors and come close to optimal profits
at all cloud layers. Similarly, Huu [8] proposed four
different resource allocation strategies in an effort to
reduce infrastructure costs while also optimizing appli-
cation performance. Such efforts, mainly target Infra-
structure as a Service (IaaS) level optimisation issues
from the perspective of the cloud provider. Other ef-
forts, that examine cloud service optimisation from the
cloud consumer perspective, focus on comparing low
level performance aspects of cloud services such as CPU
and network throughput [9] addressing mainly IaaS-
related issues [5, 10] or they are concerned with compar-
ing similar services based on mainly cost issues [11].
Although these works aim to identify optimal cloud ser-
vices from a cloud consumer perspective by considering
user preferences, they are limited because they only con-
sider quantitative metrics and they do not use advanced
MCDM strategies to solve the multi-criteria optimisa-
tion problem. Similarly, in another interesting approach
[12], the authors proposed an indexing technique for
managing the comparable information of a large number
of cloud service providers and developed an efficient ser-
vice selection algorithm that ranks potential service pro-
viders, instead of their offerings. In particular, they
proposed the Cloud Service Provider (CSP) index which
was built based on an encoding technique that captures
similarity among various properties of service providers.
But, this work, although it is offered as a cloud broker-
age service, it focuses only on ten properties (e.g., service
type, security, operating system etc.) of the cloud service
providers by considering one offering per provider thus
limiting this ranking service to infrastructure and plat-
form as a service offerings. Moreover, there is no sup-
port for any vagueness in the expression of cloud
consumers’ requirements, even if they refer to qualitative
properties.

In other more recent works, there is some effort to
consider qualitative metrics and try to address the in-
herit vagueness that exists in the cloud service optimisa-
tion by adopting MCDM techniques [13-15]. In one of
the most interesting approaches, Garg et al. [4] present a
framework for comparing and ranking cloud services
based on QoS requirements and on current performance
measurements of services’ attributes. Their work is based
on the Service Measurement Index (SMI), which is a set
of business-relevant key performance indicators (KPI’s)
that provide a standardized method for measuring and
comparing business services [16]. Garg et al. [4], try to
quantify some of these KPIs in order to model several
quality dimensions of cloud services. They use an
Analytic Hierarchy Process (AHP) [17] based ranking
mechanism to solve the multi-criteria decision making

Page 3 of 14

problem of finding the optimal cloud service. This
quantification however, although helpful, in many
cases it seems arbitrary and vague as mentioned in
the introduction section.

In this paper, we cope with such inefficiencies or arbi-
trary assumptions by providing a more realistic approach
that takes under consideration the implicit vagueness in
certain criteria along with the fuzziness when dealing
with user’s preferences or requirements, expressed lin-
guistically. Therefore, we use fuzzy and linguistic values
that are more appropriate for dealing with imprecise cri-
teria. Moreover, in contrast to the above-mentioned
work that is using eigenvectors, we use extent analysis
[18] for deriving the relative value-based weights for
ranking Cloud services. This compared to the conven-
tional AHP, makes it simpler and easier to implement
the calculation of weights, for prioritizing consumer
satisfaction. For optimisation purposes, we consider as
criteria values the ones that appear in the Linked-
USDL based service description regarding the precise
criteria, while we use the aggregated user feedback
for imprecise criteria values. Moreover the approach
in [18] uses single instance performance analysis fo-
cusing only on IaaS aspects while do not consider
any aggregation of measurable values.

3 Attributes for cloud service optimisation

In order to develop a software system, capable of
comparing cloud service offerings and optimizing
their selection and use during any phase of the cloud
service lifecycle, an appropriate model for describing
their comparable characteristics is required. This
model should encapsulate all the necessary perform-
ance indicators that will allow for comparisons
between cloud services. From the state-of-the-art-ana-
lysis, it is evident that a lot of efforts have been dedi-
cated to exactly this issue. One of the most accepted
and cited work is the Service Measurement Index
(SMI) [16]. SMI is currently being developed by the
Cloud Services Measurement Initiative Consortium
(CSMIC) and involves a set of business-relevant Key
Performance Indicators (KPI's). SMI is a hierarchical
framework that divides the measurement space into 7
top level categories [16] that are further refined by
three or more level of attributes. These top level
categories are:

o Accountability - measures the properties
characterizing the cloud service provider
organizations related to standards, processes, and
policies that they follow;

o Agility - indicates the impact of a service upon a
client’s ability to change direction, strategy, or
tactics quickly and with minimal disruption;

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

e Assurance - indicates how likely it is that the service
will be available as specified;

e Financial — relates to the amount of money spent
on the service by the client;

e DPerformance — covers the performance features and
functions of the provided services;

e Security and Privacy - indicates the effectiveness of a
cloud service provider’s controls on access to
services, service data, and the physical facilities from
which services are provided;

e Usability - relates to the ease with which a service
can be used by its consumers.

It is evident from the literature review (see section 2)
that most of the research efforts focus only on quantita-
tive metrics (or at best on quantifiable metrics), thus
only crisp numbers are used in the methods and tech-
niques implemented for ranking cloud services [4].
However, sometimes it can be hard to classify the char-
acteristics in one of the two categories, since even for
some quantitative attributes it makes sense that the
users express their preferences in a qualitative manner.
There are a number of metrics that can be seen as quali-
tative but at the same time with some reasonable as-
sumptions they can be quantified (e.g., Interoperability,
Usability etc.) or they can be resolved in a number of
lower level metrics, involving both quantitative and
qualitative attributes (e.g., Serviceability - the ease and
efficiency of performing maintenance and correcting
problems with the service) or involving both precise and
imprecise values. For instance, the Usability metric has
been defined as a quantifiable attribute [4] in the sense
of the average time experienced by users of the cloud
service to install, learn, understand and operate it. But,
often this average time is not enough to define how us-
able a cloud service is, since this information is often
vague and imprecise. It might be the case that the aver-
age learning time for a cloud customer about a specific
service is relative short because of the customer’s huge
experience in the specific domain and not because the
service is really usable for an average user. It would be
an oversight to ignore the degree of difficulty that other
users experience based on their degree of expertise,
when they tried to learn, understand and operate the
specific cloud service. This value is highly subjective, un-
certain and often is available through linguistic terms
when previous users are expressing their opinions. In
this example the experienced user might indicate that it
is difficult to operate the specific cloud service (for an
average user) although it didn’t take her too long to
learn how to operate it.

Therefore, we believe that a blending of precise and
imprecise metrics is more meaningful for characterizing
and ranking a cloud service. We adopt and extend the

Page 4 of 14

SMI model [16] in order to use widely acceptable criteria
for cloud service ranking and selection. The extensions
made are mostly related to imprecise attributes and took
into account the state of the art and the relevant needs
of real pilot cloud platforms (ie, CAS Open of the
German company CAS and Orbi of the Greek company
Singular Logic) that were formulated after three series of
interviews. In Fig. 1, an overview of the hierarchical
structure of the defined criteria is presented. Because of
the size of its current version not all the attributes can
be depicted. The reader can find the complete list of
attributes used, online here: http://imu.ntua.gr/software/
pulsar. The main extensions over SMI [16] involved the
introduction of a new top-level attribute called Reputa-
tion. It is related to the reputation of the Service pro-
vider and of the cloud service offerings that are provided
and involves the following 2nd level attributes: Brand
name, Service Reputation, Contracting Experience, Ease
of doing business, Provider business stability, Provider
Ethicality and Sustainability. For example, the Brand
name attribute refers to the linguistic expression of the
reputation of the cloud service provider as perceived by
its consumers. The rest of the extensions involved the
introduction of 2nd level imprecise attributes: Robust-
ness, Monitoring, Reusability under the Agility, Perform-
ance, Usability top level attributes, respectively and the
introduction of 3rd level imprecise attributes: Technical
competency of the support employees, Support Satisfac-
tion and Documentation, Interoperability level and
Monitoring level under the Accountability, Assurance
and Performance top level attributes.

4 Cloud service recommendation method

The proposed method aims at providing a cloud service
ranking technique capable to exploit both crisp and
fuzzy information in order to be used for optimisation
purposes. It extends the SMICloud approach [4]. Based
on our method the service KPI and user requirement
values can be fuzzy numbers and intervals, or linguistic
terms. In the latter case, linguistic terms are mapped
onto fuzzy numbers in order to ensure unified process-
ing, both of the imprecise and precise, user-provided
values. Using techniques similar to SMICloud’s, we de-
rive fuzzy comparison matrices and subsequently using a
fuzzy Analytical Hierarchical Process (AHP) method, we
rank services. For example, this method is able to cope
in unified way with the following heterogeneous criteria
values:

— service response time expressed as an integer in the
cloud service descriptions (e.g., 20msec) and as a
fuzzy number when a potential cloud consumer
provides her requirements (e.g., (10,20,25) msec).
We note that it is the Broker’s responsibility that the

http://imu.ntua.gr/software/pulsar
http://imu.ntua.gr/software/pulsar

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Page 5 of 14

Cloud Service
Measurement
Criteria

1t Level Attributes

Accountability Assurance

Performance

Security &
Privacy

Usability Reputation

2 Levpl Attibutes

o Billing
Auditability Process

Adaptability Availability

Provider
Personnel
Requirements

Serviceability

Service
Response
Time

31 Level Attgbutes

Free

Technical Support

Competency of the
Support

Employees Typeof

Support

Support
Satisfaction

Documentation

Operating
Systems

Cost
Support

Fig. 1 Hierarchical Structure of Service Measurement Attributes (based on [16])

-

Storage

Data-
Outbound

Data
Integrity

Data Privacy
& Data Loss

Accessibility

Brand name

Transparency Sustainability

Average
Response
Time

Minimum
Response
Time

Maximum
Response

Audit
Trailing

Economic
Impact

Societal
Impact

Energy
Consumption

Data-
Inbound

Operation

Time

Carbon
Footprint

measurements are acquired in a way that allows for
fair comparisons between different services of
different providers. This is achieved by setting the
appropriate broker policy that dictates for example
the use of similar probes thus considering the
network latency in all response times.

— support satisfaction expressed as a linguistic value
for both the cloud service description (e.g., High)
and requirement (e.g., XMedium). It refers to the
consumers’ aggregated satisfaction (expressed
linguistically) when performing maintenance or
correcting problems with the service. The algorithm
considers this criterion by mapping the linguistic
values to fuzzy numbers.

In our work we have also selected the method pre-
sented in [18], appropriately adapted for service rank-
ing purposes. In addition, we have also chosen to use
triangular fuzzy numbers and trapezoidal intervals
due to their simplicity and broad use. Our approach
provides more expressive and unified way to capture

user opinions and preferences, both precise and
imprecise, than traditional service ranking methods.
This proposed service ranking method involves the
following four phases that have been thoroughly dis-
cussed in [19]:

o Phase I: Expressing ranking problem into a
hierarchical structure

e DPhase 2: Computation of relative quality of service
(QoS) attribute weights

o DPhase 3: Computation of relative service
performances

o DPhase 4: Aggregation of relative service weights

Next, we are presenting a high-level view of the service
ranking algorithm (Fig. 2), where the main steps of this
process are depicted, while we provide excerpts of the
algorithm in pseudocode for revealing additional import-
ant details (Algorithm 1). The thorough description of
our cloud service recommendation method can be found
in our previous work [19].

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Algorithm 1. Service Ranking Algorithm in Pseudocode

1. Input: profile, criteria_hierarchy

2. Output: list of services

3. criteria € get_criteria(profile)

4. services € get services(profile)

5. pairs € get comparison_pairs(profile)

6. /* Generate and populate criteria comparison matrices */

7. comparison_matrices € {}

8. crit_set € clone_of{criteria)

9. foreach crit in crit_set do {

10. siblings € get siblings(crit, criteria_hierarchy) N crit_set

11. if sizeof(siblings)>1 then {

12. comp_mat € create_comparison_matrix(siblings)

13. populate(comp mat, pairs)

14. comparison_matrices € comparison_matrices U {siblings, comp mat}
15. crit_set € crit_set / siblings

16. }

17.}

18. /* Calculate aggregate relative criteria weights */

19. criteria_weights matrix € {}

20. foreach {siblings, comp mat} in comparion matrices do {

21. weights vector € calculate relative weights(comp mat)

22. criteria_weights_matrix €< criteria_weights_matrix U {siblings, weights_vector}
23.}

24. criteria_weights < aggregate_weights(criteria_weights_matrix, criteria_hierarchy)
25. /* Filter out services not meeting required performance values */

26. foreach crit in criteria do {

27. type € get criterion_type(crit)

28. scale € get criterion_scale(crit)

29. mandatory € is_criterion_mandatory(crit)

30. required_value range €< get_criterion_required_value_range(crit)

31. foreach S in services do {

32. S kpi € get_service_attribute_value(S, crit)

33. normalize(S_kpi, type, scale)

34. if mandatory and not is_in(S_kpi, required value range) then {

35. services € services / {S}

36. }

37. %}

38. }

39. /* Calculate relative service weights per criterion */

40. service pairs € get_service pairs(services)

41. comp_mat € create_comparison_matrix(service pairs)

42. weights matrix € {}

43. foreach crit in criteria do {

44. type € get criterion_type(crit)

45. scale € get_criterion_scale(crit)

46. mandatory € is_criterion_mandatory(crit)

47. required_value range € get criterion_required value range (crit)

48. foreach pair in service_pairs do {

49. S1 € pair.servicel

50. S2 & pair.service2

51. S1_kpi € get service attribute value(S1, crit)

52. S2_kpi € get_service_attribute_value(S2, crit)

53. normalize(S1_kpi, type, scale)

54. normalize(S2_kpi, type, scale)

55. comp_mat[S1][S2] € calculate_relative_service_importance(S1_kpi, S2_kpi, type)
56. comp_mat[S2][S1] € fuzzy invertion(comp_mat[S1][S2])/* (1 / comp_mat[S1][S2]) */
57. }

58. weights_vector € calculate_relative_weights(comp_mat)

59. weights_matrix €< weights_matrix U {crit, weights_vector}

60. }

61. /* Rank services */

62. overall weights € aggregate weight matrices(weights matrix, criteria_weights)
63. sort_services_by_weight(services, overall_weights)

64 .return { (Si,wi) | Si in services, wi in overall_weights, such that 'i" in [1..length] of services }

Page 6 of 14

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Page 7 of 14

SMI
hierarchy

Ignore Service

Retrieve services
in selected category

Retrieve profile
criteria

Create criteria
comparison matrices

Services attrib’s in
constraints ranges?

Calculate criteria
weight vectors

Preferences
Profile

J

e
Preferences
cache

For Each
Criterion

Are Mandatory
attrib’s present?

Retrieve
comparison pairs

Calculate service
weight vector

Create service
comparison matrix

Ignore Service

Aggregate to overall
weight vector

Create weight
matrices

Sort services based
on overall weight

Keep Top-N
services

Fig. 2 High-level view of Service Ranking Algorithm

_______ > Data flow

———> Execution flow

However, the ranked list of cloud services calculated
based on this approach is not yet suitable for recom-
mendation to the service consumer directly. This is due
to several reasons. For instance, some of the services in
the recommended list might have been recently replaced
by another cloud application, due to adaptation actions
initiated by a failure prevention and recovery mechanism
that a broker may offer. Another case is that the service
consumer has repeatedly ignored a suggested service (in
the context of a previous recommendation). For the
aforementioned reasons the ranked list returned from
service ranking algorithm needs to be filtered first before
it can be presented to service consumer.

The proposed method also provides the capability to
define a selection policy on the ranked and filtered list
of services. The selection policy picks a certain number
of services from the ranked and filtered list and creates a
recommendation that is sent to the service consumer.
Specifically, the selection policy defines the number of
items (services) included in the recommendation, for ex-
ample the top one or top-3 or top-N services. Selection
can also occur based on a score, taking into account the
relative service weight calculated during service ranking.
It is possible to define a relevance threshold and filter
out services with lower scores. The threshold can either
be a specific value or a percentage of the value of the
top ranked service. For example, let the top ranked

service has score 0.37 and let the percentage be set to
20%. Then all services with scores from 20% below 0.37
(i.e., 0.296) up to 0.37 will be accepted as recommend-
able items. Furthermore, service consumer might also
send a response (to the recommendation event) indicat-
ing that he/she accepts certain recommended services.
These responses can be used to filter out services from
future recommendations.

5 Formally expressing preferences

In order to implement the above mentioned cloud ser-
vice recommendation method, it is desired to be able to
formally express and register cloud consumers’ prefer-
ences. Therefore we are using and appropriately extend-
ing Linked-USDL [20], as an adequate, acceptable and
easily extensible ontological framework for describing
services. We propose Linked USDL Preferences — a
novel Linked USDL schema which aims at: (i) providing
an open, linked, and interoperable framework for captur-
ing consumer-expressed preferences with respect to a
set of precise and imprecise attributes that characterise
cloud services; (ii) establishing a clear relationship be-
tween consumer preferences, service-level profiles, and
SDs. The Linked USDL Preferences schema takes into
account the vagueness, or fuzziness, often implicit in
consumer-expressed preferences, whilst allowing for the
intuitive expression of preferences using linguistic terms

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

and imprecise values. This is particularly important as
the majority of research efforts in modelling consumer
preferences predominantly focus on attributes that can
be measured precisely, i.e., in terms of crisp numbers
[4]. The basic concepts of the Linked-USDL Preferences
schema are outlined below.

A cloud consumer is potentially associated with a
number of diverse preference profiles, assumed to be
drawn from the class ConsumerPreferenceProfile (see
Fig. 3). Each such profile aggregates, through the hasPref
property, the consumer’s preferences relative to a par-
ticular functional category of cloud services — i.e., of a
grouping of cloud services of comparable functionality,
e.g.: ‘CRM Apps, ‘Project Management Services, ‘Sales
Services’ etc. . Consumer preference profiles are associ-
ated with their corresponding functional categories via
the adheresTo property. Now a consumer preference is
invariably expressed in terms of the OptimisationAttri-
bute class. This class is assumed to comprise all service
attributes used for optimisation purposes. In fact, a
consumer preference expresses a constraint on such
an attribute — one which is represented here in terms
of a preference expression. Such an expression is
associated with the attribute that it constrains via the
property hasOptAttr. Consumer preferences are asso-
ciated with their corresponding expressions via the
property hasPrefExpr.

Optimisation attributes may be either precisely or im-
precisely measurable. Precisely-measurable attributes
may characterise functional aspects of a service, in
which case they are associated, through the belongsTo
property (see Fig. 3), with the functional category to

Page 8 of 14

which the service pertains. Precisely-measured attributes
are assumed to draw their values from the GoodRelations
class gr: QuantitativeValue. Analogously, imprecisely-
measured attributes draw their values from the class gr:
QuantitativeValue, and fuzzy attributes draw their values
from the class FuzzyValue.

Each preference variable in a consumer’s preference
profile is additionally associated with a weight which
indicates its significance relative to the rest of the prefer-
ence variables in the same profile. In this respect, the
Linked USDL Preferences model introduces the class
Weight, a subclass of the gr: QuantitativeValueFloat
class, which draws its instances from the range [0,1].

Clearly based on this model, different preference pro-
files may be associated with diverse sets of preference
variables and hence different consumer preferences.
Moreover, a consumer may express different preferences
for the same cloud service depending on the particular
circumstances under which the service is consumed; this
may occur, for example, when the same cloud service is
consumed as part of two different cloud applications.

6 Preference-based cloud service recommender

6.1 Architecture

In this section we discuss the conceptual architecture of
PuLSaR. Certain technical choices that have been made
are depicted in Fig. 4. This conceptual architecture en-
compasses both the subcomponents of PuLSaR as well
as the interactions with “external” components that may
exist in a modern Broker [21]. These external to PulSaR
components involve the service governance and quality
control for assuring quality in all the brokerage phases

y Consumer \ hasWeight ; g
. Consumer Y vasretprofiie Preference /J 4 Weight /»
\‘\- == T&ﬂy ____//
hasPref
" " Preference T
ngw/ QY QuinitativeVal
c hasPrefExpr
e A
skos: o Preference gr:
Concept 5 " Expression 4 —{ Quantitative
° —— Value
hasOptAttr
N e
| FuzzyValue — 'IJ\ttribute) Qualitative
\f// i Value
‘ hasDefaultFuzzyVal hasDefaultQualitativeVal
Fig. 3 Linked USDL Preferences Model

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Page 9 of 14

Local Store
(MariaDB)

User
Facing
Compo-

nents

SC
facing
SP
facing
Admin
facing

Consumer

Mgmt

Optimization Business Logic

Preference Profile

Recommendations
Mgmt

MCS Ranking Engine

RDF store
(Fuseki)

Consumer
Feedback Mgmt

Optimisation

Attributes Mgmt Service Governance

and Quality control

AN

Optimisation
Opportunity Mgmt

Failure Prevention
and Recovery

e w <

Fig. 4 PulSaR Conceptual Architecture
A

and the failure prevention and recovery mechanism for
adapting failing cloud service offerings.

If PuLSaR is embedded into or integrated with another
system, such as a broker’s platform, the user-facing com-
ponents and user agents (considered as external to Pul-
SaR) are expected to be substituted from platform specific
services or parts. The user-facing components can also
co-exist with the services of a hosting system in order to
provide any functionality missing from the hosting system
(for instance consumer preference profile management).

The core of PuLSaR is shown as a central box in the
architectural diagram. It encompasses six subcomponents,
which implement the relevant functionalities and
mechanisms. Five of them provide the means for
humans or external software to interact with PuLSaR
whereas the sixth one implements the ranking algorithm.
Therefore, PuLSaR involves the following subcomponents
presented below.

Consumer Preference Profile Management subcompo-
nent. It provides APIs and functionality for creating,
updating and deleting consumer preference profiles. Con-
sumer preference profiles are logical containers where all
selection preferences and configuration pertaining to a
specific selection problem are stored. A service consumer
can have any number of preference profiles pertaining to
different applications and purposes. These profiles are

subsequently used by the Multicriteria Cloud Service
ranking engine to rank services and generate recommen-
dations. Each preference profile provides a different set of
selection criteria and options therefore leading to a pos-
sibly different service ranking, even for the same service
selection problem.

Consumer Feedback Management subcomponent. It is
responsible for collecting service consumer feedback for
services she has already used. It generates questionnaires
based on imprecise selection criteria and gives the con-
sumer the opportunity to provide her subjective opinion
about them. Of course, the service consumer is asked to
provide feedback only for services she has already used.
Furthermore, this subcomponent is able to aggregate dif-
ferent consumers’ opinions and upon reaching a param-
eterized threshold of participation, it can provide an
average value for the related imprecise attributes and
notify providers accordingly. For example, this means
that if for a certain cloud service the imprecise attribute
“Support Satisfaction” has value “Very High” but PuLSaR
aggregates the value “Medium” for more than 80% of its
consumers (based on their feedback) then the corre-
sponding provider will be notified about the opinion of
its cloud consumers with respect to the certain attribute.
Using this subcomponent, consumers may also update
their previous feedback.

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Recommendations Management subcomponent. It is
used to store new recommendations and collect con-
sumer responses to recommendations. More specifically,
this subcomponent receives ranked lists of services from
the Multicriteria Cloud Service ranking engine and it
subsequently filters them according to the selection policy
chosen. To this end, it can contact a failure prevention
and recovery component in order to check if any of the
top ranked services have recently been adapted in order to
be omitted by the PuLSaR recommendations list.

Optimisation Attributes Management subcomponent.
It is used to manage the optimisation attribute model
used by PuLSaR. Currently, this model is based on and
extends [16] work on service selection attributes (criteria).
This subcomponent provides search-create-retrieve-up-
date-delete (SCRUD) operations on that model.

Optimisation Opportunity Management subcompo-
nent. It is responsible for subscribing, receiving and pro-
cessing Service Life-cycle Management (SLM) events
from the platform and initiating the recommendation
process if appropriate. More specifically, when Service
On-boarded (i.e.,, made available through the Broker
platform), Service Deprecated, Service Description chan-
ged, then SLM events are published through an event
bus. Based on these events the subcomponent checks if
any existing service with an associated preference profile
is affected (i.e., deprecated or updated or an alternative
service has been on-boarded). In any such case it calls
the Multicriteria Cloud Service ranking engine passing the
relevant SLM event and consumer preference profile.

Multicriteria Cloud Service Ranking engine. This sub-
component implements the service ranking algorithm. It
is called either by the Optimisation Opportunity Man-
agement subcomponent (as a reaction to a relevant SLM
event) or by Consumer Preference Profile Management
subcomponent in order to provide on-demand recom-
mendations and assist the service consumer during profile
development or maintenance.

The subcomponents of PuLSaR rely on a few infra-
structural capabilities for their operation that are dis-
cussed below.

RDF store. The Jena Fuseki server is used. Fuseki ser-
ver accepts SPARQL queries and statements via HTTP
protocol and forwards them to an underlying RDF store.
This gives considerable flexibility to the overall platform
architecture since the RDF store can be accessed re-
motely, shared with other components, replaced seam-
lessly and it can also abstract the actual RDF store
intricacies, since only standard SPARQL is exchanged
with Fuseki.

RDF persistence. We have implemented an RDF per-
sistence framework that converts java object instances
into sets of RDF triplets of the form (subject, predicate,
object). Based on them it builds SPARQL queries or

Page 10 of 14

updates, which are then sent to Fuseki server for pro-
cessing. Vice versa, the results returned from Fuseki
server are converted back to java objects.

Local data store. It is used to store information per-
taining to PuLSaR and not shared or exchanged with
other components (for instance consumer feedback or
responses to recommendations). It also caches tempor-
ary information, intermediary calculations or data of
technical nature. In the context of PulLSaR we have
chosen MariaDB database as the local data store.

Logging framework. PuLSaR logging mechanism relies
on the well-known SLF4] logging abstraction mechanism
for Java.

Pub/Sub mechanism. It is used to send and receive
events to/from other Broker platform components.
WSO2 pub/sub is used for exchanging information be-
tween components.

As seen in Fig. 4, PuLSaR should be able to interact
with the following Broker platform components:

Service Governance and Quality Control (SGQC). This
component indirectly interacts with PuLSaR since it is
responsible for checking and uploading broker policies
and service descriptions to the fuseki store. Such infor-
mation is queried by PuLSaR before issuing recommen-
dations. In addition, any update on service descriptions
(i.e., new service onboarded) is published by the SGQC
to the Pub/Sub system for propagation in the form of
SLM events. Such events may trigger new PuLSaR
recommendations.

Failure Prevention and Recovery component (FPR).
This component is contacted in order to retrieve the
recommendations it has recently sent to service con-
sumers in order to avoid recommending cloud services
that have been recently adapted. FPR component can
contact PulSaR, through its RESTful API, in order to
retrieve PuLSaR recommendations already sent to the
consumers, in order to use this information for appropri-
ately adjusting any adaptation actions.

User-Facing components. These components constitute
the front-end of PuLSaR. They provide GUIs that enable
users of a Broker platform to access information and use
its services. User-facing components can either be stand-
alone applications or they can be part of (or integrated to)
a third-party brokerage or cloud provider infrastructure.
At present, user-facing components have been imple-
mented as stand-alone web-based applications using
Web2.0 technologies like JavaScript, DOM, XHR and
JSON format for the exchanged data. Currently, we con-
sider three major user roles: service consumers, service
providers and platform administrator(s). These facts are
depicted in PuLSaR architecture diagram (Fig. 4) as the
purple boxes “SC facing”, “SP facing” and “Admin facing”
components (denoting the server-side part of them), as
well as “Consumer User Agent (UA)”, “Provider UA” and

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

“Admin UA” cyan boxes (denoting the client-side part of
them, presented to the corresponding user roles).

6.2 lllustrative walkthrough of using PuLSaR

PuLSaR can enhance any cloud platform with brokerage
capabilities with respect to optimized consumption of
cloud offerings as long as the platform is able to describe
in a neutral way the available cloud services and the bro-
ker policy that needs to be enforced. In this work,
Linked-USDL has been used for that specific purpose.
Based on the expressed broker policy, PuLSar can
undertake the optimisation attributes management. This
enables the maintenance of the optimisation attribute
model used to describe services in terms of selection
criteria. This means that the offered model with service
attributes discussed in section 2, can be specialised for
each brokerage platform and instantiated according to the
broker’s hosting platform policies (e.g., Learnability is a
linguistic attribute with allowed values {Low, Medium,
High}). After this, the prototype implementation performs
the collection of service consumer preferences on specific

Page 11 of 14

service selection problems expressed and captured as
Consumer Preference Profiles. PuLSaR guides consumers
to interactively develop their consumer preference pro-
files, add selection criteria and assign importance values
to them (as weights) through a series of pairwise compari-
sons. Specifically, based on the selected classification
dimensions all the associated service attributes are pre-
sented in order for the consumer to declare his choices
(Fig. 5 - screen 1). Next, the consumer is invited to declare
the weights of the selected attributes through pairwise
comparisons (Fig. 5 - screen 2). It is possible to display
recommendations based on the current settings of the
profile being edited thus helping consumers to pick a
service for the initial composition of their application.
PuLSaR presents the calculated weights and allows for
defining constraints over them (Fig. 5 - screen 3). Last, it
generates recommendations, either on-demand (during
consumer preference profile creation) or in response to an
SLM event (Fig. 5 - screen 4). In both cases, recommenda-
tions are stored in the local data store and published as
recommendation events to the corresponding event

.

Step 2 - Profile criteria

Save seiactors

Criteria

. Sel. Opt. Attrbute Type Adowed vakes

= Service Category: (projctmanagement) Project management [attrbutes

1 ¥ Biling Process Unordered Set [Charge par your, Charge per month, Charge per day)
3 v Contracting Experience Nemeric - Higher is Better 1- 10 |
3 ' Provider business stabll... Linguistic [LOW, MEDIUM, HIGH)

4 ¥ Service Reputation Unguistic [LOW, MEDIUM, MIGH)

s v Leamabiity Unguistic (LOW, MEDIM, HIGH]

6 v |Understandabiity Uinguistic (LOW, MEDRM, HIGH]

& Service Category: (rootConcept) Root Concept (2 attrbutes

? v Aditabiity Uinguistic [low austabity, medum austabity, hgh sudtabity)
s v Avallablity Range - 100

1

Profile Mgnt Criteria Weights calc. Constraints
Step 3 - Weight calculation

7

Attrute #1 Rel. Importance Attrbute o2

Parent attribute: / (6 pars

Usabiity
Financial
sabiity
Financial
Usabitity Financial
Parent attribute: /Reputation/ () pas
Provider busines... Expe..
Showng ak 10 rows
2 [oo | e]

Profile Mgnt Criteria Weights calc. Constraints

Step 4 - Criteria Constraints
Nomaice weghts Save changes

Criteria

o Opt Atbute Mand_ Weght Mowsd ikt

Toe Constrants

& Service Category: (sropctmanagenent) Froct management (6 attibutes
Billing Process. 11.89%
Contracting Expe... 1%
Provider busines. 1%
Service Reputation 030w
Leamability

Understandabiity

[Charge per your, Charge por month, Charge .. =

1-30 >
110w, MEDRM, MO
[LOW, MEDIUM, HOOH]
[LOW, MEDRM, H0H]
110w, MEDRM, 190H]

16.01%
1w

Hi

& Service Category: (rootConcept) Root Concept (1 attrbutes

Aoditabiity “arn

i

llow audtabity, medum audtadiity, hoh sust.. -

<

PuLSaR Recommendations
Get recommendation Save

Id: RECOMMENDATION-13e9799a-f0d0-4d15-8ba1-14f06727bcd2
Creation: Mon, 30 Mar 2015 14:14:13 GMT
Profile: My 2nd Profile

Suggestions:

Use sevice: CAS Adress App 1/ #ServiceModelAddressApp1
Creator. CAS Software AG Profile: #ServiceLevelProfileGold
Score: 24.68% [+)

Use semice: CAS Calender App 1/ #ServiceModelCalendarApp1
Creator. CAS Software AG Profile: #Servicelevell

Score: 24.67% [+]

Use senvice: CAS Adress App 2 / #ServiceModelAddressApp2
Creator: CAS Software AG Profile: #ServicelevelProfileSilver
Score: 15.32% [+]

Use senvice: CAS Calender App 2 / #ServiceMode!CalendarApp2
Creator: CAS Software AG Profile: #ServicelevelProfileSiver
Score: 15.21% [+]

Use senvice: CAS Adress App 3 / #ServiceModelAddressApp3
Creator. CAS Software AG Profile: #ServiceleveiProfileSilver
Score: 10.09% [+]

Use senvice: CAS Calender App 3/, /"
Creator: CAS Software AG Profile: z
Score: 10.03% [+]

Silver

Fig. 5 Pul.SaR Walktrough

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

topics. These recommendations are based on the ranking
of cloud services based on the consumer preference
profiles.

The PuLSaR prototype was implemented in Java using
the Apache Jena (Core and ARQ) APIs and was released
as open source under the Apache Dual License. The
reader can find PuLSaR open source, detailed illustrative
walkthrough and explanatory videos here: http://
imu.ntua.gr/software/pulsar.

7 Evaluation of PuLSaR

In order to evaluate the performance of PuLSaR against
an increasing set of requirements that could be met in a
cloud service broker, we conducted a number of experi-
ments and measured certain key performance indicators
(KPI's) that assess the behaviour of PuLSaR. These
experiments involve an increasing number of fabricated
consumer preferences profiles (i.e.,, 1-1000) that trigger
PuLSaR to issue recommendations for finding the op-
timal cloud offerings in a hypothetical SaaS cloud
marketplace. The size of available offerings also varies
(i.e,, 1-1000) while linguistic (imprecise) attributes
are used to describe offerings, since they require
more complex operations than numeric attributes
during processing. The two variant aspects (profiles
and cloud services, keeping the selected attributes
fixed to 10) constitute 8 experiments that we conducted.
For each of these variants the CPU, memory and time
consumed for issuing PuLSaR recommendations were
measured. Specifically, these 8 experiments have clustered
to two series of experiments. The variable increased in
each series of these experiments, respectively, is:

1. the number of consumer preference profiles to be
processed - Tests for 1, 10, 100 and 1000 profiles
were executed, keeping other parameters fixed (ie.,
available service descriptions to 10 and 10 criteria
per profile)

. the number of available service descriptions in the
triplestore - Tests for 1, 10, 100 and 1000 service
descriptions were executed, keeping other

Page 12 of 14

parameters fixed (i.e., profiles to be processed to 10
with 10 criteria per profile)

All of our experiments have been performed on an
Ubuntu SMP, kernel version 3.13.0-49-generic, installed
on a virtual machine with 8 cores of Intel(R) Xeon(R)
64-bit CPU E5-2470 v2 @ 2.40GHz, 25600 KB cache
and 10GB of RAM. Java version is 1.7.07 OpenJDK 64-
bit server VM. It should be also noted that after some
preliminary tests, PuLSaR has been enhanced with
multi-threading capabilities in order to deal with scal-
ability issues evident in the cloud computing domain.

In the results of the first series of tests, involving an
increasing number of consumer preference profiles, it is
evident that test duration (i.e., processing all profiles) in-
creases linearly as the number of profiles climbs up
(Fig. 6a). This is the expected behaviour since each pro-
file is handled separately from the others. The only data
shared between profile processing iterations (and
threads) are service descriptions and broker policy ele-
ments, which are cached the first time they are retrieved
from Fuseki. Adding extra cores would reduce the in-
clination of the trend line. Memory consumption also
exhibits a linear behaviour as profiles in this test require
roughly the same amount of memory (Fig. 6b) with the
exception of the beginning of the test where a lot of pro-
file pre-fetching and queuing takes place, constituting
steeper inclination. CPU load is measured both for the
whole system and for PuLSaR (JVM process) separately.
Fuseki and PuLSaR were collocated in the same platform
during tests, therefore system load gives an idea of the
impact of PuLSaR requests onto Fuseki. Figure 6¢ sug-
gests that system and PuLSaR CPU loads exhibit similar
behaviours although system load is higher than that of
PuLSaR. This is reasonable since Fuseki serves requests
(and consumes CPU) at the rate PuLSaR submits them.
Figure 6¢ also indicates increased CPU load for low
profile numbers (1 and 10). This effect stems from
the logging strategy used and the fact that PuLSaR
retrieves and queues profiles at the beginning of the
experiment.

350 250 30%
300 A § / 25%
< 200 g
<
250 S S 20% 4
g g
= £ 2
= 200 3 150 > 15%
5 g 2 \
s 1 5 10%
£ 150 g —
3 £ 100 H
100 é 5% —a
50 8 %0 4 0%
z 0 200 400 600 800 1000
0 T T T T] 0 T T Num. of profiles
0 200 400 600 800 1000 Y 200 400 600 800 1000 —o—Aver. OSLoad ——Aver. JVM Load

Num. of profiles

Fig. 6 First Series of Evaluation Tests, (a) Duration vs. Profiles, (b) Av. mem. consumption vs. Profiles, (c) Av. CPU load vs. Profiles

Num. of profiles

http://imu.ntua.gr/software/pulsar
http://imu.ntua.gr/software/pulsar

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

Regarding the second series of tests involving an in-
creasing number of cloud offerings it is obvious that test
duration increases abruptly as their number climbs up
(Fig. 7a). This is due to the nature of the algorithm
which requires N(N-1)/2 pairwise comparisons of cloud
offerings per criterion, where N is the number of offer-
ings. For instance if N =10 then only 45 comparisons
are required but if N =100 then 4950 comparisons are
required, which is 110 times larger than 45. Obviously
this step’s complexity is O(N?) thus leading in significant
increase of test duration as cloud offerings increase from
100 to 1000. For low numbers of cloud offerings (<10)
test duration seems to remain unchanged (or climbing
slowly) because overhead is comparable to or exceeds
the processing time of services and profiles. Memory
consumption seems to increase in a linear fashion with
the number of cloud offerings, since their descriptions
are cached and in this test require roughly the same
amount of memory (Fig. 7b). The CPU usage of PuLSaR
increases up to a point (approx. at 100 offerings) and
then remains constant (Fig. 7c). As the number of offer-
ings increases the cloud offerings comparison step of the
recommendation algorithm, takes considerably more
time than the other steps, therefore we conjecture the
maximum software throughput (processing speed) is
reached at around that point, for the specific test. Hence
CPU usage becomes almost constant. The system CPU
usage increases with the number of cloud offerings up to
around 100 and then drops to reach the average PuLSaR
usage (Fig. 7c). This behaviour occurs because PuLSaR
retrieves all needed information from Fuseki at the ini-
tial phase of the recommendation process and then con-
tinues with offerings comparisons. In small numbers
these phases may overlap between simultaneously exe-
cuting threads causing both PuLSaR and Fuseki compete
for CPU time. Contrary, in higher numbers the cloud of-
ferings’ comparisons step take considerably more time
(during which only minimal interaction with Fuseki
might occur) than other information retrieval activities
and Fuseki seems to become idle leaving PuLSaR occupy
most of CPU time. Therefore the system CPU load

Page 13 of 14

appears to initially increase up to 100 offerings and then
decrease down to PuLSaR average CPU usage level,
which as already explained becomes constant at high of-
fering numbers.

Since PuLSaR uses processing threads to create rec-
ommendations for consumer preference profiles, it is
possible to increase its throughput (profiles processed
per unit of time) by making available extra cores and
heap memory to it. Also, in terms of memory consump-
tion PuLSaR exhibits a linear behaviour whereas in
terms of CPU load it reaches a plateau and remains
steady. These findings suggest that PuLSaR can accept-
ably scale up and operate in increasing numbers of offer-
ings and profiles.

8 Conclusions

In this work we presented a method and a tool for opti-
mising the cloud service usage by performing cloud ser-
vice evaluations based on a heterogeneous model of
service characteristics. Specifically, we presented and im-
plemented a fuzzy AHP approach that solves the prob-
lem of service ranking and allows the multi-objective
assessment of cloud services. This approach provides a
more expressive and unified way to capture and process
user opinions and preferences (both precise and impre-
cise) than traditional service ranking methods. Based on
this method and a proposed Linked-USDL model for
formally expressing preferences, we designed and im-
plemented the Preference-based cLoud Service Rec-
ommender (PuLSaR). PuLSaR is a cloud consumer
preference based recommender that uses a multi-criteria
decision making approach for offering optimisation as
brokerage capability. The specification and implementa-
tion details of this dedicated software component were
presented. In addition, PuLSaR was evaluated with respect
to performance though a number of experiments that
measured certain KPIs of the mechanism. Based on the
evaluation findings it became evident that PuLSaR can be
considered as an efficient and scalable software mechan-
ism that can enhance as a service any cloud service broker
with optimisation capabilities.

Num. of services

1.200 2.000 35%
= 1.800 30% S
1.000 2 00 P _
5) & 5%
800 g 1400 / E]
- S 20%
z E 1200 S 7
< 2 5 15%
2 600 § 1.000 S ~
e > 2 10%
3 g 800 2 /
400 € w00 pd . ’
E / 5%
» 400 o ‘
200 g / 0% -+ T T T T T)
2 200 200 400 600 800 1000 1200
v .
0 - r . . 0 T T T T] Num. of services
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200

Num. of services

Fig. 7 Second Series of Evaluation Tests, (a) Duration vs. Services, (b) Av. mem. consumption vs. Services, (c) Av. CPU load vs. Services

—&—Avg Os Load =fll=Avg Jvm Load

Patiniotakis et al. Journal of Internet Services and Applications (2015) 6:26

The next steps of this work, involve the evaluation of
PuLSaR’s optimisation capabilities in real-life brokerage
scenarios using heterogeneous hosting platforms and
enriching them with valuable brokerage capabilities.
PuLSaR’s capabilities will be enhanced in real cloud plat-
forms that aspire to add brokerage functionalities in
their offerings. Such evaluation will be done with respect
to usability issues by conducting surveys targeting real
cloud service consumers. Additionally, PuLSaR will be
extended to support distributed processing (i.e., several
PuLSaR processing nodes working in parallel), thus
further increasing scalability. Eventually, extensions of
the proposed method are considered to the direction
of reducing the number of cloud offerings pairwise
comparisons and the faster calculation of relative
weights.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

IP has participated in the design of this study, led the implementation work
of the PuLSaR software component and conducted the evaluation
experiments. YV has contributed to the conception and implementation of
this study, led the Linked-USDL extension work and contributed in the de-
sign and analysis of the evaluation experiments. GM have made substantial
contributions to the conception and design of PulSaR software component,
led the state-of-the-art analysis and drafted the manuscript. All authors read
and approved the final manuscript.

Acknowledgments

The research leading to these results has received funding from the
European Union Seventh Framework Programme (FP7/2007-2013), the
Broker@Cloud project (www.broker-cloud.eu). The authors would like to
thank the project partners for their valuable feedback.

Received: 29 April 2015 Accepted: 24 November 2015
Published online: 07 December 2015

References

1. Ardagna D, Casale G, Ciavotta M, Pérez J, Wang W. Quality-of-service in
cloud computing: modeling techniques and their applications. J Internet
Serv Appl. 2014;5(1):1-17.

2. Gartner. Defining Cloud Services Brokerage: Taking Intermediation to the
Next Level. 2010. https.//www.gartner.com/doc/1448121/defining-cloud-
services-brokerage-taking. Accessed 1 Jun 2015.

3. Forrester. Cloud Brokers Become Change Agents: Understanding The Cloud
Broker Opportunity. 2012. www.forrester.com/Cloud+Brokers+Become
+Change+Agents/fulltext/-/E-res71622. Accessed 1 Jun 2015.

4. Garg SK, Versteeg S, Buyya R. A framework for ranking of cloud computing
services. Future Gen Comp Syst Elsevier. 2013;29:1012-23.

5. Godse M, Mulik S. An Approach for Selecting Software-as-a-Service (SaaS)
Product. In: International Conference on Cloud Computing, CLOUD'09.
Bangalore, India: IEEE; 2009. pp 155-158.

6. Zadeh LA. Fuzzy sets. Inf Control. 1965;8(3):338-53.

7. Litoiu M, Woodside M, Wong J, Ng J, Iszlai G. A business driven cloud
optimisation architecture. In: Proceedings of the 2010 ACM Symposium
on Applied Computing, SAC ‘10. Sierre, Switzerland: ACM, New York;
2010. 380-385.

8. Huu TT, Koslovski G, Anhalt F, Montagnat J, Primet PV-B. Joint elastic cloud
and virtual network framework for application performance-cost
optimisation. Grid Computing J. 2011;9(1):27-47.

9. losup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema D.
Performance analysis of cloud computing services for many-tasks scientific
computing. IEEE Trans Parallel Distrib Syst J. 2011;22(6):931-45.

20.

Page 14 of 14

Chintapalli VR. A deadline and budget constrained cost and time
optimisation algorithm for cloud computing. In: Advances in Computing
and Communications in Computer and Information Science 193. Berlin,
Heidelberg: Springer; 2011. pp 455-62.

Rehman ZU. Towards Multi-criteria Cloud Service Selection. In: Fifth
International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing. Seoul, South Korea: IEEE; 2011. pp 44-48.
Sundareswaran S, Squicciarini A, Lin D. A brokerage-based approach for
cloud service selection. In: 5th International Conference on Cloud
Computing, CLOUD'12. Honolulu, USA: [EEE; 2012. pp 558-565.

Shivakumar U, Ravi V, Gangadharan GR. Ranking cloud services using fuzzy
multi-attribute decision making. In: International Conference on Fuzzy
Systems, FUZZ'13. Hyderabad, India: IEEE; 2013. pp 1-8.

Qu L, Wang Y, Orgun MA. Cloud Service Selection Based on the
Aggregation of User Feedback and Quantitative Performance Assessment.
In: 10th International Conference on Services Computing, SCC'13. Santa
Clara, USA: IEEE; 2013, pp 152-159.

Baliyan N, Kumar S. Quality Assessment of Software as a Service on Cloud
Using Fuzzy Logic. In: International Conference on Cloud Computing in
Emerging Markets, CCEM'13. Bangalore, India: IEEE; 2013. pp 1-6.

CSMIC. Cloud Service Measurement Index Consortium: SMI framework
Version 2.1. 2014. http://csmic.org/downloads/SMI_Overview_TwoPointOne.
pdf. Accessed 1 Jun 2015.

Saaty TL. A scaling method for priorities in hierarchical structures. J Math
Psychology. 1977;15(3):234-81.

Chan KY, Kwong CK, Dillon TS. An enhanced Fuzzy AHP method with
extent analysis for determining importance of customer requirements
computational intelligence techniques for new product design. In: Springer-
Verlag, editor. Computational Intelligence Techniques for New Product
Design, 403. 2012. p. 79-93.

Patiniotiakis |, Rizou S, Verginadis Y, Mentzas G. Managing Imprecise Criteria
in Cloud Service Ranking with a Fuzzy Multi-Criteria Decision Making
Method. In: Proceedings of the European Conference on Service-Oriented
and Cloud Computing, vol 8135. Malaga, Spain: Springer Berlin Heidelberg;
2013. pp 34-48.

Pedrinaci, C, Cardoso, J, Leidig, T. Linked USDL: a Vocabulary for Web-scale
Service Trading. In: Proceedings of the 11th Extended Semantic Web
Conference, ESWC'14. Crete, Greece: Springer International Publishing; 2014.
8465:68-82.

Veloudis S, Paraskakis I, Friesen A, Verginadis Y, Patiniotakis I, Rossini A.
Continuous Quality Assurance and Optimisation in Cloud-Based Virtual
Enterprises. In: Proceedings of the 15th IFIP Working Conference on Virtual
Enterprises, PRO-VE'14. Amsterdam, Netherlands: Springer Berlin Heidelberg;
2014, pp 621-632.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

http://www.broker-cloud.eu/
https://www.gartner.com/doc/1448121/defining-cloud-services-brokerage-taking
https://www.gartner.com/doc/1448121/defining-cloud-services-brokerage-taking
http://www.forrester.com/Cloud+Brokers+Become+Change+Agents/fulltext/-/E-res71622
http://www.forrester.com/Cloud+Brokers+Become+Change+Agents/fulltext/-/E-res71622
http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf
http://csmic.org/downloads/SMI_Overview_TwoPointOne.pdf

	Abstract
	Introduction
	Related work
	Attributes for cloud service optimisation
	Cloud service recommendation method
	Formally expressing preferences
	Preference-based cloud service recommender
	Architecture
	Illustrative walkthrough of using PuLSaR

	Evaluation of PuLSaR
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	References

