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Abstract

arising in cloud QoS management.

Recent years have seen the massive migration of enterprise applications to the cloud. One of the challenges posed by
cloud applications is Quality-of-Service (QoS) management, which is the problem of allocating resources to the
application to guarantee a service level along dimensions such as performance, availability and reliability. This paper
aims at supporting research in this area by providing a survey of the state of the art of QoS modeling approaches
suitable for cloud systems. We also review and classify their early application to some decision-making problems
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1 Introduction

Cloud computing has grown in popularity in recent years
thanks to technical and economical benefits of the on-
demand capacity management model [1]. Many cloud
operators are now active on the market, providing a
rich offering, including Infrastructure-as-a-Service (IaaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service
(SaaS) solutions [2]. The cloud technology stack has also
become mainstream in enterprise data centers, where
private and hybrid cloud architectures are increasingly
adopted.

Even though the cloud has greatly simplified the capac-
ity provisioning process, it poses several novel challenges
in the area of Quality-of-Service (QoS) management. QoS
denotes the levels of performance, reliability, and avail-
ability offered by an application and by the platform or
infrastructure that hosts it®. QoS is fundamental for cloud
users, who expect providers to deliver the advertised qual-
ity characteristics, and for cloud providers, who need to
find the right tradeoffs between QoS levels and opera-
tional costs. However, finding optimal tradeoff is a diffi-
cult decision problem, often exacerbated by the presence
of service level agreements (SLAs) specifying QoS targets
and economical penalties associated to SLA violations [3].

*Correspondence: g.casale@imperial.ac.uk

2Department of Computing, Imperial College London, 180 Queens Gate,
London SW7 2AZ, UK

Full list of author information is available at the end of the article

@ Springer

While QoS properties have received constant attention
well before the advent of cloud computing, performance
heterogeneity and resource isolation mechanisms of
cloud platforms have significantly complicated QoS anal-
ysis, prediction, and assurance. This is prompting several
researchers to investigate automated QoS management
methods that can leverage the high programmability of
hardware and software resources in the cloud [4]. This
paper aims at supporting these efforts by providing a
survey of the state of the art of QoS modeling approaches
applicable to cloud computing and by describing their
initial application to cloud resource management.

Scope. Cloud computing is an operation model that
integrates many technological advancements of the last
decade such as virtualization, web services, and SLA man-
agement for enterprise applications. Characterizing cloud
systems thus requires using diverse modeling techniques
to cope with such technological heterogeneity. Yet, the
QoS modeling literature is extensive, making it difficult
to have a comprehensive view of the available techniques
and their current applications to cloud computing prob-
lems.

Methodology. The aim of this survey is to provide an
overview of early research works in the cloud QoS
modeling space, categorizing contributions according
to relevant areas and methods used. Our methodology
attempts to maximize coverage of works, as opposed to
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reviewing specific technical challenges or introducing
readers to modeling techniques. In particular, we focus
on recent modeling works published from 2006 onwards
focusing on QoS in cloud systems. We also discuss
some techniques originally developed for modeling and
dynamic management in enterprise data centers that have
been successively applied in the cloud context. Further-
more, the survey considers QoS modeling techniques for
interactive cloud services, such as multi-tier applications.
Works focusing on batch applications, such as those based
on the MapReduce paradigm, are therefore not surveyed.

Survey Organization. This survey covers research efforts
in workload modeling, system modeling, and their applica-
tions to QoS management in the cloud.

e Workload modeling involves the assessment or pre-
diction of the arrival rates of requests and of the
demand for resources (e.g., CPU requirements) placed
by applications on an infrastructure or platform, and
the QoS observed in response to such workloads. We
review in Section 2 cloud measurement studies that
help characterize those properties for specific cloud
systems, followed by a review of workload character-
izations and inference techniques that can be applied
to QoS analysis.

e System modeling aims at evaluating the performance
of a cloud system, either at design time or at run-
time. Models are used to predict the value of specific
QoS metrics such as response time, reliability or avail-
ability. We survey in Section 3 formalisms and tools
employed for these analyses and their current applica-
tions to assess the performance of cloud systems.

e Applications of QoS models often appear in rela-
tion to decision-making problems in system manage-
ment. Techniques to determine optimized decisions
range from simple heuristics to nonlinear program-
ming and meta-heuristics. We survey in Section 4
works on decision making for capacity allocation, load
balancing, and admission control including research
works that provide solutions for the management of
a cloud infrastructure (i.e., from the cloud provider
perspective) and resource management techniques for
the infrastructure user (e.g., an application provider
aiming at minimizing operational expenditure, while
providing QoS level guarantees to the end users).

Section 5 concludes the paper and summarizes the key
findings.

2 Cloud workload modeling

The definition of accurate workload models is essential to
ensure good predictive capabaility for QoS models. Here,
we survey workload characterization studies and related
modeling techniques.
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2.1 Workload characterization

Deployment environment. Several studies have attempted
to characterize the QoS showed by cloud deployment
environments through benchmarking. Statistical charac-
terizations of empirical data are useful in QoS modeling
to quantify risks without the need to conduct an ad-hoc
measurement study. They are vital to estimate realistic
values for QoS model parameters, e.g., network band-
width variance, virtual machine (VM) startup times,
start failure probabilities. Observations of performance
variability have been reported for different types of VM
instances [5-7]. Hardware heterogeneity and VM inter-
ference are the primary cause for such variability, which
is also visible within VMs of the same instance class.
Other works characterize the variability in VM startup
times [7,8], which is correlated in particular with oper-
ating system image size [8]. Some studies on Amazon
EC2 have found high-performance contention in CPU-
bound jobs [9] and network performance overheads [10].
A few characterization studies specific to public and
private Paa$S hosting solutions also appeared in the litera-
ture [11,12], together with comparisons of cloud database
and storage services [13-16]. Also, a comparison of dif-
ferent providers on a broad set of metrics is presented
in [17].

Cloud application workloads. While the above works
focus on describing the properties of the cloud deploy-
ment environment, users are often faced with the addi-
tional problem of describing the characteristics of the
workloads processed by a cloud application.

Blackbox forecasting and trend analysis techniques are
commonly used to predict web traffic intensity at different
timescales. Time series forecasting has been extensively
used for web servers for almost two decades. Autoregres-
sive models in particular are quite common in applica-
tions and they are already exploited in cloud application
modeling, e.g., for auto-scaling [18]. Other common
techniques include wavelet-based methods, regression
analysis, filtering, Fourier analysis, and kernel-based
methods [19].

Recent works in workload modeling that are relevant
to cloud computing include [20-22]. Khan et al. [20] uses
Hidden Markov Models to capture and predict tempo-
ral correlations between workloads of different compute
clusters in the cloud. In this paper, the authors pro-
pose a method to characterize and predict workloads in
cloud environments in order to efficiently provision cloud
resources. The authors develop a co-clustering algorithm
to find servers that have a similar workload pattern. The
pattern is found by studying the performance correlations
for applications on different servers. They use hidden
Markov models to identify temporal correlations between
different clusters and use this information to predict
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future workload variations. Di et al. [21] defines a Bayesian
algorithm for long-term workload prediction and pat-
tern analysis, validating results on data from a Google
data center. The authors define nine key features of the
workload and use a Bayesian classifier to estimate the
posterior probability of each feature. The experiments
are based on a large dataset collected from a Google
data center with thousands of machines. Gmach et al.
[22] applies pattern recognition techniques to data cen-
ter and cloud workload data. The authors propose a
workload demand prediction algorithm based on trend
analysis and pattern recognition. This approach aims at
finding a way to efficiently use the resource pool to allo-
cate servers to different workloads. The pattern and trend
are first analyzed and then synthetic workloads are cre-
ated to reflect future behaviors of the workload. Zhu and
Tung [23] uses a Kalman filter to model the interfer-
ence caused when deploying applications on virtualized
resources. The model accounts for time variations in VM
resource usage, and it is used as the basis of a VM consol-
idation algorithm. The consolidation algorithm is tested
and shown to be highly competitive. As the problem of
workload modeling is far from trivial, [24] proposes a
best practice guide to build empirical models. Important
issues are treated, such as the selection of the most rele-
vant data, the modeling technique, and variable-selection
procedure. The authors also provide a comparative
study that highlights the benefits of different forecasting
approaches.

2.2 Workload inference

The ability to quantify resource demands is a pre-requisite
to parameterize most QoS models for enterprise appli-
cations. Inference is often justified by the overheads of
deep monitoring and by the difficulty of tracking exe-
cution paths of individual requests [25]. Several works
have investigated over the last two decades the problem
of estimating, using indirect measurements, the resource
demand placed by an application on physical resources,
for example CPU requirements. From the perspective of
cloud providers and users, inference techniques provide
a means to estimate the workload profile of individual
VMs running on their infrastructures, taking into account
hidden variables due to lack of information.

Regression Techniques. A common workload inference
approach involves estimating only the mean demand
placed by a given type of requests on the resource [26-28].
In [26] a standard model calibration technique is
introduced. The technique is based on comparing the
performance metrics (e.g., response time, throughput
and resource utilization) predicted by a performance
model against measurements collected in a controlled
experimental environment. Given the lack of control over
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the system workload and configuration during operation,
techniques of this type may not be applicable to produc-
tion systems for online model calibration. These methods
exploit queueing theory formulas to relate the mean val-
ues of a set of performance metrics (e.g., response times,
throughputs, or resource utilizations) to a mean demand
to be estimated, e.g., CPU demand. Regression techniques
can exploit these formulas to obtain demand estimates
from system measurements [29-33].

Zhang et al. [32] presents a queueing network model
where each queue represents a tier of a web application,
which is parameterized by means of a regression-based
approximation of the CPU demand of customer transac-
tions. It is shown that such an approximation is effective
for modeling different types of workloads whose transac-
tion mix changes over time.

Liu et al. [33] proposes instead service demand esti-
mation from utilization and end-to-end response times:
the problem is formulated as quadratic optimization pro-
grams based on queueing formulas; results are in good
agreement with experimental data. Variants of these
regression methods have been developed to cope with
problems such as outliers [34], data multi-collinearity [35],
online estimation [36], data aging [37], handling of mul-
tiple system configurations [38], and automatic definition
of request types [39,40].

Kalbasi et al. [35] proposes the Demand Estimation with
Confidence (DEC) approach to overcome the problem
of multicollinearity in regression methods. DEC can be
iteratively applied to improve the estimation accuracy.

Cremonesi et al. [38] proposes an algorithm to estimate
the service demands for different system configurations.
A time based linear clustering algorithm is used to iden-
tify different linear clusters for each service demands. This
approach proves to be robust to noisy data. Extensive
validation on generated dataset and real data show the
effectiveness of the algorithm.

Cremonesi et al. [39] proposes a method based on clus-
tering to estimate the service time. The authors employ
density based clustering to obtain clusters of service times
and CPU utilizations, and then use a cluster-wise regres-
sion algorithm to estimate the service time. A refinement
process is conducted between clustering and regres-
sion to get accurate clustering results by removing out-
liers and merging the clusters that fit the same model.
This approach proves to be computationally efficient and
robust to outliers.

In [36] an on-line resource demand estimation approach
is presented. An evaluation of regression techniques Least
Squares (LSQ), Least Absolute Deviations (LAD) and
Support Vector Regression (SVR) is presented. Exper-
iments with different workloads show the importance
of tuning the parameters, thus the authors proposes an
online method to tune the regression parameters.
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Casale et al. [34] presents an optimization-based infer-
ence technique that is formulated as a robust linear regres-
sion problem that can be used with both closed and open
queueing network performance models. It uses aggregate
measurements (i.e., system throughput and utilization of
the servers), commonly retrieved from log files, in order
to estimate service times.

Pacifici et al. [37] considers the problem of dynami-
cally estimating CPU demands of diverse types of requests
using CPU utilization and throughput measurements. The
problem is formulated as a multivariate linear regression
problem and accounts for multiple effects such as data
aging. Also, several works have shown how combining
the queueing theoretic formulas used by regression meth-
ods with the Kalman filter can enable continuous demand
tracking [41,42].

Regression techniques have also been used to correlate
the CPU demand placed by a request on multiple servers.
For example, linear regression of average utilization mea-
surements against throughput can correctly account for
the visit count of requests to each resource [32].

Stepwise linear regression [43] can also be used to iden-
tify request flows between application tiers. The knowl-
edge of request flow intensities provides throughputs that
can be used in regression techniques.

3 System models
Workload modeling techniques presented in Section 2 are
agnostic of the logic that governs a cloud system. Explicit
modeling of this logic, or part of it, for QoS prediction can
help improving the effectiveness of QoS management.
Several classes of models can be used to model QoS in
cloud systems. Here we briefly review queueing models,
Petri nets, and other specialized formalisms for reliabil-
ity evaluation. However, several other classes exist such as
stochastic process algebras, stochastic activity networks,
stochastic reward nets [44], and models evaluated via
probabilistic model checking [45]. A comparison of the
pros and cons of some popular stochastic formalisms can
be found in [46], where the authors highlight the issue that
a given method can perform better on some system model
but not on others, making it difficult to make absolute
recommendations on the best model to use.

3.1 Performance models

Among the performance models, we survey queueing
systems, queueing networks, and layered queueing net-
works (LQN). While queueing systems are widely used to
model single resources subject to contention, queueing
networks are able to capture the interaction among a
number of resources and/or applications components.
LQNs are used to better model key interaction between
application mechanisms, such as finite connection pools,
admission control mechanisms, or synchronous request
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calls. Modeling these feature usually require an in-depth
knowledge of the application behavior. On the other
hand, while closed-form solutions exist for some classes
of queueing systems and queueing networks, the solu-
tion of other models, including LQNSs, rely on numerical
methods.

Queueing Systems. Queueing theory is commonly used
in system modeling to describe hardware or software
resource contention. Several analytical formulas exist, for
example to characterize request mean waiting times, or
waiting buffer occupancy probabilities in single queue-
ing systems. In cloud computing, analytical queueing
formulas are often integrated in optimization programs,
where they are repeatedly evaluated across what-if sce-
narios. Common analytical formulas involve queues with
exponential service and arrival times, with a single server
(M/M/1) or with k servers (M/M/k), and queues with
generally-distributed service times (M/G/1). Scheduling
is often assumed to be first-come first-served (FCFS)
or processor sharing (PS). In particular, the M/G/1 PS
queue is a common abstraction used to model a CPU and
it has been adopted in many cloud studies [47,48], thanks
to its simplicity and the suitability to apply the model
to multi-class workloads. For instance, an SLA-aware
capacity allocation mechanism for cloud applications is
derived in [47] using an M/G/1 PS queue as the QoS
model. In [48] the authors propose a resource provi-
sioning approach of N-tier cloud web applications by
modeling CPU as an M/G/1 PS queue. The M /M /1 open
queue with FCFS scheduling has been used [49-51] to
pose constraints on the mean response time of a cloud
application. Heterogeneity in customer SLAs is handled
in [52] with an M/M/k/k priority queue, which is a
queue with exponentially distributed inter-arrival times
and service times, k servers and no buffer. The authors
use this model to investigate rejection probabilities and
help dimensioning of cloud data centers. Other works
that rely on queueing models to describe cloud resources
include [53,54]. The works in [53,54] illustrate the for-
mulation of basic queueing systems in the context of
discrete-time control problems for cloud applications,
where system properties such as arrival rates can change
in time at discrete instants. These works show an example
where a non-stationary cloud system is modeled through
queueing theory.

Queueing Networks. A queueing network can be described
as a collection of queues interacting through request
arrivals and departures. Each queue represents either a
physical resource (e.g., CPU, network bandwidth, etc) or
a software buffer (e.g., admission control, or connection
pools). Cloud applications are often tiered and queueing
networks can capture the interactions between tiers.
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An example of cloud management solutions exploiting
queueing network models is [55], where the cloud service
center is modeled as an open queueing network of mul-
ticlass single-server queues. PS scheduling is assumed at
the resources to model CPU sharing. Each layer of queues
represents the collection of applications supporting the
execution of requests at each tier of the cloud service cen-
ter. This model is used to provide performance guarantees
when defining resource allocation policies in a cloud plat-
form. Also, [56] uses a queueing network to represent a
multi-tier application deployed in a cloud platform, and
to derive an SLA-aware resource allocation policy. Each
node in the network has exponential processing times
and a generalized PS policy to approximate the operating
system scheduling.

Layered Queueing Networks. Layered queueing networks
(LQNs) are an extension of queueing networks to describe
layered software architectures. An LQN model of an
application can be built automatically from software engi-
neering models expressed using formalisms such as UML
or Palladio Component Models (PCM) [57]. Compared
to ordinary queueing networks, LQNs provide the abil-
ity to describe dependencies arising in a complex work-
flow of requests and the layering among hardware and
software resources that process them. Several evaluation
techniques exist for LQNs [58-61].

LQNs have been applied to cloud systems in [62], where
the authors explored the impact of the network latency
on the system response time for different system deploy-
ments. LQNs are here useful to handle the complexity
of geo-distributed applications that include both transac-
tional and streaming workloads.

Jung et al. [63] uses an LQN model to predict the perfor-
mance of the RuBis benchmark application, which is then
used as the basis of an optimization algorithm that aims at
determining the best replication levels and placement of
the application components. While this work is not spe-
cific to the cloud, it illustrates the application of LQNs
to multi-tier applications that are commonly deployed in
such environments.

Bacigalupo et al. [64] investigates a prediction-based
cloud resource allocation and management algorithm.
LQNs are used to predict the performance of an enter-
prise application deployed on the cloud with strict SLA
requirements based on historical data. The authors also
provide a discussion about the pros and cons of LQNs
identifying a number of key limitations for their practical
use in cloud systems. These include, among others, diffi-
culties in modeling caching, lack of methods to compute
percentiles of response times, tradeoff between accuracy
and speed. Since then, evaluation techniques for LQNs
that allow the computation of response time percentiles
have been presented [61].
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Hybrid models. Queueing models are also used together
with machine learning techniques to achieve the benefits
of both approaches. Queueing models use the knowledge
of the system topology and infrastructure to provide accu-
rate performance predictions. However, a violation of the
model assumptions, such as an unforeseen change in the
topology, can invalidate the model predictions. Machine
learning algorithms, instead, are more robust with respect
to dynamic changes of the system. The drawback is that
they adopt a black-box approach, ignoring relevant knowl-
edge of the system that could provide valuable insights
into its performance.

Desnoyers et al. [43] studies the relations between work-
load and resource consumption for cloud web applica-
tions. Queueing theory is used to model different compo-
nents of the system and data mining and machine learning
approaches ensure dynamic adaptation of the model to
work under system fluctuations. The proposed approach
is shown to achieve high accuracy for predicting workload
and resource usages.

Thereska et al. [65] proposes a robust performance
model architecture focusing on analyzing performance
anomalies and localizing the potential source of the
discrepancies. The performance models are based on
queueing-network models abstracted from the system
and enhanced by machine learning algorithms to cor-
relate system workload attributes with performance
attributes.

A queueing network approach is taken in [66] to provi-
sion resources for data-center applications. As the work-
load mix is observed to fluctuate over time, the queueing
model is enhanced with a clustering algorithm that deter-
mines the workload mix. The approach is shown to reduce
SLA violations due to under-provisioning in applications
subject to to non-stationary workloads.

3.2 Dependability models

Petri nets, Reliability Block Diagrams (RBD), and Fault
Trees are probably the most widely known and used for-
malisms for dependability analysis. Petri nets are a flexible
and expressive modeling approach, which allows a gen-
eral interactions between system components, including
synchronization of event firing times. They also find large
application also in performance analysis.

RBDs and Fault Trees aim at obtaining the overall sys-
tem reliability from the reliability of the system compo-
nents. The interactions between the components focus on
how the faulty state of one or more components results in
the possible failure of another components.

Petri nets. It has long been recognized the suitability of
Petri nets for performance and dependability of com-
puter systems. Petri nets have been extended to consider
stochastic transitions, in stochastic Petri nets (SPNs) and
generalized SPNs (GSPNs). They have recently enjoyed
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a resurgence of interest in service-oriented systems to
describe service orchestrations [67].

In the context of cloud computing, we have more
application examples of Petri nets nets for dependability
assessment, than for performance modeling. Applica-
tions to cloud QoS modeling include the use of SPNs
to evaluate the dependability of a cloud infrastructure
[68], considering both reliability and availability. SPNs
provide a convenient way in this setting to represent
energy flow and cooling in the infrastructure. Wei et al.
[69] proposes the use of GSPNs to evaluate the impact
of virtualization mechanisms, such as VM consolidation
and live migration, on cloud infrastructure dependability.
GSPNs are used to provide fine-grained detail on the
inner VM behaviors, such as separation of privileged and
non-privileged instructions and successive handling by
the VM or the VM monitor. Petri nets are here used in
combination with other methods, i.e., Reliability Block
Diagrams and Fault Trees, for analyzing mean time to
failure (MTTF) and mean time between failures (MTBF).

Reliability Block Diagrams. Reliability block diagrams
(RBDs) are a popular tool for reliability analysis of com-
plex systems. The system is represented by a set of
inter-related blocks, connected by series, parallel, and
k-out-of-N relationships.

In [70], the authors propose a methodology to evaluate
data center power infrastructures considering both reli-
ability and cost. RBDs are used to estimate and enforce
system reliability. Dantas et al. [71] investigates the
benefits of a warm-standby replication mechanism in
Eucalyptus cloud computing environments. An RBD is
used to evaluate the impact of a redundant cloud archi-
tecture on its dependability. A case study shows how the
redundant system obtains dependability improvements.
Melo et al. [72] uses RBDs to design a rejuvenation mech-
anism based on live migration, to prevent performance
degradation, for a cloud application that has high avail-
ability requirements.

Fault Trees. Fault Trees are another formalism for reli-
ability analysis. The system is represented as a tree of
inter-related components. If a component fails, it assumes
the logical value true, and the failure propagation can be
studied via the tree structure. In cloud computing, Fault
Trees have been used to evaluate dependencies of cloud
services and their effect on application reliability [73].
Fault Trees and Markov models are used to evaluate the
reliability and availability of fault tolerance mechanisms.
Jhawar and Piuri [74] uses Fault Trees and Markov models
to evaluate the reliability and availability of a cloud system
under different deployment contexts. Based on this eval-
uation, the authors propose an approach to identify the
best mechanisms according to user’s requirements. Kiran
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etal. [75] presents a methodology to identify, mitigate, and
monitor risks in cloud resource provisioning. Fault Trees
are used to assess the probability of SLA violations.

3.3 Black-box service models

Service models have been used primarily in optimising
web service composition [76], but they are now becoming
relevant also in the description of SaaS applications, IaaS
resource orchestration, and cloud-based business-process
execution. The idea behind the methods reviewed in this
section is to describe a service in terms of its response
time, assuming the lack of any further information con-
cerning its internal characteristics (e.g., contention level
from concurrent requests).

Non-parametric blackbox service models include meth-
ods based on deterministic or average execution time val-
ues [77-81]. Several works instead adopt a description that
includes standard deviations [76,82,83] or finite ranges
of variability for the execution times [84,85]. Parametric
service models instead assume exponential or Markovian
distributions [86,87], Pareto distributions to capture heavy-
tailed execution times [88], or general distributions with
Laplace transforms [89].

Huang et al. [90] presents a graph-theoretic model for QoS-
aware service composition in cloud platforms, explicitly
handling network virtualization. Here, the authors explore
the QoS-aware service provisioning in cloud platforms
by explicitly considering virtual network services. A sys-
tem model is demonstrated to suitably characterize cloud
service provisioning behavior and an exact algorithm
is proposed to optimize users’ experience under QoS
requirements. A comparison with state of the art QoS
routing algorithms shows that the proposed algorithm is
both cost-effective and lightweight.

Klein et al. [91] considers QoS-aware service composi-
tion by handling network latencies. The authors present
a network model that allows estimating latencies between
locations and propose a genetic algorithm to achieve
network-aware and QoS-aware service provisioning.

The work in [92] considers cloud service provision-
ing from the point of view of an end user. An eco-
nomic model based on discrete Bayesian Networks is
presented to characterize end-users long-term behavior.
Then the QoS-aware service composition is solved by
Influence Diagrams followed by analytical and simulation
experiments.

3.4 Simulation models

Several simulation packages exist for cloud system sim-
ulation. Many solutions are based on the CLOUDSIM
[93] toolkit that allows the user to set up a simula-
tion model that explicitly considers virtualized cloud
resources, potentially located in different data centers,
as in the case of hybrid deployments. CLOUDANALYST
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[94] is an extension of CLOUDSIM that allows the mod-
eling of geographically-distributed workloads served by
applications deployed on a number of virtualized data
centers.

EMUSIM [95] builds on top of CLOUDSIM by adding
an emulation step leveraging the Automated Emulation
Framework (AEF) [96]. Emulation is used to understand
the application behavior, extracting profiling information.
This information is then used as input for CLOUDSIM,
which provides QoS estimates for a given cloud deploy-
ment.

Some other tools have been developed to estimate
data center energy consumption. For example, GREEN-
CLOUD [97], which is an extension of the packet-level
simulator NS2 [98], aims at evaluating the energy con-
sumption of the data center resources where the appli-
cation has been deployed, considering servers, links, and
switches.

Similarly, DCSIM [99] is a data center simulation tool
focused on dynamic resource management of IaaS infras-
tructures. Each host can run several VMs, and has a
power model to determine the overall data center power
consumption.

GROUDSIM [100] is a simulator for scientific appli-
cations deployed on large-scale clouds and grids. The
simulator is based on events rather than on processes,
making it a scalable solution for highly parallelized
applications.

Research Challenges A threat to workload inference on
IaaS clouds is posed by resource contention by other users,
which can systematically result in biased readings of per-
formance metrics. While some bias components can be
filtered out (for example using the CPU steal metric avail-
able on Amazon EC2 virtual machines), contention on
resources such as cache, memory bandwidth, network, or
storage, is harder or even impossible to monitor for the
final user. Research is needed in this domain to under-
stand the impact of such contention bias on demand
estimation.

Major complications arise in workload inference on
PaaS clouds, where infrastructure-level metrics such as
CPU utilization are normally unavailable to the users. This
is a major complication for regression methods which all
depend on mean CPU utilization measurements. Meth-
ods based on statistical distributions do not require CPU
utilization, but they are still in their infancy. More work
and validations on Paa$ data are required to mature such
techniques.

4 Applications

A prominent application of QoS models is optimal
decision-making for cloud system management. Problem
areas covered in this section include capacity allocation,
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load balancing, and admission control. Several other rel-
evant decision problems exist in cloud computing, e.g.,
pricing [101], resource bidding [102], and provider-side
energy management [103].

We classify works in three areas using, for compara-
bility, a taxonomy similar to the one appearing in the
software engineering survey of Aleti et al. [104], which
also covers design-time optimization studies, but does not
focus on cloud computing. Our classification dimensions
follow from these questions:

Perspective: is the study focusing on the perspective of
the infrastructure user or or on the perspective of the
provider?

Dimensionality: is the study optimizing a single or mul-
tiple objective functions?

Solution: is the presented solution centralized or dis-
tributed?

Strategy: is the optimization problem tackled by an exact
or approximate technique?

Time-scale: is the time-scale for the performed adapta-
tions, which can be short (seconds), medium (minutes), or
long (hours/days)?

Discipline: is the management approach based on con-
trol theory, machine learning or operations research (i.e.,
optimization, game theory, bio-inspired algorithms)?

Table 1 provides a taxonomy of the papers reviewed in the
next sections, organized according to the above criteria.
Few remarks are needed to clarify the methodology used
to classify the papers:

e In the Perspective dimension, a public PaaS or SaaS
service built on top of a public IaaS offering is classified
as a user-side perspective.

e Under Dimensionality, we treat studies that weight
multiple criteria into a single objective as Multi-
Objective methods.

Finally, the following observations on the Discipline
dimensions must also be made.

e Control theory has the advantage of guaranteeing the
stability of the system upon workload changes by
modeling the transient behavior and adjusting system
configurations within a transitory period [143].

® Machine learning techniques, instead, use learning
mechanisms to capture the behavior of the system
without any explicit performance or traffic model and
with little built-in system knowledge. Nevertheless,
training sessions tend to extend over several hours
[144] and retraining is required for evolving work-
loads.

e Operations research approaches are designed with the
aim of optimizing the degree of user satisfaction. The
goals, in fact, are expressed in terms of user-level QoS
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Table 1 Decision-making in the cloud - a taxonomy
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Category

Value

Application

Capacity allocation

Admission control

Load balancing

Perspective

Infrastructure user

Infrastructure provider

471 [105][106] [107] [108]
[r1o][1111112]
[114] [115] [116]

[118] 1161 [119]

[120] [47] [105] [107] [121]
[122] [123]

[49] [131][130] [139] [140]
[124][52]

[50] [141][132] [134]

Dimensionality

Single-Objective

Multi-Objective

[49] [116] [130] [119] [118]
[139] [140]

[52] [124] [131]

[121][107]

Solution

Centralized

Decentralized

[124] [49] [142] [52] [131]
[116] [130] [119]1 [118]
1391 [140]

[120] [122] [50] [132] [121]
[141][134]

[47] [105] [107] [123]

Strategy

Exact

Approximate

1 [131] [116] [108] [49]
31011411151 [51]

[52] [49] [142]1 [131] [116]

[122]

(1051 [132] [124

109] [108] [23

126] [56] [110
8] [138] [133

1371 1127) 107] [
6] [117]

[1
3 [1
2 [1
1 [1
3

471
0]
5]
210
4]
541113

[50] [120] [105] [132] [47]
[107] [123] [121] [141]
[134]

Timescale

Short

Medium

Long

47] [105] [52] [128] [54]
1131 [115]

[142] [49] [52] [139] [140]

[120] [122] [471 [105] [141]

124 [49] [47
[109]

(132] [
1081 I
[56] [129] [110] 1
[18] [138] [106] [1
[137] 1271 [107] [

54] [130] [136] [51] [
114] [117]

]
31]
126]
112]
134]

[124] [131] [52] [130] [119]

[47] [132] [107] [123] [134]
[121]

116] [108] [111] [135] [55]

[50]

Discipline

Control Theory

Machine Learning

Operations Research

2611011121 [114]

[134]

[ 2]
16]
5][ 6]

[

[120] [122] [132] [47] [107]
[123][121][50]

metrics. Typically, this approach consists of a per-
formance model embedded within an optimization
program, which is solved either globally, locally, or
heuristically.

4.1
4.1.1

Capacity allocation
Infrastructure-provider capacity allocation
The capacity allocation problem arising at the provider

side involves deciding the optimal placement of running
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applications on a suitable number of VMs, which in turn
has to be executed on appropriate physical servers. The
rationale is to assign resource shares trying to mini-
mize management costs (formed mainly by costs associ-
ated with energy consumption), while guaranteeing the
fulfilment of SLAs stipulated with the customers. Bin
packing is a common modeling abstraction [51], but its
NP-hardness calls for heuristic solutions. In [127] the
capacity allocation problem is solved by means of a
dynamic algorithm, since static allocation policies and
pricing usually lead to inefficient resource sharing, poor
utilization, waste of resources and revenue loss when
demands and workloads are time varying. The paper
presents a Minimum Cost Maximum Flow (MCMEF) algo-
rithm and compares it against a modified Bin-Packing
formulation; the MCMF algorithm exhibits very good
performance and scalability properties. An autoregres-
sive process is used to predict the fluctuating incoming
demand.

In [137], autoscaling is modeled as a modified Class
Constrained Bin Packing problem. An auto-scaling algo-
rithm is provided that automatically classifies incoming
requests. Moreover, it improves the placement of appli-
cation instances by putting idle machines into standby
mode and reducing the number of running instances in
condition of light load.

Tang et al. [133] proposes a fast heuristic solution
for VM placement over a very large number of servers
in a IaaS data center to equally balance the CPU load
among physical machines, taking into account also mem-
ory requirements of running applications.

In [125] is proposed a framework for VM deployment
and reconfiguration optimization, with the aim at increas-
ing profits of IaaS providers. The authors reduce costs
considering the balance of multi-dimensional resources
utilization and building up an optimization method for
resource allocation; as far as reconfiguration is concerned,
they propose a strategy for VM adjustment based on
time-division multiplex and on VM live migration.

In [55] a VM placement problem for a Paa$ is solved at
multiple time-scales through a hierarchical optimization
framework. Authors in [132] provide a solution for traffic-
aware VM placement minimizing also network latencies
among deployed applications. The work presents a two-
tier approximate algorithm able to successfully solve very
large problem instances. Moreover, a formulation for
the considered problem is presented and its hardness is
proven.

A capacity allocation problem is also studied in [136], in
which a game-theoretic method is used to find approxi-
mated solutions for a resource allocation problem in the
presence of tasks with multiple dependent subtasks. The
initial solution is spawned by a binary integer program-
ming method; then, evolutionary algorithms are designed
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to achieve a final optimized solution, which minimizes
efficiency losses of participants.

Goudarzi et al. [56] provides a solution method for a
multi-dimensional capacity allocation problem in a IaaS
system, while guaranteeing SLA requirements to cus-
tomers running multi-tiers applications. An improved
solution is obtained starting from an initial configuration
based on an upper bound; then, a force-directed search is
adopted to increase the total profit. Moreover, a closed-
form formula for calculating the average response time of
a request and a unified framework to manage different
levels of SLAs are provided.

Zaman et al. [138] considers an online mechanism for
computing resource allocation to VMs subject to limited
information. The algorithm evaluates allocation and rev-
enues as the users place requests to the system. Further-
more, the authors prove that their approach is incentive
compatible; they also report extensive simulation experi-
ments.

Wang et al. [135] considers capacity allocation subject
to two pricing models, a pay-as-you-go offering and peri-
odic auctions. An optimal capacity segmentation strategy
is formulated as a Markov decision process, which is then
used to maximize revenues. The authors propose also a
faster near-optimal algorithm, proven to asymptotically
approach the optimal solution, and show a significantly
lower complexity with respect to the optimal method.

Roy et al. [18] proposes a model-predictive resource
allocation algorithm that auto-scales VMs, with the aim
of optimizing the utility of the application over a limited
prediction horizon. Empirical results demonstrate that the
proposed method satisfies application QoS requirements,
while minimizing operational costs.

Dutta et al. [126] develops a resource manager that
uses a combination of horizontal and vertical scaling to
optimize both resource usage and the reconfiguration
cost. Finally, the solution is tested using real production
traces.

Zhu et al. [23] builds a VM consolidation algorithm
that makes use of an inference model that considers the
effect of co-located VMs to predict QoS metrics. In this
method, the workload is modeled by means of a Kalman
filter, while the resource usage profile is estimated with
a Hidden Markov Model. The proposed method is tested
against SPECWeb2005.

Hwang et al. [129] also considers the VM consolidation
problem by modeling the VM resource demands as a set of
correlated random variables. The result is a multi-capacity
stochastic bin packing problem, which is solved by means
of a simple, scalable yet effective heuristic.

He et al. [128] uses a multivariate probabilistic model
to schedule VMs among physical machines in order to
improve resource utilization. This approach also consid-
ers migration costs, and the multi-dimensional nature of
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the VM resource requirements (e.g., CPU, memory, and
network).

Finally, in [134] a framework that automatically recon-
figures the storage system in response to fluctuations in
the workload is presented. The framework makes use of a
performance model of the system obtained through statis-
tical machine learning. Such model is embedded into an
effective Model-Predictive Control algorithm.

4.1.2 Infrastructure-user capacity allocation

From the user perspective, capacity allocation arises in
IaaS and Paa$S scenarios where the user is in charge with
the control of the number of VMs or application con-
tainers running in the system. In this context the user is
generally a SaaS provider, which wants to maximize her
revenues providing a service that meets a certain QoS.
Then, the problem to be addressed is to determine the
minimum number of VMs or containers needed to fulfill
the target QoS, pursuing the best trade-off between cost
and performance.

From the user side, capacity allocation is often
implemented through auto-scaling policies. Mao and
Humphrey [111] defines an auto-scaling mechanism to
guarantee the execution of all jobs within given dead-
lines. The solution accounts for workload burstinesses
and delayed instance acquisition. This approach is com-
pared against other techniques and it shows cost savings
from 9.8% to 40.4%. Maggio et al. [110] compares sev-
eral approaches for decision-making, as part of an auto-
nomic framework that allocates resources to a software
application.

Patikirikorala et al. [112] proposes a multi-model
control-based framework to deal with the highly nonlin-
ear nature of software systems. An extensible meta-model
and a class library with an initial set of five models are
developed. Finally, the presented approach is endorsed
against fixed and adaptive control schemes by means of a
campaign of experiments.

In [108] an optimal resource provisioning algorithm is
derived to deal with the uncertainty of resource advance-
reservation. The algorithm reduces resources under- and
over-provisioning by minimizing the total cost for a cus-
tomer during a certain time horizon. The solution meth-
ods are based on the Bender decomposition approach
to divide the problem into sub-problems, which can be
solved in parallel, and an approximation algorithm to solve
problems with a large set of scenarios.

On-demand and reserved resources are considered in
the model proposed in [107] to define a bio-inspired self-
adapting solution for cloud resource provisioning with
the aim of minimizing the number of required virtual
machines while meeting SLAs.

A decentralized probabilistic algorithm is also described
in [106], which focuses on federated clouds. The proposed
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solution has the aim to take advantage of a Cloud
federation to avoid the dependence on a single provider,
while still minimizing the amount of used resources to
maintain a good QoS level for customers. The solution
provides an effective decentralized algorithm for deploy-
ing massively scalable services and it is suitable for all
the situations in which a centralized solution is not
feasible.

Ali-Eldin et al. [114] aims at dynamic resource pro-
visioning exploiting horizontal elasticity. Two adaptive
hybrid controllers, including both reactive and proactive
actions, are employed to decide the number of VMs for
a cloud service to meet the SLAs. The future demand is
predicted by a queueing-network model.

A key-value store is presented in [115] to meet low-
latency Service Level Objectives (SLOs). The proposed
middleware achieves high scalability by using replication,
providing more predictable response times. An analyt-
ical model, based on queueing theory, is presented to
describe the relation between the number of replicas and
the service level, e.g., the percentage of requests processed
according to SLOs.

A capacity allocation problem in presented in [113]
that exploits both horizontal and vertical elasticity. An
integer linear problem is used to calculate an optimized
new configuration able to deal with the current workload.
However, reconfiguration is executed if the associated
overhead cost calculated on a expected stability duration
is lower than a certain minimum benefit defined by a
human decision maker.

In [117] two multi-objective customer-driven SLA-
based resource provisioning algorithms are proposed.
The objectives are the minimization of both resource
and penalty costs, as well as minimizing SLA violations.
The proposed algorithms consider customer profiles and
quality parameters to cope with dynamic workloads and
heterogeneous cloud resources.

Finally, a profile-based approach for scalability is des-
cribed in [109], the authors propose a solution based
on the definition of platform-independent profiles, which
enable the automation of setup and scaling of application
servers in order to achieve a just-in-time scalability of the
execution environment, as demonstrated with a case study
presented in the paper.

4.2 Load balancing

4.2.1 Infrastructure-provider load balancing

Request load-balancing is an increasingly supported fea-
ture of cloud offerings. A load balancer dispatches
requests from users to servers according to a load dis-
patching policy. Policies differ for the decision approach
and for the amount of information they use. Research
work has focused on policies that are either simple to
implement, and thus minimize overheads, or that offer
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some optimality guarantees, typically proven by analytical
models.

The research literature has investigated both central-
ized and decentralized load balancing mechanisms for
providers.

Among centralized approaches, [122] introduces an
offline optimization problem for geographical load bal-
ancing among data centers, explicitly considering SLAs
and dynamic electricity prices. This is complemented with
an online algorithm to handle the uncertainty in electric-
ity prices. The proposed algorithm is compared against
a greedy heuristic method and it shows significant cost
savings (around 20-30%).

A load balancer is presented in [50] to assign VMs
among geographically-distributed data centers consider-
ing predictions on workload, energy prices, and renewable
energy generation capacities. Two complementary meth-
ods are proposed: an offline deterministic optimization
method to be used at design time and an online VM
placement, migration and geographical load balancing
algorithm for runtime. The authors studied the behav-
ior of both online and offline algorithms by means of a
simulation campaign. The results demonstrate that online
version of the algorithm performs 8% worse than the
offline one because it deals with incomplete information.
On the other hand, the analysis also shows that turning
on the geographical load balancing has a strong impact
on quality of the solutions (between 27% and 40%) of the
online algorithm.

Spicuglia et al. [141] proposes an online load balanc-
ing policy that considers the inherent VM heterogeneity
found in cloud resources. The load balancer uses the num-
ber of outstanding requests and the inter-departure times
in each VM to dispatch requests to the VM with the short-
est expected response time. The authors demonstrate that
their solution is able to improve the variance and per-
centiles of response times with respect to a built-in policy
of the Apache web server.

Decentralized methods are considered in [107], which
proposes a self-organizing approach to provide robust
and scalable solutions for service deployment, resource
provisioning, and load balancing in a cloud infra-
structure. The algorithm developed has the additional
benefit to leverage Cloud elasticity to allocate and deal-
locate resources to help services to respect contractual
SLAs.

Another example is the cost minimization mechanism
for data-intensive service provisioning proposed in [121].
Such mechanism uses biological evolution concepts to
manage data application services and to produce opti-
mal composition and load balancing solutions. A multi-
objective genetic algorithm is described in detail but a
systematic experimental campaign is planned as future
work.
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4.2.2 Infrastructure-user load balancing

In the studies considered in the previous section, the
load balancer is installed and managed transparently by
the cloud provider. In some cases, the user can decide
to install its own load balancer for a cloud application.
This may be helpful, for instance, to jointly tackle capacity
allocation and load balancing.

For example, [47] considers a joint optimization prob-
lem on multiple Iaa$ service centers. A non-linear model
for the capacity allocation and load redirection of multiple
request classes is proposed and solved by decomposition.
A comparison against a set of heuristics from the liter-
ature and an oracle with perfect knowledge about the
future load shows that the proposed algorithm overcomes
the heuristic approaches, without penalizing SLAs and
it is able to produce results that are close to the global
optimum. Anselmi and Casale [120] provides a simple
heuristic for user-side load-balancing under connection
pooling that is validated against an IaaS cloud dataset.
The main result is that the presented approach is able to
provide tight guarantees on the optimality gap and exper-
imental results show that it is at the same time accurate
and fast.

Hybrid clouds are considered in [116]. The authors
formulate an optimization problem faced by a cloud pro-
curement endpoint (a module responsible for provision-
ing resources from public cloud providers), where heavy
workloads are tackled by relying on public clouds. They
present a linear integer program to minimize the resource
cost, and evaluate how the solution scales with the differ-
ent problem parameters.

In [123] a structured peer-to-peer network, based on
distributed hash tables, is proposed to support ser-
vice discovery, self-management, and load-balancing of
cloud applications. The effectiveness of the peer-to-peer
approach is demonstrated through a set of experiments
executed on Amazon EC2.

Finally, [105] proposes an adaptive approach for com-
ponent replication of cloud applications, aiming at find-
ing a cost-effective placement and load balancing. This
is a distributed method based on an economic multi-
agent model that achieves high application availability
guaranteeing at the same time service availability under
failures.

4.3 Admission control

4.3.1 Infrastructure-provider admission control

Admission control is an overload protection mechanism
that rejects requests under peak workload conditions to
prevent QoS degradation. A lot of work has been done
in the last decade for optimal admission control in web
servers and multi-tier applications. The basic idea is to
predict the value of a specific QoS metric and if such value
grows above a certain threshold, the admission controller
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rejects all new sessions favoring the service of requests
from already admitted sessions.

In cloud computing, several works on admission control
have emerged in IaaS. Khazaei et al. [130] develops an ana-
lytical model for resource provisioning, virtual machine
deployment, and pool management. This model predicts
service delay, task rejection probability, and steady-state
distribution of server pools.

The availability of resources and admission control is
also discussed in [131]. The work uses a probabilistic
approach to find an optimized allocation of services on
virtualized physical resources. The main requirement of
this system is the horizontal elasticity. In fact, the proba-
bility of requesting more resources for a service is at the
basis of the formulated optimization model, that consti-
tutes a probabilistic admission control test.

Almeida et al. [49] proposes a joint admission control
and capacity allocation algorithm for virtualized Iaa$ sys-
tems minimizing the data center energy costs and the
penalty incurred for request rejections and SLA viola-
tions. SLAs are expressed in terms of the tail distribution
of application response times.

Agostinho et al. [124] optimizes the allocation and
scheduling of VMs in federated clouds using a genetic
algorithm. The solution is composed by two parts: First,
servers selection in a data-center is performed by using
a search based bio-inspired technique; then, data cen-
ters are selected within the cloud federation by using a
shortest path algorithm, according to the available band-
width of links connecting the domains. The aim of the
paper is to exploit resources in domains with low alloca-
tion costs and, at the same time, achieve better network
performance among cloud nodes.

Ellens et al. [52] allows service providers to reserve a
certain amount of resources exclusively for some cus-
tomers, according to SLAs. The proposed framework
helps to stipulate a realistic SLA with customers and sup-
ports dynamic load shedding and capacity provisioning
by considering a queueing model with multiple priority
classes. The main performance metric being optimized is
the rejection probability, which has to guarantee the value
stipulated in the SLA.

The work in [139] proposes an admission control pro-
tocol to prevent over-utilization of system resources,
classifying applications based on resource quality require-
ments. It uses an open multi-class queueing network to
support a QoS-aware admission control on heterogeneous
resources to increase system throughput.

In order to control overload in Database-as-a-Service
(DaaS) environments, [140] proposes a profit-aware
admission control policy. It first uses nonlinear regres-
sion to predict the probability for a query to meet its
requirement, and then decides whether the query should
be admitted to the database system or not.
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4.3.2 Infrastructure-user admission control

From the cloud-user perspective, the admission control
mechanism is used as an extreme overload mechanism,
helpful when additional resources are obtained with some
significant delay. For example, during a cloud burst (i.e.,
when part of the application traffic is redirected from a
private to a public data center to cope with a traffic inten-
sity that surpasses the capacity of the private infrastruc-
ture), if the public cloud resources are not provided timely,
one can decide to drop new incoming request to pre-
serve the QoS for users already in the system (or at least
part of them, e.g., gold customers), avoiding application
performance degradation.

Three different admission control and scheduling algo-
rithms are proposed in [119] to effectively exploiting pub-
lic cloud resources. The paper takes the perspective of
a SaaS provider with the aim of maximizing the profit
by minimizing cost and improving customer satisfaction
levels.

Leitner et al. [118] introduces a client-side admission
control method to schedule requests among VMs, looking
at minimizing the cost of application, SLA violations and
Iaa$ resources.

5 Discussion and conclusion
In recent years, cloud computing has matured from an
early-stage solution to a mainstream operational model
for enterprise applications. However, the diversity of tech-
nologies used in cloud systems makes it difficult to ana-
lyze their QoS and, from the provider perspective, to
offer service-level guarantees. We have surveyed current
approaches in workload and system modeling and early
applications to cloud QoS management.

From this survey, a number of insights arise on the
current state of the art:

e The number of works that apply white-box system
modeling techniques is quite limited in QoS manage-
ment, albeit popular in the software performance engi-
neering community. This effectively creates a divide
between the knowledge that can be made available
for an application by its designers and the techniques
used to manage it. A research question is whether the
availability of more detailed information about appli-
cation internals can provide significant advantages in
QoS management. Indeed, a trade-off exists between
available information, QoS model complexity, compu-
tational cost of decision-making, and accuracy of pre-
dictions. This trade-off requires further investigation
by the research community.

e Gray-box models that emphasize resource consump-
tion modeling are currently prevalent in QoS manage-
ment studies. However, description of performance is
often quite basic and associated with mean resource
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requirements of the applications. However, the cloud
measurement studies in Section 2.1 have identified
performance variability as a major issue in today’s
offerings, calling for more comprehensive models that
can describe also the variability in CPU requirements,
in addition to mean requirements. Such extension
has been explored in black-box system models (e.g.,
QoS in web services), but it is far less understood in
white-box and gray-box modeling.

e Quite surprisingly, we have found a limited amount
of work specific to workload analysis and inference
techniques in the cloud. Most of the techniques used
for traffic forecasting, resource consumption estima-
tion, and anomaly detection have received little or
no validation in a cloud environment. As such, it
remains to establish the robustness of current tech-
niques to noisy measurements typical of multi-tenant
cloud environments.

® Another observation arising from our survey is that
the literature is rich in works focusing on Iaa$ systems,
often deployed on Amazon EC2, at present the market
leader in this segment.

o If we consider the resource management mechanisms
for applications QoS enforcement provided by pub-
lic clouds, they are quite simplistic if compared to
current research proposals. Indeed, such mechanisms
are mainly reactive and are triggered by thresholds
violations (related to response times, as in Google
App Engine, or CPU utilization or other low level
infrastructure metrics, as in Amazon EC2.) Vice versa,
integrating workload characterisation, system mod-
els and resource management solutions, pro-active
systems, may help to prevent QoS degradation. The
development of research prototypes that are transfer-
able in commercial solutions seems to remain an open
point.

e Finally, in cloud systems an important role is played
by resource pricing models. There is a growing inter-
est towards understanding better cloud spot markets,
where bidding strategies are developed for procur-
ing computing resources. Approaches are currently
being proposed to automate dynamic pricing and
cloud resources selection. We expect that, in upcom-
ing years, these models will play a bigger role than
today in capacity allocation frameworks.

Summarizing, this survey shows that the literature has
already a significant number of works in cloud QoS
management, but their focus leaves open several research
opportunities in the areas discussed above.

Endnote
® Throughout this paper, we mainly focus on QoS
aspects pertaining to performance, reliability and
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availability. Broader descriptions of QoS are possible
(e.g., to include security) but they are not contemplated
in the present survey.
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