
RESEARCH Open Access

Testing data-centric services using poor
quality data: from relational to NoSQL
document databases
Nuno Laranjeiro1* , Seyma Nur Soydemir1, Naghmeh Ivaki1 and Jorge Bernardino1,2

Abstract

Businesses are nowadays deploying their services online, reaching out to clients all around the world. Many
times deployed as web applications or web services, these business-critical systems typically perform large
amounts of database operations; thus, they are dependent on the quality of the data to provide correct service
to clients. Research and practice have shown that the quality of the data in an enterprise system gradually
decreases overtime, bringing in diverse reliability issues to the applications that are using the data to provide
services. These issues range from simple incorrect operations to aborted operations or severe system failures. In
this paper, we present an approach to test data-centric services in presence of poor quality data. The approach
has been designed to consider relational and NoSQL database nodes used by the system under test and is
based on the injection of poor quality data on the database–application interface. The results indicate the
effectiveness of the approach in discovering issues, not only at the application-level, but also in the
middleware being used, contributing to the development of more reliable services.

Keywords: Testing, Web applications, Poor quality data, Object-relational mapping, JDBC drivers, NoSQL
drivers, NoSQL databases, Relational databases

Introduction
Web applications and services are nowadays being used as
the interface of many businesses to the outside world.
Independent of the type of interface provided to clients
(e.g., HTML, REST, MOM), these business-critical
systems are usually data-centric and rely on the access to
a back-end database, which is responsible for handling the
persistence requirements of the applications. This data-
base is often a relational database, but recently, providers
are increasingly using NoSQL databases, which are
becoming quite popular, mostly due to their scalability
properties [1]. Independent from the type of database
(relational or NoSQL), these business-critical data-centric
systems strongly depend on the quality of data to provide
correct and reliable services [2]. In this kind of environ-
ment, a service failure can result in huge losses to the
service provider, ranging from lost business transactions

to customer dissatisfaction and irrecoverable reputation
losses [3].
Research and industry have previously reported the

severe harm caused by the presence of poor quality data
in many contexts [4–7], with the Gartner Group
highlighting bad data as the main cause of failure in
CRM systems [8]. One of the common problems behind
failures reported in the literature is that developers,
many times, assume that the data being handled by the
application is correct, which is not always the case. In
fact, research has shown that the quality of the data in
an information system tends to decrease with time, so it
is somehow expectable that systems will eventually have
to handle poor quality data. Yet, developers are, in
general, little aware of this kind of problem.
Poor quality data enters systems in different ways, not

only due to human error or lack of proper data valid-
ation mechanisms, but also due to the presence of
residual bugs in the code [9]. The way systems are now-
adays being developed, with frequent changes and hard
time constraints, leads developers to focus on the

* Correspondence: cnl@dei.uc.pt
1CISUC, Department of Informatics Engineering, University of Coimbra,
Coimbra, Portugal
Full list of author information is available at the end of the article

Journal of the
Brazilian Computer Society

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14
DOI 10.1186/s13173-017-0063-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-017-0063-x&domain=pdf
http://orcid.org/0000-0003-0011-9901
mailto:cnl@dei.uc.pt
http://creativecommons.org/licenses/by/4.0/

functional properties of systems, disregarding important
non-functional properties such as robustness or security
[10]. With little time to apply runtime verification tech-
niques, developers end up by deploying systems that
comply with basic functionality but that may fail in pres-
ence of unexpected conditions. A large part of the prob-
lem is that the most popular runtime testing techniques
tend to test systems using their external interfaces, disre-
garding both the internal interfaces and the quality of
the data being used [11, 12].
The ability to gracefully handle erroneous inputs is a

well-known problem in the robustness testing domain,
where tests using invalid inputs applied on external inter-
faces of many different systems have been used with great
success [10–12]. In the case of the data quality commu-
nity, the problem of poor quality data (also known as dirty
data) is also very well known, with numerous tools and
techniques for handling different problems involving dirty
data. However, most of these tools and techniques either
focus on assessing the quality of the data in a particular
system [13] or on eliminating data quality problems (i.e.,
perform data cleaning) [14, 15]. Developers still lack prac-
tical approaches or tools for testing the behavior of ser-
vices that make use of a persistent storage (relational or
NoSQL), in the presence of poor quality data.
In a previous work, we presented a prototype for testing

relational database applications in presence of poor quality
data [16], which is essentially a tool for injecting poor
quality data on relational database interfaces (namely on
JDBC interfaces). In this work, we further generalize the
approach and extend it to document NoSQL databases
(e.g., MongoDB, Apache CouchDB), which are nowadays
attracting a lot of attention from the industry and are in-
creasingly being used in real system deployments. In
short, our approach is based on intercepting database ac-
cesses and applying typical data quality mutations to the
data being delivered to the application. During the tests,
all software layers above the instrumented code are moni-
tored for any obvious failures or suspicious behaviors. In
this work, in addition to the variations in the operations
considered for the NoSQL databases and further technical
details behind the implementation of the approach, we
give particular importance to consider the cases where
complete objects are read from the database and the po-
tential presence of poor data in those objects. In the case
of relational databases, accesses are normally done over
simple data types (e.g., strings, integers, dates); however,
when NoSQL databases are used, storing and accessing
full documents is a quite typical case.
We used our approach to test (i) an open-source and

widely used relational database application for commerce
and business, which we designate by AppR and (ii) an
open-source NoSQL JSON-based web application, which
we name AppN. During the tests, we were able to disclose

several bugs in both applications, which highlight the use-
fulness of the approach. Moreover, the results also re-
vealed the effectiveness of our approach in disclosing bugs
at the middleware level. We detected a known bug in the
PostgreSQL JDBC driver used by AppR [17], and we dis-
closed a new bug in Red Hat Hibernate 5.2.6 (i.e., a main-
stream object-relational mapping middleware framework,
used by applications to satisfy persistency requirements).
We reported this new bug [18], which triggered a correc-
tion made by Hibernate developers in version 5.2.7. Re-
sults show the usefulness of the approach in disclosing
bugs in application and middleware software used by mil-
lions of people. The main contributions of this paper are
the following:

� An approach for testing relational and NoSQL
database applications in presence of poor quality
data;

� An open-source, zero-configuration, and free tool
(available at [19]), which can be used as a data ac-
cess replacement to test relational and NoSQL appli-
cations in presence of poor quality data;

� The identification of critical bugs, including security
vulnerabilities, at the application and middleware
levels and an analysis on how they could be avoided
and corrected.

The remainder of this paper is organized as follows: The
next section presents the related work on poor quality
data and testing. The “Testing applications using poor
data injection” section presents the approach for testing
web applications in the presence of poor quality data. The
“Case study” section presents a case study carried out
using our approach and discusses the results. Finally, the
“Conclusion” section concludes this paper.

Background and related work
Data quality, which is sometimes referred to as informa-
tion quality [4], has been defined in many diverse ways in
the literature [20]. A generally well-accepted definition is
set by the ISO/IEC 25012 standard, which defines data
quality as “the degree to which a set of characteristics of
data fulfills requirements” [21]. These requirements refer
to the needs and constraints that contribute to the solu-
tion of some problem [22], whereas the characteristics
refer to properties of the data, such as its completeness,
accuracy, or consistency [23].
The severe damage brought in by the presence of poor

quality data in computer systems is well known in the
industry and in the research communities [4–7]. As an
example, the Gartner Group recently reported bad data
as the main cause of failure in CRM systems, and several
field studies show that the quality of the data, in a data-
centric system (e.g., ERP or CRM), decreases over time

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 2 of 14

[8]. Nowadays, this problem is further aggravated, with
the higher interconnectivity, complexity, and fast-
changing dynamics of modern systems (e.g., IoT systems,
fog computing systems, web services, services in service-
oriented architectures) and also with the data volume
growth, which can intensify its management complexity.
In these environments, with data coming from poten-
tially unreliable data sources, or originating from com-
plex applications where the software changes very often
(possibly holding residual bugs), it is easy to understand
that the quality of the data will eventually decrease.
With the society and industry increasingly relying on

computer systems, the effects of a failure caused by poor
quality data can be critical. This should have a high im-
pact on the way applications are built, as developers are
greatly interested in programming systems that are reli-
able, even in the presence of poor quality data. The
problem is that although the analysis and improvement
of data quality have gathered plenty of attention (e.g., to
carry out data cleaning operations) from practitioners
and researchers [6, 24–28], and despite the well-known
impact of poor quality data in critical data-centric sys-
tems [29], understanding how well an application is pre-
pared to handle the inevitable appearance of poor data
has been largely overlooked. For this purpose, the identi-
fication of representative data quality problems and how
they should be integrated in software verification activ-
ities (e.g., software testing) is essential.
In a previous work [23], we researched the state of the art

in data quality classification and data quality problems with
the goal of identifying representative poor data quality is-
sues that could be integrated in a test-based methodology.
The goal of the work, besides providing a broad vision of
the state of the art in this domain, was to support the defin-
ition of an approach that could use such knowledge to de-
fine effective tests for assessing data-centric applications in
presence of poor quality data. We presented, in our previ-
ous work [16], an initial proposal for assessing the behavior
of relational database applications in presence of poor qual-
ity data. The approach is based on the bytecode instrumen-
tation of a JDBC driver, which allows us to intercept calls to
the database. Whenever data is accessed by the application,
our instrumentation code (based on the type of call and on
the value of the data being delivered to the application)
returns a case of poor quality data. Externally, the behavior
of the application is observed and analyzed with the goal of
identifying failures. In the present work, we generalize the
approach to support not only relational but also NoSQL
document database applications.
The main idea of this paper revolves around the appli-

cation of software fault-injection techniques, which work
by deliberately injecting software faults to potentially
trigger failures (and their consequences) in the software.
In practice, software fault-injection techniques aim to

understand how well the software tolerates faults, which
may include observing the behavior of failure detection
and recovery mechanisms [30]. In this context, the clos-
est studies in the domain of this paper actually come
from the robustness testing area [10–12]. Although the
perspective is quite different, in the end, the goal is to
observe how the application deals with erroneous inputs,
and this kind of concept also applies to other domains
(e.g., fuzzing or even penetration testing). In the case of
robustness testing, the goal is to understand the behav-
ior of a particular system in presence of invalid input or
stressful conditions [11]. The robustness tests stimulate
the system with the objective of exposing possible in-
ternal errors, allowing developers to correct the identi-
fied problems. This technique can be used to distinguish
systems according to their robustness and depending on
the number and severity of the problems uncovered. It
has been mostly applied to public interfaces, from a
black-box perspective [11, 12]. The interaction points
between different independent systems have rarely been
used in robustness testing research, and to the best of
our knowledge, typical poor data quality issues have not
yet been considered.
Ballista [11] is a tool for testing robustness that com-

bines acceptable and exceptional values on calls to ker-
nel functions of POSIX operating systems. The values
used in each call are randomly extracted from a specific
set of predefined tests that apply to the particular data
type involved in the call. The results are used to classify
each system in terms of its robustness, according to the
CRASH scale [8], which distinguishes several failure
modes. In [31], the authors present the results of execut-
ing Ballista-generated tests on system calls of Windows
95, 98, CE, NT, 2000, and also Linux. The tests were
able to trigger system crashes in Windows 95, 98, and
CE. The other systems also revealed robustness prob-
lems, but not full system crashes.
MAFALDA [12] is another robustness testing tool that

allows characterizing the behavior of microkernels in the
presence of faults. It applies fault injection to parameters
of system calls and also to the memory segments that
implement the microkernel being tested. In a previous
work, we defined an approach to assess the behavior of
web services in the presence of tampered SOAP mes-
sages [10]. It consists of a set of robustness tests based
on invalid web service call parameters. The services are
classified according to the failures observed during the
execution of the tests and using an adapted version of
the CRASH scale [11]. More recently, robustness tests
on web services have been extended to consider the state
of the system being tested [32], which is modeled using
symbolic transition systems.
Fuzzers are black-box tools that are typically used to

discover vulnerabilities in applications, which, from a

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 3 of 14

code perspective, in essence refer to the presence of
some software fault (e.g., a software bug) that allows an
external fault (e.g., a malicious input) to harm the sys-
tem [33]. Although the domain is typically security,
many times these tools operate by providing erroneous
data (random or semi-random) to the applications’ pub-
lic interfaces, thus being also partially related to the ap-
proach discussed in this paper. Fuzzers fit a few different
types. Some target file formats (e.g., FileFuzz); others tar-
get network protocols (e.g. Querub, TAOF); others are
designed to be more general and besides file and net-
work can also use custom I/O interfaces, such as RPC or
SOAP (e.g., Peach, Fuzzled); and finally, custom fuzzers
exist and specialize in one specific format or protocol
(e.g., AxMan, Hamachi) [34]. The simplicity of the tech-
nique used by fuzzers and the simplicity of its applica-
tion are a great advantage of these tools.
Mutation testing is a method related to ours that was

originally designed to understand how good test suites
are at detecting faults [35]. Tests are executed on one
version of the program that has been generated by ap-
plying a single fault, and the goal is to understand if the
tests are able to detect that a mutant is being evaluated
or not [35]. The faults used in mutation testing typically
represent real coding errors made by developers, while
in our approach, we use faults that represent typical data
quality problems (which are essentially the effect of
common operator errors mixed with the effect of devel-
oper mistakes or bad practices).
The impact of invalid data on the reliability of web ser-

vices has been the object of research in [36]. The ap-
proach is based on a set of steps, which include building
an architecture view of the system being tested, using a
tool to measure the data quality or validity, measuring
the reliability of the data and software components, cre-
ating a state machine using the system architecture as
basis, and computing the overall system reliability. The
invalid types used in the study are limited to seven
already present issues. There is no use of issues that
might affect the system in the future, so the approach is

limited to reliability estimation based on identified and
already present issues.

Testing applications using poor data injection
This section describes our approach to test database appli-
cations in the presence of poor quality data. We first over-
view the core mechanism involved in our approach, then
explain the main phases of the approach, and finally
describe in detail the components used to implement the
approach.

Injecting poor quality data
Our approach is based on the presence of an instrumented
data access driver (e.g., the MongoDB CRUD driver or a
JDBC driver) that we place between the application, which
we generally designate as a service application, and a data-
base server (e.g., a database management system). The ul-
timate goal is to understand if the service application can
handle poor quality data coming from the database server
in a robust way or if, on the other hand, the service is
poorly built and cannot tolerate the presence of such data
(e.g., it becomes unavailable or throws unexpected excep-
tions when handling the data). Any service application
should be able to handle poor data, and this is especially
true for applications deployed in critical environments. As
mentioned, the presence of poor data in a storage system is
known to increase with the age of applications, and in the
dynamic web environment, where applications change very
often, it is likely that residual bugs, user misuse, manipula-
tion of data by other services, or even malicious accesses to
data cause the appearance of such problems in the storage.
A simplified view of our approach, applied to a typical data-
base application system, is depicted in Fig. 1 and explained
in the next paragraphs.
As we can see in Fig. 1, there are three main parts that

compose a typical database application system: (i) the
service application, which concentrates business logic;
(ii) a database server that is responsible for managing
the data and accesses to the data; and (iii) a data access
driver, which is used by the service application (via some

Fig. 1 The approach used for testing services using poor quality data, based on the presence of (i) the service application, which concentrates
business logic; (ii) a database server for managing the data and accesses to the data; and (iii) a data access driver which is used by the service
application for reading/writing data from/to the database. Data coming from the database is replaced with poor quality data by an instrumented
data access driver

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 4 of 14

API) and allows it to read/write data from/to the data-
base. The core concept behind our approach is that the
driver is able to intercept all calls to the database man-
agement system and simulate the presence of poor qual-
ity data, by replacing the original data coming from the
database with poor quality data.
In our approach, no changes to the service application

code, database management system, or database are re-
quired. In practice, we do not modify the data access
driver code directly; we rely on its external API and on
code instrumentation libraries (e.g., Byteman, AspectJ)
to intercept calls to well-known methods that are used
by the application to access the data [37, 38]. By purely
relying on the API to perform the aspect-oriented in-
strumentation, we can apply our approach to any data
access driver. It is important to mention that, despite
the specificities of this setup, the concepts involved in
this approach are generic and are present in other main-
stream programming languages and in other types of da-
tabases (e.g., graph databases). Although in this paper
we mostly use a Java-based scenario, a similar setup
could be used, for instance, with Python or C# .NET, as
we can find code instrumentation libraries that allow
achieving the same goals. Overall, this core mechanism
is used in a set of distinct phases in our approach, ex-
plained in the next section. Despite the multiple phases,
using this mechanism is very easy, essentially requiring a
simple replacement of the data access driver with our in-
strumented version.

Approach execution phases
Our approach involves the execution of three phases,
named warm-up, injection, and analysis. During all these
three phases, we assume the presence of a workload gen-
eration client that places valid requests on the service,
which allows exercising different service operations, each

possibly making several data accesses at different code
points. In addition to this scenario, during the injection
phase, we also inject faults, which are specific cases of
poor data, as observed in the literature and explained in
the next paragraphs. Fig. 2 depicts the temporal execution
of the three phases. For clarity, the figure presents the full
details only for the injection phase.
During the warm-up phase, the instrumented data ac-

cess driver performs like a regular driver. The driver in-
tercepts all data access calls but does not inject any
mutated data during this phase; the goal is simply to let
the system warm up, to better resemble typical working
conditions. During this phase, several operations are
exercised, as triggered by the workload generation client,
which results in possibly several data access points being
reached. Each of these data access points are locations in
the code where there is a call to the database services
(via the data access driver), in particular, where there is
access to data retrieved from the database (e.g., an access
to a particular column of a row resulting from the exe-
cution of an SQL query).
As mentioned, we assume the presence of a workload

generation client which is responsible for defining the
work that the service must fulfill during the execution of
the tests. In practice, the workload can be one of the fol-
lowing three types: (i) real, (ii) realistic, and (iii) synthetic.
Real workloads are the ones produced or consumed by ap-
plications in real environments, which means that they are
representative of real scenarios (e.g., they may result in a
representative coverage of the application code). In some
scenarios, it is not possible to use real workloads (e.g., in
the case the real environment is too complex to be under-
stood or accurately reproduced for testing, and the work-
load may lose its meaning in a different environment).
Realistic workloads are essentially a subset of representa-
tive operations that take place in real systems. They are

Fig. 2 Approach execution phases. The warm-up, injection, and analysis phases in detail

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 5 of 14

still quite representative and tend to be more portable
than the real workloads (i.e., they apply easier to different
systems, as they are less coupled to a particular system).
The last type is the synthetic workload, which is an artifi-
cial (many times random) selection of calls (operations
and respective input) to the system. In practice, this leads
to higher repeatability and portability, when compared to
the former workload types, but is also less representative.
Regardless of the type of workload used, it should try to
reach as much data access code points as possible and, at
the same time, it should ideally represent the system’s real
operating conditions.
Passing from the warm-up phase to the injection phase is

typically triggered by time, but any other criteria that are
relevant for the system under test (or for the user perform-
ing the tests) can be used. For instance, allowing the system
to reach a particular memory state or making sure the data
storage is populated with specific data might allow reaching
different data access points (or reaching previously visited
ones in different state conditions) which potentially allows
injecting different faults or obtaining different effects after
injection. In the case of our tool, passing on to the injection
phase can be manually set by the tester, by changing a Bool-
ean configuration value at the driver.
The injection phase is central to the approach. During

this phase, we replace genuine data coming from the data-
base with data that represents a poor data quality problem,
for the particular data type and value being accessed. In
order to define which types of problems should be included
in our testing approach, we surveyed the state of the art in
data quality classification and identified representative data
quality problems (e.g., misspellings, abbreviations, impreci-
sions, extraneous data) associated with common data types
(e.g., text, numbers, dates) in a previous work [23]. The goal
was precisely to support the idea brought in this paper: that
we can design and use testing with poor quality data to ef-
fectively disclose software bugs or at least bad program-
ming practices. Consequently, in this paper, we use this
kind of data quality problems, in particular the ones applic-
able to single values, to build a fault model that is used dur-
ing testing. By using single value mutations, we might
actually be able to emulate some data quality problems that
refer to multiple values (e.g., violation of referential integ-
rity, violation of functional dependency). Still, defining spe-
cific combinations or ways to combine multiple values to
represent more complex issues is left for future work and is
out of the scope of this paper. Table 1 presents a partial ex-
ample of data quality problems used in our approach. The
complete model of the identified problems is available on-
line (please refer to [19]).
A relevant aspect is that, although it is very infrequent

in relational databases, when the target of the tests is a
NoSQL document database application, it is not rare to
have documents being stored or retrieved from the

database (e.g., JSON documents). Considering the func-
tions provided by the most popular APIs in major
NoSQL document databases (e.g., MongoDB and Apa-
che CouchDB), there are essentially two cases of docu-
ment retrieval at the application level. The first one
refers to the retrieval of data that is mapped to a POJO
(e.g., the query method in org.lightcouch.View for
CouchDB [39]), and the other one refers to the retrieval
of data that is mapped in a container that is essentially a
Map structure (e.g., the get method in org.bson.BSONOb-
ject for MongoDB [40]). Thus, in these cases, a list of all
non-complex attributes in the object (either attributes in
the POJO or keys in the Map) should be built with the
purpose of randomly selecting a simple type (e.g., int,
string, long). Once identified, the respective mutation
should be applied and the object delivered to the
application.
The injection of mutated data can be done once per ser-

vice operation execution (i.e., per each client call), as the
goal is to understand the impact of the faulty data in the
execution of that particular operation. However, there is
also the option to inject any given number of faults during
the execution of a service operation (limited to the number
of data access points executed at runtime), which we have
followed in our experiments. Even though this latter option
may create difficulties in understanding the exact causes of
failures (as multiple faults are involved), it is often the typ-
ical choice in the robustness testing domain due to its sim-
plicity and ability to disclose problems. In fact, we do not
consider any particular state of the application (other than
the one led to by the user) and in this sense, the tests re-
semble traditional robustness tests.
In general, all public operations should also be tested,

but this depends on the goals of the tester (which may
be simply interested in testing a few cases). For each op-
eration to be tested, each of the data access points
present in the code should also be tested in this phase.
This naturally depends on the client workload providing
enough coverage, and dealing with this aspect is some-
thing out of the scope of the present work. In some ap-
plications, data access points may be shared by different
operations. Even in these cases, it is desirable to exercise
the different public operations, as we are passing in dif-
ferent areas of the code and might disclose different
problems if bugs are present. Each data access point
should be tested with all predefined poor data faults.
The desirable execution profile of the injection phase,
which we just described, is represented in Fig. 2.
The injection phase could be automatically config-

ured to stop when a given percentage of data access
points has been covered by the tests (provided that
such information is collected during the warm-up
phase). In the case of this work, we manually deter-
mine that a test should stop when the user action

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 6 of 14

has concluded (with a response being delivered to the
user) or when a failure is detected.
The last phase is the analysis of the results of the tests,

which involves a set of different tasks that basically allow
to describe the behavior of the system and help in cor-
recting any observed problem. First, the tester should
observe any deviation from correct service. The most
obvious way to do this is by analyzing service responses
and detecting any deviation from the specifications.
Also, in some cases, it might be helpful to observe any
anomalous behaviors (e.g., high CPU usage or memory
allocation at the server), which might be useful to, for
instance, optimize code or system design. When the sys-
tem under test is of large dimension, it might be difficult
to carry out this task (especially considering that this
kind of tests will then produce large amounts of data),
as the tester may have many cases to analyze. Still, there
are a few methods that can alleviate this task that,

depending on the system being analyzed and on the tes-
ter’s goals and budget, might apply (e.g., using machine
learning algorithms to automatically identify incorrect
responses [41]). Upon detection of a failure, the tester is
very likely interested in further describing the failure, by,
for instance, classifying the failure. A possibility is the
use of the CRASH scale, which classifies the failures ob-
served in different levels that represent distinct cases of
failure severity. The levels are, from the highest to the
lowest severity, Catastrophic, Restart, Abort, Silent, and
Hindering [11]. This step is recommended if there is, for
instance, the need for comparing systems or prioritizing
bug fixing.
The next obvious task is to identify the location of the

problem (i.e., in which software layer it occurs). As we
are instrumenting calls to particular functions, any code
that uses those instrumented functions can trigger a fail-
ure when handling poor quality data. In this context,

Table 1 Partial example of poor data quality faults

Data type Issue description Example

String Replace by null null

Replace by empty “”

Replace a word by a misspelled word (dictionary-based) or, if
no match, use a random single edit operation (insertion, deletion,
substitution of a single character, or transposition of two adjacent
characters) over a randomly selected word

John Locke ➔ Jon Locke

Replace with an imprecise value. Chooses a single random word
and replaces it by the respective acronym or abbreviation
(dictionary-based)

Doctor John ➔ Dr. John

Replace by homonym (dictionary-based, randomly selects a
word from the original string)

allowed ➔ aloud

Replace by synonym (dictionary-based, randomly selects a
word from the original string)

happy ➔ cheerful

Add whitespace in a leading or trailing position, or between
words (random choice)

John Locke ➔ John Locke

Remove whitespace in a leading or trailing position, or
between words (random choice)

John Locke ➔ JohnLocke

Add extraneous data in leading, trailing, or random position
(random choice)

John Locke ➔ John Locke.

Add substring (randomly selected and inserted in the
beginning, random middle, or end of the original string)

John Locke ➔ Johnn Locke

Remove substring (initial position and length are randomly
chosen)

John Locke ➔ John Lock

… …

Integer Set to zero 1904 ➔ 0

Add one 1904 ➔ 1905

Subtract one 1904 ➔ 1903

Add one random numeric character 1904 ➔ 19004

Remove one random numeric character 1904 ➔ 190

Flip sign 1904 ➔ -1904

… …

… … …

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 7 of 14

such code is at higher system layers that directly or in-
directly need to execute the instrumented functions.
This includes the application code itself but also librar-
ies, such as Object mapping frameworks that abstract
the details of the database system being used (e.g., Hi-
bernate ORM for relational databases, Morphia for
MongoDB). This task is of particular relevance when the
goal is to characterize a bug in the context of a whole
system.
Finally, for the cases where the tester is interested in

correcting the problem (or simply further understanding
it, so that it is not repeated in a new version of code), it is
important to identify the origin of the problem, i.e., under-
standing its root cause. This includes pinpointing the
exact location in the code where the problem exists (as a
mutated value injected at a specific point in the code may
only be improperly used later in the code) and why it is a
problem (so that it can be fixed). Again, this might be-
come a difficult and time-consuming task to carry out,

which the user might be interested in automating by
using, for instance, machine learning methods [42].
During all phases, any request sent to the service and

their responses should be logged. The same happens
with the operation of the data access driver, which
should also log any data mutation applied (for debugging
purposes). The intention is that, upon service failure, the
user can understand which sequence of requests (and
mutations) caused the failure and, if there is the option
to restore the system state, replay requests and compare
responses. This kind of option is advantageous for de-
bugging activities, where a fix must be introduced and
tests must be rerun, to verify the correct behavior of the
system.

Applying the approach
Figure 3 presents the key components involved in our ap-
proach and their interactions in a services environment.
The elements involved in a typical services interaction are

Fig. 3 Detailed view of the components involved in the tests. The elements involved in a typical services interaction are represented in gray
boxes, while in light brown, we have the components that are part of our approach. All components in solid lines are mandatory, whereas the
dashed components are optional (their use depends on the application being tested and on the tester requirements)

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 8 of 14

represented in gray boxes, while in light brown, we have
the components that are part of our approach. All compo-
nents in solid lines are mandatory, whereas the dashed
components are optional (their use depends on the appli-
cation being tested and on the tester requirements). As
mentioned, in the case of our prototype, applying and
deploying our mechanism requires no change to the exist-
ing source code. The following paragraphs explain the
components and their main functions.
The component that plays a key role in implementing

our approach is named AOP Wrapper as it is essentially
a data access driver (in our case, the JDBC and Mon-
goDB drivers) that has been wrapped to include our in-
jection logic. Thus, the driver byte code is instrumented
to be able to inject poor data inputs in returning calls to
the storage. This procedure simply involves replacing
the original value retrieved from the database by a poor
data value, retrieved from our list of data quality prob-
lems (please refer to Table 1). In order to rely only on
the AOP Wrapper to support the core of the approach,
we start by identifying the functions of the driver’s API
that access the database. These functions may differ de-
pending on the system used (i.e., a relational database vs
a NoSQL document database). In the case of relational
databases, there are standard APIs (e.g., JDBC), which
do not exist yet for document databases, such as Mon-
goDB or Apache CouchDB. For these latter cases, each
individual API has to be considered and the exact
methods that allow accessing data from the database
must be identified. Despite this additional step, the dif-
ferences between the different cases are usually small,
as, in general, they all provide access to the same data
types. Table 2 shows an excerpt of the calls that provide
applications with data access and that need to be inter-
cepted in the JDBC API, with MongoDB’s native driver
and with the LightCouch driver for CouchDB, which are
among the most popular NoSQL database engines [43].
Using the above function signatures as reference, we

then instrument the driver being used by the system, so
that any calls to the identified functions run through our
injection code after actually running through the driver’s

code but before data is delivered to the application. Our
injected code will allow us, at runtime, to replace any
data retrieved from the database by our own poor qual-
ity data (according to specific rules presented in the next
section). This kind of setup is easily achieved with the
use of code instrumentation libraries (e.g., Byteman,
AspectJ), as long as we provide the signatures of the
functions to be intercepted. An example of the applica-
tion of this technique is shown in Fig. 4, which uses
AspectJ to intercept calls to a MongoDB method that
extracts a string from a database object and replaces the
returning string by a faulty string.
The remaining components above the instrumented

driver are the typical components of a service applica-
tion, namely, the service code and any additional
middleware. In terms of typical middleware, the use of
an Object Mapping library is relatively frequent (e.g., an
Object Relational Mapping framework, such as Hiber-
nate or an Object Document Mapper, such as Morphia).
Finally, in terms of overall setup and although not

mandatory, we recommend the presence of a service Fil-
ter. In this context, a Filter is a component that is exe-
cuted at two moments: (1) before processing each client
request and (2) after the client request has been proc-
essed (and immediately before the response is delivered
to the client). Thus, in the case of a typical service (e.g.,
a SOAP/REST web service or a web application), this
can simply be an HTTP Filter or any other component
that is executed at the two moments referred (e.g., an
HTTP proxy). It is worth mentioning that the major
web serving platforms allow configuring HTTP Filters,
as it is actually a requirement for any Java EE compliant
platform. In the case of our tool, we deploy an HTTP
Filter for this purpose.
The HTTP Filter also allows a fine-grained control

over the tests. In particular, it marks the beginning and
end of a client request (which in general maps to the
execution of a particular user operation), and this allows
us to understand that a particular data access point is
being accessed as part of a given user request. It also al-
lows the driver to understand if it has already mutated a

Table 2 Example of API methods intercepted

JDBC API MongoDB API CouchDB API

java.sql.ResultSe org.bson.BasicBSONObject org.lightcouch.View

String getString(String columnLabel) String getString(String key) String queryForString()

long getLong(String columnLabel) long getLong (String key) long queryForLong()

int getInt(String columnLabel) int getInt (String key) int queryForInt()

boolean getBoolean(String columnLabel) boolean getBoolean(String key) boolean queryForBoolean()

Date getDate(String columnLabel) Date getDate(String field) –

T getObject(String columnLabel, Class<T> type) Object org.bson.BSONObject.get(String key) List<T>query(Class<T> classOfT)

...

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 9 of 14

value for this client request or not. Thus, to allow easier
debugging, we may execute a single poor data injection
per client request, even if that request involves multiple
data accesses. Overtime, we will eventually cover all data
accesses, as long as a workload with proper coverage is
provided. As a final note, this Filter allows logging server
responses in a centralized manner, so that we can later
analyze the behavior of the application being tested in
an easy manner.
In the case of our prototype [19], all of these server-side

components are assembled in a single unit (i.e., one jar
file) that implements our approach, which will replace the
original data access driver (i.e., the JDBC or MongoDB
driver). This jar file includes the Filter, which can also be
used to initialize and load any specific configuration for
the tests. To use our testing approach, we simply need to
replace the original data access driver with our own and it
will be ready to perform injection of poor data for any Java
web application that uses a data access driver. With our
current configuration, any JDBC compliant driver will do
(e.g., Oracle database, MariaDB, PostgreSQL) and typical
drivers for the NoSQL document databases MongoDB or
CouchDB are also contemplated. However, in practice,
any data access driver will serve this purpose, as long as
we write the names of the required dependencies in our
maven project descriptor file, identify the names of the
functions to intercept, and finally recompile and package
the project using mvn package. No further implementa-
tion or configuration is needed.

Case study
In this section, we describe a case study carried out to
illustrate the applicability of our approach. We explain the
setup used, the tests executed, and discuss the results.

Experimental setup
We selected two cases for carrying out the tests, a rela-
tional database application and a NoSQL application,
which we respectively name AppR and AppN. AppR is a
well-known widely used commercial open source ERP
business solution for enterprises. The company behind
this ERP solution characterizes the product as a world
leader counting, at the time of writing, with nearly 2.5

million downloads. It allows companies to manage their
entire business and supports typical processes such as
sales, manufacturing, or finance. The developers behind
this application have obvious software quality concerns, as
any software or security failure might impair the applica-
tion user’s business, which in turn will impact AppR’s
company business. AppR requires a database which we
chose to be PostgreSQL 9.4 and a server for deployment
for which we chose the well-known Apache Tomcat
7.0.68. The interaction with the database in this context is
mediated by the PostgreSQL JDBC driver 9.4-1201 [44].
Regarding AppN, we selected an open source blog web
application that makes use of MongoDB [45], which is
currently one of the most popular NoSQL database en-
gines available [43]. To interact with the database, AppN
uses the MongoDB Java driver (v3.4.2) [46], which is the
typical solution for Java-based applications that need to
use this kind of storage. As we intended to repeat the
tests, besides a regular browser, we recorded and later
replayed user actions on the browser using SikuliX 1.1.0.

Selecting and executing the test cases
AppR is an application of huge dimensions and due to
this, we selected a few test cases for testing. We consid-
ered the CRUD model [47] for performing this selection,
so that we could have operations with different profiles:
CREATE, READ, UPDATE, and DELETE. Note that all
test cases selected are quite complex and also perform
read operations, but we classified them according to their
main purpose. Thus, the test cases are mostly composed
of read operations. The goal was to obtain a good mix be-
tween test cases that potentially have different data access
patterns or are built in a different way. In practice, any test
case will be relevant as long as it accesses the database.
Regarding AppN, the same rationale was applied and
again we selected the four types of operations.
The execution of the experiments resulted in thou-

sands of faults being injected, with each operation being
executed 100 times (to allow going through the different
faults, with different configurations). Due to the nature
of the operations, the majority of the injected faults
(about 95.5%) refer to the string type, followed by Long
Integer faults with 2.4%, and Boolean faults with 1.1%.

Fig. 4 Aspect-oriented code for intercepting a MongoDB string access function. Aspect-oriented (AspectJ) code to intercept calls to a MongoDB
method that extracts a string from a database object and replaces the returning string by a faulty string

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 10 of 14

The remaining types of faults were injected with a fre-
quency lower than 0.1%.
Table 3 presents the operations selected for testing, their

mapping to the CRUD model, and a reference to the se-
lected failures uncovered in each operation during testing
(these failures are discussed in the next section).

Results and discussion
As shown in Table 3, during the experiments, we were
able to uncover failures in all operations tested. As dis-
cussed in the next paragraphs, the disclosed issues were
actually found at three main locations of the system be-
ing tested: (i) the application itself, (ii) in the very popu-
lar Object-Relational Mapping framework used by the
system, and (iii) in the data access driver code (i.e., the
widely used PostgreSQL driver).
Table 4 presents an excerpt of the issues disclosed dur-

ing the tests. We were able to disclose further issues, but
we opted to discuss only a set of problems that mani-
fested in different forms and at different structural loca-
tions of the system (as noticed in Table 4). Note also
that all of these examples are problematic, even those
where no message was shown to the user, as the tests
eventually led the application to become unusable.
Failure A mostly occurred whenever the data involved

was set to null; however, in the case of the example, a
mutated variable value (variable referenceID) causes an
access to the database to return null, and this null value
is then used without being checked. This results in a
NullPointerException being thrown (a check would need
to be made to prevent the exception). In the end, this

exception in AppR triggers a TemplateModelException
that eventually is shown to the user in an alert box. In
the case of AppN, whenever this failure was observed, a
message mentioning the presence of an internal error
was shown to the user.
AppR loads several classes dynamically, and Failure B

occurs when one of those names is wrong (due to the
application of a mutation). When the goal is to dynamic-
ally load the classes, there are not many alternatives, as
the names must reside outside the code. On the other
hand, if these names are not likely to change, they can
also be kept in compiled code. Although we do not have
enough information to specify what should be the right
design choice, disclosing this issue can help developers
understand if this is actually the right design decision or
not and how the application handles this type of situ-
ation. Anyway, the user should be informed in case of
error, especially if it is a problem that renders the appli-
cation unusable.
Failure C is a critical case. It actually represents a sec-

ond order SQL injection problem, where malicious data
in the database is unsafely used to build an SQL query.
An attacker might be able to obtain sensitive informa-
tion, as the information obtained from the database is
currently not sanitized by the application. This shows
that this testing technique, besides pointing out potential
design or implementation flaws, also has potential to
disclose security problems. In addition, and although the
error messaging system of the application was correctly
triggered, the actual error message shown to the user
discloses the contents of an entire database table row,
which should obviously not happen.
Failure D is a very interesting case, where the tech-

nique served to disclose a new bug in Hibernate, the
popular Object-Relational Mapping framework used by
the AppR. In this case, the framework tries to access the
first character of a string and fails as the string had be-
come empty due to the mutation applied. Although the
framework previously checks if the string is null, it does
not check if it is empty and immediately accesses its first
character. It then fails with a StringIndexOutOfBound-
sException; this is an implementation flaw, for which we
filled a bug report [18] which triggered a correction by
Hibernate developers in Hibernate 5.2.7. The bug was
found to affect Hibernate 5.2.6 and 5.1.3 and could have
been avoided if the developers had used our testing tech-
nique. This is actually very similar to the one described
next (which has already received attention and a correc-
tion from the developer community).
Failure E occurs in AppR when adding characters that

include a single quote to a string. This is a reported bug
[17] in the driver being used in the experiments (Post-
greSQL JDBC Driver 9.4-1201) and has been corrected
in version 9.4-1204. Basically, the code fails to find the

Table 3 Results overview

Application Operation

Name Type (CRUD) Failure Reference

AppR Login R A, B, C, D

Create organization C A, C, D

Create a new user C A, B, C, D

Create a new role C A, B, C, D

Create product C A, B, C, D, E

Delete product D A, B, C, D

Update product U A, B, C, D

Export product categories R A, B, D

AppN Login R A, E, F

Create a new user C F, G

Create a new post C A, G

Add comment C A

Delete post D A

Add like U H

List posts R A

List comments R A

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 11 of 14

closing single quote and returns the position of the last
character in the query as the end of the string. The
problem is that in another part of the driver, the code
does not expect this behavior, and the result is an at-
tempt to access a position that is one place after the
end. In AppN, this failure occurs when replacing the
encrypted password by any string without a comma
character (the salted hashed password is supposed to
have two parts separated by a comma: the hashed value
and the salt value). The application fails to split these
two parts from each other, because it does not check if
the read data holds the comma character.
Failure F occurs when AppN attempts to insert a rec-

ord including a long string. It occurs at two points: when
a new session is inserted to the database (after a success-
ful login) and when a new user is being registered. In
both cases, the username is set to a long string after be-
ing read from the database (the read operation is done
for checking the existence of the username). This failure
could be prevented in the application by checking the
length of data before insertion.
Failure G occurs when AppN attempts to insert a new

user session, assigned to an existing key (username), into
the database. This failure is uncovered by setting the user-
name (key) to an invalid string. The application adds a new
session into the database using this invalid string as a key
without verifying its correctness. The failure occurs when a
new user enters the system, and its username is set to the
same invalid string. This failure could be avoided by check-
ing the correctness of the value read from database.

Finally, Failure H occurs when AppN tries to update
the value of a field with null. The application fails when
the value of the data involved (the number of current
“likes” in this case) is set to null. A simple null check
would be sufficient to avoid this failure.
During the tests, we were expecting to find a few

application-level problems, but it was interesting to see
that this type of testing was able to actually find bugs at
the middleware level (in our case at two levels—ORM
framework and JDBC driver). The fact that the middle-
ware is widely used and tested emphasizes the import-
ance of performing this kind of tests to disclose issues
that might affect applications experiencing unexpected
conditions. Furthermore, the ability to find problems be-
yond “simple” exceptions (or inadequate messages pre-
sented to the user) and that represent security issues
further emphasizes that this type of testing has the po-
tential to produce results that are of high value for appli-
cation architects and developers.
There are a number of lessons to learn from these ex-

periments. First, and foremost, most of the failures are
due to the fact that developers do not see the database
as an external system that is prone to hold poor quality
data. Thus, the applications are programmed to trust the
database inputs, which may lead to not only failures but
also severe security problems. Validation at the entry
points of the application is a crucial technique to use,
and this applies not only to the application external in-
terfaces (i.e., with clients) but, as we have seen, also to
the application internal interfaces (i.e., with the database

Table 4 Selected cases from the experiments

Ref Root exception triggered Location Last mutation External behavior

A NullPointerException Application changeToOppositeCase
(AppR)
changeToNull (AppN)

TemplateModelException
reported to the user (AppR).
An internal error is reported
to the user (AppN).

B ClassNotFoundException Application addExtraneous No message displayed to
the user

C PSQLException Application replaceBySQLString Application error message
disclosing table row
contents

D StringIndexOutOfBoundsException JPA middleware replaceByEmptyString Application error message
stating String index out of
range

E ArrayIndexOutOfBoundsException JDBC driver (AppR);
application (AppN)

addCharactersToString (AppR),
All cases except for changeToNull
and changeToLongString (AppN).

No message displayed to
the user
An internal error is reported
to the user (AppN)

F MongoWriteException (key too
large to index)

Application changeToLongString An internal error is reported
to the user (AppN)

G MongoWriteException (duplicate
key error collection)

Application All cases except for
changeToLongString

An internal error is reported
to the user (AppN)

H MongoWriteException (modifiers
operate on fields but we found
type null instead)

Application changeToNull An internal error is reported
to the user (AppN)

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 12 of 14

system). Regarding the fault model used, its relevance is
based on the fact that it holds types of faults that repre-
sent typical data quality problems (as identified in [23]).
However, it is expectable that some faults may be more
prone to cause visible problems, of which we highlight
the faults that set null values, empty values, and also
those that include query language (e.g., SQL) keywords
or characters (e.g., apostrophes). While the former two
types of faults show the lack of ability to handle unex-
pected data coming from an external system, the latter
shows the lack of concern with malicious data coming
from the database, potentially allowing for changes to
the structure of subsequent data access queries. These
observations are obviously coupled to the two systems
being tested and, due to this, they cannot be generalized.
However, we did perform tests on quite typical database
applications in the presence of also typical data quality
problems; thus, our observations can be seen as a valu-
able source of information regarding the errors made by
developers when building their services.

Conclusion
This paper presented a testing approach for relational and
NoSQL database applications, which is based on the injec-
tion of poor quality data at the application–storage inter-
face. Data quality problems are injected on returning
result sets from the database and the application behavior
is observed. The tests disclosed several different failures in
both types of systems, including bugs at the application,
JPA implementation (Hibernate), and also the PostgreSQL
JDBC driver used. Some of the bugs disclosed also repre-
sent security problems, which emphasizes the technique’s
ability to detect security issues in the system being tested.
Although we were expecting to find a few problems at the
application level (even in the very popular AppR applica-
tion), the ability of the technique to disclose middleware
level bugs (already recognized and corrected by the
middleware developers) was quite surprising if we con-
sider the widespread usage of this kind of middleware
(e.g., Hibernate counts, at the time of writing with about
11 million downloads at sourceforge.net).
We showed that the application of the technique can be

valuable not only for service providers, which are made
aware of the software issues in their systems, but also for
service developers which have the chance to improve the
behavior of their services (or middleware) in the presence
of poor quality data.
As future work, we intend to further extend the approach

to other types of NoSQL engines, explore the state of the
system being tested, and further explore additional configu-
rations. We also intend to research ways of automating the
tests, possibly resorting to machine learning algorithms to
analyze the responses obtained and the system behavior.

Availability of data and materials
Not applicable

Authors’ contributions
All authors read and approved the final manuscript.

Funding
This work has been partially supported by the project DEsign, Verification
and VAlidation of large-scale, dynamic Service SystEmS (DEVASSES), Marie
Curie International Research Staff Exchange Scheme (IRSES) number 612569,
within the context of the EU Seventh Framework Programme (FP7); by the
project EUBra-BIGSEA, funded by the European Commission under the Co-
operation Programme, Horizon 2020 grant agreement n° 690116; and by
P2020 SAICTPAC/0011/2015 Project MobiWise: from mobile sensing to mobil-
ity advising.

Authors’ information
Not applicable

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1CISUC, Department of Informatics Engineering, University of Coimbra,
Coimbra, Portugal. 2Polytechnic Institute of Coimbra - ISEC, Coimbra,
Portugal.

Received: 19 June 2017 Accepted: 22 November 2017

References
1. Han J, Haihong E, Le G, Du J (2011) Survey on NoSQL database. In:

2011 6th international conference on pervasive computing and
applications, pp 363–366

2. Gao J, Xie C, Tao C (2016) Big data validation and quality
assurance—issuses, challenges, and needs. In: 2016 IEEE symposium on
Service-Oriented System Engineering (SOSE), pp 433–441

3. Loshin D (2011) Evaluating business impacts of poor data quality. IAIDQ’s
Information and Data Quality Newsletter, Vol. 7 Issue 1. https://www.iqint.
org/publication2011/doc/loshin-2011-01.shtml. Accessed 27 May 2017

4. Ge M, Helfert M (2007) A review of information quality research—develop a
research agenda. Proceedings of the 12th international conference on
information quality, MIT, Cambridge, MA, USA, pp 76–91

5. Pipino LL, Lee YW, Wang RY (2002) Data quality assessment. Commun ACM
45:211–218

6. Loshin D (2010) The practitioner’s guide to data quality improvement.
Morgan Kaufmann. https://www.elsevier.com/books/the-practitioners-guide-
to-data-quality-improvement/loshin/978-0-12-373717-5

7. Quality ED (2015) The data quality benchmark report. Experian Data Quality.
https://www.edq.com/globalassets/white-papers/data-quality-benchmark-
report.pdf. Accessed 27 May 2017

8. Marsh R (2005) Drowning in dirty data? It’s time to sink or swim: a four-
stage methodology for total data quality management. J Database Market
& Custom Strategy Manag 12:105–112. doi:10.1057/palgrave.dbm.
3240247

9. Singh R, Singh K et al (2010) A descriptive classification of causes of data
quality problems in data warehousing. Int J Comp Sci Issues 7:41–50

10. Laranjeiro N, Vieira M, Madeira H (2012) A robustness testing approach
for SOAP web services. JISA 3:215–232. doi:10.1007/s13174-012-0062-2

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 13 of 14

http://sourceforge.net
https://www.iqint.org/publication2011/doc/loshin-2011-01.shtml
https://www.iqint.org/publication2011/doc/loshin-2011-01.shtml
https://www.elsevier.com/books/the-practitioners-guide-to-data-quality-improvement/loshin/978-0-12-373717-5
https://www.elsevier.com/books/the-practitioners-guide-to-data-quality-improvement/loshin/978-0-12-373717-5
https://www.edq.com/globalassets/white-papers/data-quality-benchmark-report.pdf
https://www.edq.com/globalassets/white-papers/data-quality-benchmark-report.pdf
http://dx.doi.org/10.1057/palgrave.dbm.3240247
http://dx.doi.org/10.1057/palgrave.dbm.3240247
http://dx.doi.org/10.1007/s13174-012-0062-2

11. Koopman P, DeVale J (1999) Comparing the robustness of POSIX operating
systems. In: Twenty-ninth annual international symposium on fault-tolerant
computing, pp 30–37

12. Rodríguez M, Salles F, Fabre J-C, Arlat J (1999) MAFALDA: microkernel
assessment by fault injection and design aid. In: The third European
dependable computing conference on dependable computing. Springer-
Verlag, Berlin, Heidelberg, pp 143–160

13. Sebastian-Coleman L (2013) Measuring data quality for ongoing
improvement: a data quality assessment framework. Morgan Kaufmann
Publishers Inc, San Francisco. https://dl.acm.org/citation.cfm?id=2500972

14. Saha B, Srivastava D (2014) Data quality: the other face of big data. In: Data
Engineering (ICDE), 2014 IEEE 30th International Conference on. IEEE, pp 1294–1297

15. Ilyas IF, Chu X et al (2015) Trends in cleaning relational data: consistency
and deduplication. Foundations Trends® Databases 5:281–393

16. Laranjeiro N, Soydemir SN, Bernardino J (2016) Testing web applications using
poor quality data. Seventh Latin-American Symposium on Dependable
Computing (LADC 2016), Cali, pp 139–144. doi:10.1109/LADC.2016.30

17. PostgreSQL JDBC driver—Issue 369 (2015). https://github.com/pgjdbc/
pgjdbc/issues/369. Accessed 27 May 2017

18. Seyma NS [HHH-11134] StringIndexOutOfBoundsException in
BooleanTypeDescriptor—Hibernate JIRA. https://hibernate.atlassian.net/
browse/HHH-11134. Accessed 27 May 2017

19. Laranjeiro N, Seyma NS, Jorge B (2017) Poor data quality injector toolset and
dataset. http://eden.dei.uc.pt/~cnl/papers/2017-jbcs.zip. Accessed 18 Jun 2017

20. Batini C, Palmonari M, Viscusi G (2014) Opening the closed world: a survey
of information quality research in the wild. In: The philosophy of
information quality. Springer International Publishing, Springer, Cham, pp
43–73. https://doi.org/10.1007/978-3-319-07121-3_4.

21. ISO/IEC (2008) Software engineering – software product quality
requirements and evaluation (SQuaRE) – data quality model. ISO/IEC.
https://www.iso.org/standard/35736.html

22. SWEBOK V3 Guide IEEE Computer Society
23. Laranjeiro N, Nur Soydemir S, Bernardino J (2015) A survey on data quality:

classifying poor data. The 21st IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC 2015). doi: 10.1109/PRDC.2015.41

24. Caro A, Calero C, Mendes E, Piattini M (2007) A probabilistic approach to
web portal’s data quality evaluation. In: Quality of Information and
Communications Technology, 2007. QUATIC 2007. 6th International
Conference on the. pp 143–153

25. Xiaojuan B, Shurong N, Zhaolin X, Peng C (2008) Novel method for the
evaluation of data quality based on fuzzy control. J Syst Eng Electron 19:
606–610. doi: 10.1016/S1004-4132(08)60127-9

26. Bergdahl M, Ehling M, Elvers E, et al (2007) Handbook on data quality
assessment methods and tools. Wiesbaden, European Comission Eurostat.
https://unstats.un.org/unsd/dnss/docs-nqaf/Eurostat-HANDBOOK%20ON%20
DATA%20QUALITY%20ASSESSMENT%20METHODS%20AND%20TOOLS
%20%20I.pdf

27. Choi O-H, Lim J-E, Na H-S, et al (2008) An efficient method of data quality
evaluation using metadata registry. In: Advanced Software Engineering and
Its Applications, 2008. ASEA 2008. pp 9 –12

28. Galhardas H, Florescu D, Shasha D (2001) Declarative data cleaning:
language, model, and algorithms. In: In VLDB, pp 371–380

29. Haug A, Zachariassen F, van Liempd D (2011) The costs of poor data
quality. J Indust Engineer Manag 4(2):168–193. doi:10.3926/jiem.2011.v4n2.
p168-193

30. Natella R, Cotroneo D, Madeira HS (2016) Assessing dependability with
software fault injection: a survey. ACM Comput Surv 48(44):1–44:55. https://
doi.org/10.1145/2841425

31. Shelton CP, Koopman P, Devale K (2000) Robustness testing of the
Microsoft Win32 API. In: International Conference on Dependable Systems
and Networks (DSN 2000). pp 261–270

32. Salva S, Rabhi I (2010) Stateful web service robustness. Fifth International
Conference on Internet and Web Applications and Services. doi: 10.1109/
ICIW.2010.32

33. Antunes J, Neves N (2012) Recycling test cases to detect security
vulnerabilities. In: IEEE 23rd international symposium on software reliability
engineering (ISSRE 2012). IEEE Computer Society, Washington, pp 231–240

34. Eddington M (2009) Demystifying Fuzzers. Black Hat USA, Las Vegas
35. Fraser G, Zeller A (2010) Mutation-driven generation of unit tests and

oracles. In: Proceedings of the 19th international symposium on software
testing and analysis. ACM, New York, pp 147–158

36. Musial E, Chen MH (2012) Effect of data validity on the reliability of data-
centric web services. IEEE 19th International Conference on Web Services,
Honolulu, pp 576–583. doi:10.1109/ICWS.2012.95

37. Eclipse Foundation (2006) The AspectJ Project. http://www.eclipse.org/
aspectj/. Accessed 8 Apr 2016

38. Kiczales G, Lamping J, Mendhekar A, et al (1997) Aspect-oriented
programming. 11th European Conference on Object-oriented Programming

39. LightCouch.org (2017) View (LightCouch 0.1.8 API). http://www.lightcouch.
org/javadocs/org/lightcouch/View.html. Accessed 27 May 2017

40. MongoDB (2017) MongoDB BSONObject API. http://api.mongodb.com/java/
current/org/bson/BSONObject.html. Accessed 27 May 2017

41. Laranjeiro N, Oliveira R, Vieira M (2010) Applying text classification
algorithms in web services robustness testing. 29th IEEE international
symposium on reliable distributed systems (SRDS 2010)

42. Wong WE, Gao R, Li Y et al (2016) A survey on software fault localization.
IEEE Trans Softw Eng 42:707–740. doi:10.1109/TSE.2016.2521368

43. solid IT (2017) DB-Engines ranking—popularity ranking of database
management systems. https://db-engines.com/en/ranking. Accessed 27
May 2017

44. The PostgreSQL Global Development Group (2017) PostgreSQL JDBC driver.
https://jdbc.postgresql.org/. Accessed 27 May 2017

45. MongoDB (2017) MongoDB NoSQL Database. https://www.mongodb.com.
Accessed 27 May 2017

46. MongoDB (2017) MongoDB Java Driver. http://mongodb.github.io/mongo-
java-driver/. Accessed 27 May 2017

47. Martin J (1983) Managing the data base environment, 1st edn. Prentice Hall
PTR, Upper Saddle River

Laranjeiro et al. Journal of the Brazilian Computer Society (2017) 23:14 Page 14 of 14

https://dl.acm.org/citation.cfm?id=2500972
http://dx.doi.org/10.1109/LADC.2016.30
https://github.com/pgjdbc/pgjdbc/issues/369
https://github.com/pgjdbc/pgjdbc/issues/369
https://hibernate.atlassian.net/browse/HHH-11134
https://hibernate.atlassian.net/browse/HHH-11134
http://eden.dei.uc.pt/~cnl/papers/2017-jbcs.zip
https://doi.org/10.1007/978-3-319-07121-3_4
https://www.iso.org/standard/35736.html
http://dx.doi.org/10.1109/PRDC.2015.41
http://dx.doi.org/10.1016/S1004-4132(08)60127-9
https://unstats.un.org/unsd/dnss/docs-nqaf/Eurostat-HANDBOOK%20ON%20DATA%20QUALITY%20ASSESSMENT%20METHODS%20AND%20TOOLS%20%20I.pdf
https://unstats.un.org/unsd/dnss/docs-nqaf/Eurostat-HANDBOOK%20ON%20DATA%20QUALITY%20ASSESSMENT%20METHODS%20AND%20TOOLS%20%20I.pdf
https://unstats.un.org/unsd/dnss/docs-nqaf/Eurostat-HANDBOOK%20ON%20DATA%20QUALITY%20ASSESSMENT%20METHODS%20AND%20TOOLS%20%20I.pdf
http://dx.doi.org/10.3926/jiem.2011.v4n2.p168-193
http://dx.doi.org/10.3926/jiem.2011.v4n2.p168-193
http://dx.doi.org/10.1145/2841425
http://dx.doi.org/10.1145/2841425
http://dx.doi.org/10.1109/ICIW.2010.32
http://dx.doi.org/10.1109/ICIW.2010.32
http://dx.doi.org/10.1109/ICWS.2012.95
http://www.eclipse.org/aspectj/
http://www.eclipse.org/aspectj/
http://www.lightcouch.org/javadocs/org/lightcouch/View.html
http://www.lightcouch.org/javadocs/org/lightcouch/View.html
http://api.mongodb.com/java/current/org/bson/BSONObject.html
http://api.mongodb.com/java/current/org/bson/BSONObject.html
http://dx.doi.org/10.1109/TSE.2016.2521368
https://db-engines.com/en/ranking
https://jdbc.postgresql.org/
https://www.mongodb.com
http://mongodb.github.io/mongo-java-driver/
http://mongodb.github.io/mongo-java-driver/

	Abstract
	Introduction
	Background and related work
	Testing applications using poor data injection
	Injecting poor quality data
	Approach execution phases
	Applying the approach

	Case study
	Experimental setup
	Selecting and executing the test cases
	Results and discussion

	Conclusion
	Availability of data and materials
	Funding
	Authors’ information
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

