
Journal of the
Brazilian Computer Society

Abreu et al. Journal of the Brazilian Computer
Society (2016) 22:1
DOI 10.1186/s13173-016-0041-8

RESEARCH Open Access

Bounded model checking for fixed-point
digital filters
Renato B. Abreu1, Mikhail Y. R. Gadelha2, Lucas C. Cordeiro3*, Eddie B. de Lima Filho4 andWaldir S. da Silva Jr3

Abstract

Background: Currently, digital filters are employed in a wide range of signal processing applications, using fixed- and
floating-point processors. Regarding the former, some filter implementations may be highly prone to errors, due to
problems related to finite word-length. In particular, signal processing modules may produce overflows and
unwanted noise, which are caused by quantization and round-off effects, during accumulative-addition and
multiplication operations. As a consequence, the system output may overflow or even keep oscillating, which
compromises the expected system performance.

Methods: The present paper addresses this problem and proposes a new methodology for verifying digital filters,
called digital systems verifier, which is based on state-of-the-art bounded model checkers that support full C and
employ solvers for boolean satisfiability and satisfiability modulo theories. In addition to verifying overflow and
limit-cycle occurrences, the present approach can also check output errors and time constraints, based on
discrete-time models implemented in C.

Results: Experiments conducted during this work show that the proposed methodology is effective, when finding
realistic design errors with respect to fixed-point implementations of digital filters.

Conclusions: Going further than previous attempts, the present results suggest that the proposed method, in
addition to helping designers in determining the number of bits for fixed-point representations, can also aid in
defining details about filter realization and structure.

Keywords: Digital filters, Finite word-length, Formal methods, Bounded model checking

Introduction
In digital signal processing, a digital filter is a system
that performs operations on discrete signals, in order to
modify or improve some of their aspects. It can be clas-
sified into two types: infinite impulse response (IIR) or
finite impulse response (FIR), differing by the presence or
absence of feedback, respectively. One of the most com-
mon procedures performed by digital filters, for instance,
is to narrow or shape signal bandwidths, with the goal of
discarding undesired information.
Digital filters have been used in a great variety of

applications, mainly due to their reduced computational
complexity and flexibility, which is reinforced by the avail-
ability of digital signal processor (DSP) and field pro-
grammable gate array (FPGA) devices. Regarding the first,

*Correspondence: lucascordeiro@ufam.edu.br
3Federal University of Amazonas, Manaus, Amazonas, Brazil
Full list of author information is available at the end of the article

they are split into two categories: fixed- and floating-
point, which refer to the format used for storing and
processing numerical-data representations. In fixed-point
arithmetic, gaps between adjacent number representa-
tions are normally equal; floating-point arithmetic, in
turn, results in nonuniform gaps, which are about ten
million times smaller than a given number magnitude,
depending on the floating point precision [1].
Typically, dynamic range, precision, ease of develop-

ment, and cost considerations are used for determining
the most interesting approach. For example, fixed-point
devices provide low-cost products and normally incur
higher development costs, which are suitable for high-
volume applications; however, floating-point devices
result in higher product costs, while presenting shorter
development cycles and higher precision, which may be
acceptable for high-value applications. In summary, the

© 2016 Abreu et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-016-0041-8-x&domain=pdf
mailto: lucascordeiro@ufam.edu.br
http://creativecommons.org/licenses/by/4.0/

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 2 of 20

data to be processed and the target application define the
need for fixed- or floating-point processors.
It is worth noticing that evenwith the current increased-

availability of floating-point devices, which may also
include optimized modules for complex-number manipu-
lation, the high speed of fixed-point processors, in com-
bination with their reduced cost, still make them a good
choice for embedded digital filter design.
Both fixed- and floating-point implementations suf-

fer from quantization errors; however, the latter nor-
mally presents better precision and higher dynamic range.
Indeed, larger gaps in fixed-point approaches result in
smaller signal-to-noise ratio (SNR) figures, and, due to
that, nonlinearities, round-off errors, and overflows are
much more pronounced, all caused by consecutive mul-
tiplication and addition operations using finite word-
length, which might affect the desired filter behavior. For
instance, regarding direct form realizations, only a small
change on filter coefficients, due to quantization, has the
potential to cause large changes in pole and zero locations
[2].
In addition, different filter types present different prob-

lems. For example, IIR filters might suffer from serious
oscillations in their outputs, even for zero input signals,
which is a phenomenon known as limit cycle [3–6]. In
summary, limit cycles are oscillations that appear due to
rounding, truncation or overflow (nonlinearities), regard-
ing internal filter computations, even if a given filter is
stable, due to the feedback branch. FIR filters, in turn, do
not suffer from such limit cycle effects, but might have
other issues caused by finite word-length limitations (e.g.,
frequency response modification).
There are many studies about quantization and limit

cycle effects in digital filters, along with techniques to
reduce their effects [7] or guarantee their absence [8–11].
Generally, limit cycles can be avoided by increasing the
system word-length or applying scaling and saturation;
however, those solutions present some drawbacks. The
first may extrapolate the representation provided by the
underlying architecture, and the second has the potential
to decrease the SNR. As a consequence, the related error
magnitude should then be verified, in order to ensure that
it is at an acceptable level. It is also possible to use noise
shaping [12], where quantization errors go through a feed-
back loop and, consequently, a very high SNR ratio is
obtained, which greatly reduces limit cycle occurrences.
Another important property, which arises when imple-

menting digital filters for real-time applications, is the
time constraint [13]. In a real-time system, which may
consist of other tasks beyond simple filtering, high sam-
ple rates will require more processing resources; there-
fore, the use of high sample rates may be insufficient to
execute tasks and may also degrade the expected sys-
tem performance. Indeed, time constraints verification

is of paramount importance for real-time systems and,
although not directly related to digital filters, it is often
addressed during their design, in order to ensure the
desired system behavior.
Normally, filter designers employ advanced tools for

defining filter parameters, according to the desired oper-
ation in time and frequency domains, and use simulation
software for validating their behavior, along with extensive
testing. However, in most cases, floating-point arithmetic
is considered during calculations, which can lead to wrong
assumptions about filter performance.
There are a few tools for simulating systems using

fixed-point arithmetic [14–16], which can be employed
during filter design. As an example, Sung and Kum
[17] proposed search algorithms to determine the min-
imum word-length bound, through a simulation-based
approach. Nguyen, Menard, and Sentieys [18] also pro-
posed faster word-length optimization algorithms, when
compared to Sung and Kum’s approach, which are based
on iterative stochastic local searches. However, simulation
(and testing) can lead to a limited number of scenarios
and inputs, which normally do not exploit all possible
behaviors that a system can exhibit and take long to com-
plete. Analytical approaches may also be employed [19],
which significantly reduces evaluation times. Hence, just
performing frequency domain graphical analysis and sim-
ulations might not be enough to discover possible prob-
lems related to finite word-length, as well as filter time
constraints.
Recently, Cox et al. [20, 21] proposed the verification of

fixed-point implementations of IIR digital filters, which
is based on bounded model checking (BMC) [22] and
applies modern satisfiability modulo theory (SMT) [23]
solvers, in order to check for verification conditions. The
main idea behind SMT-based BMC approaches is to con-
sider counterexamples of a particular length k and then
generate an SMT formula, which is satisfiable if and only
if such a counterexample exists [24, 25].

Contributions
The present paper addresses the digital-filter verifica-
tion problem and describes the use of a general purpose
SMT-based bounded model checker for C programs, in
order to verify potential problems caused by fixed-point
arithmetic, on recursive filters.
Regarding the proposed methodology, in addition to

detecting overflow and limit cycle issues, the following
contributions can also be found; the associated processing
time is considered during filter function unrolling, which
checks the maximum acceptable time of filter operations,
the output error magnitude is compared with a floating-
point model, in order to ensure that the system error is
within an acceptable margin, and BMC is exploited to ver-
ify the actual digital filter C code, which is intended to

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 3 of 20

be embedded into micro-controllers and DSPs. It is worth
noticing that the latter is closer to real implementations,
where specific C constructs (e.g., pointer arithmetic and
comparisons) are used for implementing digital filters.
The resulting C code also gives the possibility to apply
other (state-of-the-art) model checking techniques (for C
programs) to general filter verification.
Additionally, the application of SMT-based BMC

approaches, regarding digital filter design, is not well
known amongst DSP developers, which also opens a great
opportunity, since SMT-based BMC approaches do not
require proof (i.e., they are algorithmic methods rather
than deductive) and are very fast, if compared with other
rigorous methods, such as theorem proving. Besides, one
can easily specify a large number of digital filter proper-
ties and realization forms, in order to ensure correctness
in computer-based systems (e.g., DSP and FPGA).
This article is a substantially revised and extended

version of the work published in previous conferences
[26, 27]. The major differences are the following: (1) in
this version, an enhanced fixed-point library for arith-
metic operations was implemented, in order to decrease
verification-time figures, (2) other filter structures in
cascade, parallel, and transposed direct forms are sup-
ported, (3) a maximum-error verification procedure was
added, (4) a unified tool, named as digital systems veri-
fier (DSVerifier1), which developed for checking different
design problems in fixed-point digital filters, was built,
(5) two different state-of-the-art BMC tools were used
in DSVerifier as back-ends (i.e., CBMC [28] and ESBMC
[24]), and (6) the performed experiments are based on
a set of publicly available benchmarks. All benchmarks,
tools, and results of the present evaluation are available on
a supplementary web page2.
The remainder of this paper is organized as fol-

lows. “Verification of digital filters” Section gives a brief
introduction about digital filter realizations, emphasiz-
ing some aspects related to implementation in fixed-
point processors, along with state-of-the-art verification
schemes presented in the related literature. Fundamen-
tals about SMT-based BMC approaches, which were used
in this work to the verification of digital filters, are
tackled in “Bounded model checking (BMC)” Section.
“Research design and methodology” Section describes
the research design and respective methodology, while
“Methods” Section presents the implemented methods
to verify overflow, limit cycle, time constraint, and
maximum error. Then, some experimental results for
a set of digital filters, obtained with the proposed
approach, are shown in “Results and discussion” Section.
Finally, “Conclusions” Section presents the conclusions
of this work, highlighting the importance of SMT-
based BMC approaches for the verification of fixed-point
filters.

Background and literature review
Verification of digital filters
As already mentioned, finite word-length effects are of
paramount importance for digital filter design, given that
numerical implementations of the related algorithms may
suffer from deterioration in performance. The follow-
ing sections will tackle filter implementation structures
and some state-of-the-art verification algorithms, with the
goal of introducing the basic problem.

Fixed-point filters realization
Digital filters can be defined as linear time-invariant
discrete-time systems, which are described by a difference
equation as

y(n) = −
N∑

k=1
aky(n − k) +

M∑

k=0
bkx(n − k), (1)

where y(n) is the output in instant n, y(n−k) is the output
k steps in the past, x(n− k) is the input k steps in the past,
ak are the coefficients for the past outputs, bk are the coef-
ficients for the past inputs, N is the feedback filter order,
andM is the feedforward filter order. The proper design of
a digital filter consists in finding suitable values for coef-
ficients ak and bk , which produce the expected frequency
response.
Digital filters are usually classified according to their

ideal frequency domain characteristics, whose basic forms
are low-pass, high-pass, band-pass, and band-reject. It is
out of scope for this paper to show IIR and FIR filter design
methods, because this is a huge topic that is covered in
standard digital signal processing books [2, 29].
There are many ways to implement (1) in hardware,

using FPGA and application-specific integrated circuits,
or in software, through a programmable digital computer,
depending on the desired realization structure for the tar-
get system. The commonly known Direct Form I, Direct
Form II, and Transposed Direct Form II structures are
shown in Fig. 1, where z−1 is defined as the backward-
shift operator, that is, a unit delay. These second-order
structures are often employed as basic building blocks of
high-order systems, in cascade and parallel [2].
When implementing fixed-point digital filters, coef-

ficients and results of intermediate computations are
affected by quantization and round-off errors. Here, the
round-off quantizer Q(x) was considered [2, 29], whose
maximum error caused by rounding is defined to be
2−b−1, where b is the number of bits of the fractional part.
If the result from an addition or multiplication exceeds
the amount of bits available for the number representa-
tion, it is assumed that an overflow occurs. However, for
limit cycle verification, overflows can naturally happen; as
the two’s complement arithmetic is adopted, results wrap
around when overflow events occur. Figure 2 shows the

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 4 of 20

Fig. 1 Second-order modules

Fig. 2 Round-off quantizer of l precision bits, with wrap around
overflow

behavior of the round-off quantizer and the effect of a
two’s complement overflow wrapping around.
In order to obtain a realistic model of the finite precision

system, each numeric value in the system is quantized,
which includes inputs, coefficients, and results of arith-
metic operations. Figure 3 shows this approach for a
single-pole filter.
Typically, numbers in fixed-point format are repre-

sented with a pair of digits, which are separated by a
decimal point. The digits to the left and right repre-
sent the integer and fractional parts, respectively, and
the two’s complement is used to represent signed num-
bers, in fixed-point processors. In this system, the real
number X, described by the 〈k, l〉 fixed-point position
number

(
bk−1 bk−2 . . . b1 b0 · b−1 b−2 . . . b−l

)
, can be

represented as

X = −bk−12k−1 +
−l∑

i=k−2
bi2i. (2)

The most significant bit −bk−1 is used for the sign.
Thus, the maximum representable value, which consists
of an integer part with k bits and a fractional part with
l bits, is 2k−1 − 2−l, and the minimum value is −2k−1.
In Fig. 3, the quantizer Q rounds numbers inside this
range. If a number does not fit into this interval, then it

Fig. 3 Realistic model of a single-pole quantized filter

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 5 of 20

indicates an overflow, which can be handled in the follow-
ing ways, by the verification module: detect it as failure,
wrap around results, or saturate to a maximum/minimum
value. Although saturating implementations are popu-
lar in DSPs, we handle both saturating and wrap-around
math.
Given that fixed-point implementations introduce

quantization effects and reduce dynamic range figures,
traditional simulation and test steps for system verifica-
tion may not be enough, because they normally exploit
only a limited number of scenarios and variable values.
Moreover, filter designers usually adopt floating-point
tools for evaluating their projects, which has the poten-
tial to let some failures go unnoticed. As a result, one
can argue that detecting problems caused by fixed-point
implementations, regarding digital filters, is a challenge
that deserves formal verification-methods.

Finite word-length effects in digital filters
Target systems for implementing digital signal processing
applications, like DSP and FPGA devices, are not capa-
ble of computing with infinite precision and commonly
use finite word length, which leads to deterioration in
performance. Such an effect has two separate origins:
quantization and roundoff errors during computations
[30].
One of the most known problems related to finite word-

length is the overflow/underflow condition, which can
compromise results in recursive filters. As stated in the
related literature [2, 29], a filter output can be computed
with the convolution sum, given as

y(n) =
∞∑

k=−∞
x(n − k)h(k), (3)

where x(n) is the input, h(k) is the impulse response
of the filter, and y(n) is the output. Given that the
present approach addresses bounded-input bounded-
output (BIBO) stable systems, and that the input is in
the interval [−xmax, xmax], the output is then limited in
amplitude [2, 29], according to

|y(n)| ≤ xmax

∞∑

k=−∞
|h(n)| , (4)

which implicitly employs the L-1 norm, given by

||h||1 =
∞∑

k=−∞
|h(n)|. (5)

This way, overflows can be avoided by using a rep-
resentation capable of accommodating the signal range
related to y(n). Since such a rule is very conservative and
the roundoff noise may be unnecessarily increased [31],
for instance, the L-2 norm may also be employed, but

it does not guarantee the complete absence of overflow
conditions [32].
It is worth noticing that even taking into account what

was presented above, any intermediate addition, in a dig-
ital filter, may still overflow; however, as long as two’s
complement arithmetic is used, it does not affect the final
result of summations. Indeed, since the 2’s complement
is a modulo math, if intermediate operations overflow,
the associated system will still produce correct outputs,
as long as the final result falls into the expected range,
even if one of the operands has overflowed, due to a mul-
tiplication. That implies the addition of more than two
numbers, as long as their output is representable. Such a
property is commonly known as the Jackson’s rule [33, 34]
and is extensively used in digital filters, in order to sim-
plify designs and minimize word lengths, given that all
quantizers are configured to wrap around.
Regarding Fig. 1, an important observation must be

made. Parts (a) and (c) of the same figure show that multi-
plier outputs are directly fed to unique equivalent adders
(disregarding delays), which means that Jackson’s rule is
valid. Part (b), in turn, shows two equivalent adders (input
and output), connected through a multiplier (b0), which
also means that Jackson’s rule is valid; however, the out-
put of the equivalent input adder must not overflow. If
that is not avoided, the result of the equivalent output
adder may be incorrect. Indeed, each adder result may
be seen as the output of a separate filter, which will pro-
duce correct results as long as its final computation does
not overflow.
In summary, if each component filter is correctly

designed and two’s complement with wraparound is
employed, Jackson’s rule will apply (as done here). Indeed,
practical designs take into consideration the output of
existing equivalent adders, in such a way that the resulting
filter will not suffer from overflow, independently of inter-
mediate operations. Nonetheless, if the result saturates
[9], such an assumption is no longer applicable and each
node must be evaluated for avoiding overflow conditions
[20, 21].
In an ideal stable filter, the output should asymptoti-

cally approach a steady-state level, which is determined by
the filter transfer function [35]. However, if a limit cycle
problem exists, it manifests itself either as a steady oscil-
lation or a nonzero level in the output, even for a zero
level input. Such an effect is normally caused by round-off
errors and overflows, during filter operation, when a feed-
back loop is present. Limit cycles may be dominant for low
inputs, but their importance is diminished with increasing
amplitudes [36].
Limit cycles can be avoided, for instance, when min-

imum L2 sensitivity realizations are employed [37], by
using magnitude truncation [38], by controlled rounding
[39], or with specific filter structures [40]. Also, there are

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 6 of 20

works, available in the related literature, that tackle this
problem specifically for saturation arithmetic [11].
Another approach for dealing with fixed-point imple-

mentations relies on word-length optimization, in such
a way that hardware requirements are minimized, while
trying to maintain a desired performance measure. Sung
and Kum [17] used search algorithms that keep a
desired signal-to-quantization-noise ratio (SQNR); how-
ever, results are dependent on the signal input samples,
which must be carefully chosen.
Nguyen, Menard, and Sentieys [18] also proposed word-

length optimization algorithms, in which the absence of
overflows is ensured, in the first step of the algorithm,
through analytical determination of data behavior.
There has been great interest also in the computation

[41] and analysis [42, 43] of the roundoff noise, in order
to study its interaction with the filter output and even
provide design tools for minimizing noise power or pole
sensitivity.
The finite word-length problem can also be treated

by means of a unifying approach [32], which is capa-
ble of describing equivalent realizations and measures for
designing optimal systems. Although it addresses both
implementation- and realization-level, a great deal of
effort must still be employed, for the development of
suitable optimization algorithms.
Indeed, there is a great deal of techniques available for

digital filter analysis and design, which can be applied to
many scenarios; however, only a few works (e.g., Hildare’s
approach [32]) present a more general methodology, as
proposed here.

Boundedmodel checking (BMC)
The bounded model checking (BMC) techniques, based
on Boolean satisfiability (SAT) [22] or satisfiability mod-
ule theories (SMT) [23], have been successfully applied for
verifying single- and multi-threaded programs, and also
for finding subtle bugs in real programs [24, 25, 28, 44];
however, applications aiming to ensure correctness of
digital filters are only recent [20, 21].
The basic idea of BMC is to check (the negation of) a

given property at a given depth. Supposing a transition
system M, a property φ, and a bound k, BMC unrolls the
system k times and translates it into a verification condi-
tion (VC) ψ , in such a way that ψ is satisfiable if and only
if φ has a counterexample, of depth less than or equal to
k. Given that, standard SMT/SAT solvers can be used to
check whether ψ is satisfiable.
In BMC of digital filters, the bound k limits the num-

ber of loop iterations and recursive calls in the filter
implementation. BMC thus generates VCs that reflect the
exact path in which a statement is executed, the context
in which a given function is called, and the bit-accurate
representation of expressions [24]. It is worth noticing

that the validity proof, for VCs arising from programs, is
still a major performance bottleneck, despite attempts to
cope with increasing system complexity, by applying SMT
solvers.
In this work, the efficient SMT-based bounded model

checker (ESBMC) tool is used as the verification engine,
since it was one of the most efficient BMC tools, for
bit-vector programs, in the last software verification com-
petitions [45–47]. In ESBMC, the associated SMT-based
BMC problem is formulated by constructing the logical
formula

ψk = I(s0) ∧
k∨

i=0

i−1∧

j=0
γ (sj, sj+1) ∧ φ(si), (6)

where φ is a safety property (e.g., overflow represented
as an assert-statement in the C source-code level), I is
the set of initial states of M, and γ

(
sj, sj+1

)
is the transi-

tion relation of M between time steps j and j + 1. Hence,
I(s0) ∧ ∧i−1

j=0 γ
(
sj, sj+1

)
represents executions of the fil-

ter function, unrolling up to length i. The above VC ψk
can then be satisfied if and only if, for some i ≤ k, there
exists a reachable state, at time step i, in which φ is vio-
lated. If (6) is satisfiable, then the SMT solver provides
a satisfying assignment, from which values of program
variables can be extracted, in order to construct a coun-
terexample. The latter, for a property φ, is then defined as
a sequence of states s0, s1, . . . , sk , with s0 ∈ S0 and sk ∈ S,
and γ (si, si+1), for 0 ≤ i < k. If (6) is unsatisfiable, then
one can concluded that no error state is reachable, in k
steps or less.

Related work onmodel-checking
There are somemodel-checking tools that have been used
for verifying real-time systems, but not digital filters. An
example is UPPAAL [48], which is a model checker based
on the timed automata theory, that is, it is applied to
real-time systems modeled via a timed automata network.
Another similar tool is Open-Kronos [49], which is able
to check reachability of timed automata and emptiness
of timed Büchi automata. The CPN tools [50] are also
applied to the verification of real-time systems, which are
modeled via a colored (timed and untimed) Petri net.
As a remark, at the time the present paper was writ-

ten, only recent initiatives had used SMT-based BMC
techniques to verify finite word-length effects, on digital
filter properties and realizations [20, 21, 26], which is the
focus of this work. For instance, the one presented by Cox
et al. [20, 21] tackled verification techniques regarding
bit-precise analysis and real-valued error approximations,
based on empirical evaluations. In particular, the present
approach differs from the latter in the following aspects;
Cox et al. did not consider the time and error verifica-
tions, which are of paramount importance in filter design;

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 7 of 20

they did not exploit different filter design techniques in
their benchmarks; there is no check related to the actual
C implementation that is going to be embedded into the
hardware platform; and finally, they do not exploit dif-
ferent state-of-the-art BMC tools for C programs, which
have considerably evolved over the last years. Indeed, Cox
et al. use the ABCmodel checker [51], which incorporates
a BMC implementation as part of the portfolio solver;
however, ABC does not noticeably change results [21].

Research design andmethodology
The main goal of the present work is to provide a general
scheme for digital filter verification, based on DSVeri-
fier [52]. Such an approach is composed of digital-filter
verification rules and the verification engine itself.
The following steps for design and verification of dig-

ital filters are proposed, as shown in Fig. 4. First, filter

parameters are designed, using the preferred methods [2,
29] and tools [53] (cf. Filter design). After that, the output
range for a given input is estimated (e.g., based on the cri-
teria proposed by Carletta et al. [54]), in order to define
the word-length for representing fixed-point numbers (cf.
define word length). Once the word-length is defined,
the respective design parameters are fed to the filter
model implemented in C language, which include number
of bits, realization, and sample time (cf. feed parame-
ters to C filter-model). Then, one can perform a time
analysis regarding filter operations, considering a spe-
cific microprocessor architecture, including instruction-
set architecture and CPU clock (cf. analyze the WCET).
Finally, assertions are added to the given model, in order
to check properties related to time constraints, overflow,
limit cycle, and output errors (cf. configure assertions).
The unwinding bound to run the BMC procedure is

Fig. 4 The proposed approach implemented in DSVerifier

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 8 of 20

determined according to the filter function, based on the
computation of output samples (cf. run BMC).
If any property violation is found, then DSVerifier

reports a counterexample, which contains system inputs
that lead to the respective system failure (cf. counterex-
ample). A successful verification result is reported if the
system is safe with respect to φ, up to bound k (cf. success).
In Fig. 4, white boxes represent actions to be per-

formed by the filter designer, while gray boxes represent
actions to be performed automatically by DSVerifier (i.e.,
without filter designer interventions). One can notice
that if an under or overflow occurs, a high output error
is found. Such information is extracted from a coun-
terexample, which is provided by the verification engine,
and then the word-length is increased, which is fol-
lowed by another call to the verification engine. Alter-
natively, if a time constraint violation is found (which
is also extracted from the counterexample), then it indi-
cates that the filter complexity and the word-length
must be decreased, in order to achieve a performance
improvement.
It is worth noticing that the timing verification is

performed inside the DSVerifier context, by exploiting
exhaustive checking via non-deterministic inputs. Indeed,
such a verification is very important and must be included
in the tool set, since it aids in determining the tradeoff
among filter property conformance, fixed-point represen-
tation, and hardware requirements.
Figure 5 shows an algorithm for a Direct Form I filter,

which is implemented as C source-code in DSVerifier,
as shown in Fig. 6, so that Eq. 6 can be derived in
ESBMC (or CBMC) and checked by an SMT (or SAT)
solver. In Fig. 6, the functions fxp_add, fxp_mult,
and fxp_sub take two input arguments and return the
respective addition, multiplication, and subtraction result
in fxp32_t format, which is internally defined in DSVer-
ifier as int32_t. The addition and multiplication blocks
also include the quantization effect on the result, consid-
ering the fixed-point representation used for the system.
The quantizer can be configured to saturation, wrap-
around or throw an error, when the result of an operation
exceeds its representable limits. Similarly, DSVerifier also
implements the filter functions in Direct Form II and
Transposed Direct Form II, using the C language and a
fixed-point library3.
In addition, one may notice that the code in Fig. 6

employs pointer arithmetic, instead of normal indexing.
From the verification point of view, pointers correspond
directly to memory addresses, thus avoiding indexing
complexity, while array indexing involves multiplying
indexes by the element size and adding such a result to
the array base address, which has a higher cost, in terms
of verification time. Currently, ESBMC, CBMC, and other
state-of-the-art verifiers, regarding C programs, are able

Fig. 5 Algorithm of a Direct Form I filter

to efficiently and effectively support pointer arithmetic
and comparisons [55].
The main goal of the present study is not proposing

advanced methods for digital-filter parameter verifica-
tion, but instead incorporating (some) techniques and
then provide a general framework for system verification,
based on DSVerifier. This way, the employed verification
is robustly implemented and enables an iterative scheme
for designing and testing digital filter modules.

Illustrative example
As a toy example, which is supposed to fail for illus-
trative purposes, a single-pole system, described by the
difference equation

y(n) = −a y(n − 1) + x(n), (7)

is presented. This is a bounded-input bounded-output
(BIBO) stable system [2, 29], in which the output is lim-
ited in amplitude, according to (4). Regarding (7), with
a = −1/2, it can be shown that the summation of the
impulse response norm converges to 2 using geometric
series (i.e.,

∑ |hk| = 1
1−0.5 = 2). In this particular exam-

ple, if an input in the range [−1, 1] is considered, the
output will be [−2, 2] (i.e., the input range is simply multi-
plied by

∑ |hk|). Given that one could choose to represent
the fixed-point number using two bits for the integer part,
including the sign, and four bits for the fractional one,

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 9 of 20

Fig. 6 C code for a Direct Form I filter

according to the classical method described by Carletta
et al. [54], it is worth noticing that this is not the only
criteria, since there may be restrictions regarding the tar-
get hardware, which may even allow a larger number of
bits. As a result, the designer must take into account sys-
tem restrictions and minimum required number of bits.
The resulting range for this particular format would then
be [−2, 1.9375], with an error of ±0.03125.
The proposed method can then be employed for veri-

fying the proposed setup. The coefficients of (7) are used
for the filter model in C language, with the previously
defined numeric representation. In DSVerifier, the user
must provide the specification in a ANSI-C file, as shown
in Fig. 7. This file contains the digital-system specification
(ds), with numerator (ds.b = {1}) and denominator (ds.a =
{1.0, 0.5}), and the implementation specification itself
(impl), which contains the number of bits in the integer
(impl.int_bits = 2) and fractional (impl.frac_bits = 4) parts,
and the input range (impl.min = -1 and impl.max = 1).
The usermust also define the realization form (e.g., DFI)

and the verification configuration parameters (e.g., solver
and timeout). As an example regarding the verification of
overflow occurrences, with a timeout of 1 h and a bound

of 10 cycles, the following parameters must be provided to
DSVerifier:
dsverifier <filename> -realization DFI
-property OVERFLOW
-x-size 10 -timeout 1h -solver
boolector
If DSVerifier is run, by taking into account the input

range [−1, 1], then it quickly shows a counterexample
in which the system gets an overflow, for a particular
sequence of inputs. For instance, it can be easily shown
that an input sequence x = {1, 1, 1, 1, 1, 1} leads to an
overflow in the output, as reported in Table 1.
The solver adoption depends basically on its cover-

age and verification speed. In tests performed with many
applications, Boolector [56] and Z3 [57] presented large
coverage and reasonable verification times. In addition, all
C/C++ language structures used in filter implementations
are handled by Boolector and Z3, which makes them good
choices. Of course, if filters are developed with different
tools or libraries, which are deeper supported by another
solver, the designer has the flexibility to change it.
Additionally, an unwinding bound of k = 10 to unroll

all loops and recursive functions is set, so that a property

Fig. 7 A digital-system verification input file for DSVerifier

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 10 of 20

Table 1 Overflow occurrence in the toy example

n 1 2 3 4 5 6

x(n) 1 1 1 1 1 1

y(n) 1.0000 1.5000 1.7500 1.8750 1.9375 1.96875

violation is exposed for this particular digital filter imple-
mentation; however, since DSVerifier entirely relies on the
BMC technique, it is susceptible to exhaustion of time
(or memory) limits, when checking digital filters whose
unwinding bounds are too large (see our experimental
evaluation). Finally, the timeout is an optional parameter
to limit the verification time.
Once again, there may be hardware and application

restrictions, which will influence the choice regarding
realization forms. For example, if there are time restric-
tions and many logic cells are available, one may choose
to use a parallel structure. Besides, if truncation noise is
a concern (i.e., the associated SNR), e.g., when process-
ing audio, a DFI is preferred. Finally, if memory cells are a
scarce resource, TDFII and DFII are viable options.
For this particular case, one could easily infer about

overflow conditions by simply analyzing the impulse
response summation or simulating a constant step input;
however, it is worth noticing that impulse response
summations are useful to infer about intermediate
operations.
As a consequence of the overflow reported by DSVeri-

fier, the designer then has to re-define the word length. In
this particular example, if the number of bits in the inte-
ger part (e.g., impl.int_bits = 2) is increased, then the user
can rectify the single-pole system implementation and, for
this particular word length, the verification is successfully
completed.
DSVerifier might also be used via graphical user inter-

face (GUI), which is available in the DSVerifier website4.
More details about the DSVerifier GUI and command-line
can be found in the article written by Ismail et al. [52].
The next section presents the methods, which were

employed in the proposed approach, for implement-
ing the digital filter verifications shown in Section
“Finite word-length effects in digital filters”. In addition,
there is a deeper discussion about specific features of each
verification procedure.

Methods
Arithmetic underflow and overflow verification
During the design of fixed-point filters, one needs
to specify the number of integer and fractional bits.
First, the output range of the filter, for a given input,
must be estimated; such a procedure typically relies on
analytical- [58] or simulation-based approaches [7, 17, 18].
Thus, the designer should specify a suitable word-length

for representing variables, considering also quantization
errors in the system response.
In the present work, assertions are coded in the quan-

tizer block and the verification engine is configured to use
non-deterministic inputs, in the specified range, in order
to detect overflows in digital filters, for a given fixed-point
word-length. For any addition or multiplication results,
during filter operation, if there exists a value that exceeds
the range representable by the fixed-point approach, an
assert statement detects that as an under or overflow vio-
lation. As a consequence, a literal loverflow is generated,
with the goal of representing the validity of each addition
and multiplication operation, according to the constraint

loverflow ⇔ (MIN ≤ FP) ∧ (FP ≤ MAX), (8)

where FP is the fixed-point approximation [24], for the
result of adders and multipliers, and MIN and MAX are
the minimum and maximum values representable for the
given fixed-point bit format, respectively (as previously
described in Section “Fixed-point filters realization”). One
can notice that constraints are typically included into the
verification engine simply as an assert-statement in the C
source-code level (e.g., assert((MIN ≤ FP) && (FP ≤
MAX))).
In contrast to our toy example, regarding cases where

intermediate operations cause overflow, the filter defined
by

y(n) = 0.703125 y(n − 1) − 0.5 y(n − 2)+
0.75 x(n) − 0.703125 x(n − 1) + 0.75 x(n − 2) (9)

can illustrate such situations. In this example, it is consid-
ered that the fixed-point values are represented with 2 bits
for the integer part and 6 bits for the fractional one. The
summation

∑ |hk| for this filter converges to 1.8279; this
way, if inputs in the range [−1, 1] are applied to this sys-
tem, it then provides output values that are representable
in the fixed-point range [−2, 1.984375]. When a bounded
verification of this system is performed, with implemen-
tations in Direct Form I and Transposed Direct Form
II structures, the proposed tool issues a counterexam-
ple that causes an overflow on an intermediate operation.
Figure 8 illustrates the overflow on the summation after
the first stage on the Direct Form I implementation, when
the counterexample input is applied to the filter. For the
Direct Form II filter, the verification successfully finishes
without issuing any overflow failure, due to operation
execution-order in this particular case. As a consequence,
such observations then reinforce the application of BMC
to digital filters, as an auxiliary verification tool.
Indeed, as already mentioned for saturation arithmetic,

overflows in intermediate operations are considered
errors; however, if wrap-around is employed, the system

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 11 of 20

Fig. 8 Overflow in a Direct Form I filter

will still arrive at the correct result. This way, if wrap-
around is used, overflow assertions for intermediate
operations are simply disabled.

Limit cycle verification
In order to verify the presence of limit cycles, in a par-
ticular fixed-point filter realization, the quantizer block
routine is configured by setting a flag variable on it, in
order to enable wrap around on overflows. The expected
behavior will be as shown in Fig. 2, which means that
the verification engine is not expected to detect over-
flow failures, as in the previous case. Additionally, the
filter is configured to use a zero input signal and a non-
deterministic initial state, for previous outputs. The filter
execution is then unrolled, for a bounded number of
entries, and an assert statement is added to detect a fail-
ure, if a set of previous outputs states (that repeats during
the zero-input response) is found. One can notice that this
method is different from the one presented by Cox et al.
[20, 21], which aims at finding a limit cycle by compar-
ing input and output windows, within a bounded number
of steps.
As an example, the same system described by (7) is con-

sidered. Here, such a filter is also modeled using 2 bits
for the integer part and 4 bits for the fractional one (as in
the previous case), but with a zero input signal. If the ver-
ification engine is executed for the implemented model,
then it finds a particular initial condition that leads the
system to a limit cycle. In Table 2, the system response,
for that particular condition, is presented. Columns y2
and y10 represent the filter response, in binary and deci-
mal formats, respectively. Due to the rounding procedure,
which was applied to the fractional part of the fixed-point
number, one can notice that, in Table 2 and for a = 0.5,

Table 2 Limit cycle in the toy example

a = 0.510 = 0.10002 a = −0.510 = 1.10002

n y2 y10 n y2 y10

–1 0.0010 0.125 –1 0.0010 0.125

0 1.0001 –0.0625 0 0.0001 0.0625

1 0.0001 0.0625 1 0.0001 0.0625

2 1.0001 –0.0625 2 0.0001 0.0625

3 0.0001 0.0625 3 0.0001 0.0625

the output starts repeating after n = 2. Similarly, for
a = −0.5, the output keeps in a nonzero steady-state
value, instead of decaying towards zero.

Time-constraint verification
There are efficient structures for implementing digital fil-
ters, such as the Lattice form and filtering methods based
on the Fast Fourier transform [59], which aim to reduce
the number of arithmetic operations and computational
costs. However, the time-domain convolution methods,
based on direct forms, are still prevalent, both in hardware
and software implementations, due to their simplicity.
In real-time applications, a given filter receives data at

the same rate it processes and outputs it. As a result,
time constraints verifications become necessary, espe-
cially in high-order filters, which present many arithmetic
operations and higher group delays.
Differently from Cox et al. [20, 21], in which time

constraint verifications are not supported, the proposed
approach uses filter models for verifying the maximum
acceptable time for filter operations, in order to tradeoff
among filter property conformance, fixed-point represen-
tation, and hardware requirements.
As an example, an IIR filter function was implemented

and compiled to run on a MSP430G2231, which is an
ultra-low-power 16-bit RISC-CPU-based microcontroller
[60]. Since the filter implementation in such architec-
ture is straightforward, it is assumed here that the timing
behavior is repeatable and predictable.
So, with the assembly file generated from the compila-

tion, this can be compared with the source code using the
__asm (“block identifier”) function5 [61], with the goal of
identifying instructions for each program segment. After
that, a worst case execution time (WCET) analysis (using
BMC) can be performed in the filter function, considering
the number of cycles required to execute instructions and
iterations.
BMC is required since one needs to compute the worst

case timing behavior of the filter; otherwise, a high burden
on filter testing, with the goal to achieve the longest path,
must be placed. Kim et al. [62] describes a method using
static analysis and the model-checking technique to check
program-segment timing, similarly to what is done here.

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 12 of 20

The code fragment shown in Fig. 9a is used to per-
form multiplications involving coefficients bk and previ-
ous entries, in (1). Figure 9b shows the code in Fig. 9a
converted into some assembly instructions, using the
compiler CCS v4 [63].
One can then realize that each instruction takes a dif-

ferent number of clock cycles to execute and, based on
that information, it is possible to compute the number of
clock cycles that will be needed for each operation. For
MSP430G2231, the internal frequency is up to 16 MHz,
which gives a cycle time of 2187.5 ns. Once the total pro-
cessing time for associated instructions is available, then
it can be used to increment a timer variable and add an
assert statement, in order to detect any time-constraint
violation.
The constraint value can be easily estimated, based on

the sample rate of the system; for instance, if it oper-
ates using a sample rate of 48 KHz (which is commonly
used in digital audio systems), then it means that after
each 20.8μs window, new data are obtained from the sys-
tem input, and the filter function has to process output
samples within this time. Formally, a literal ltiming is gen-
erated to represent the validity of the time response, with
a constraint

ltiming ⇔ ((N × T) ≤ D), (10)

where N is the number of cycles spend by the filter, T is
the cycle time, and D is the deadline.

Error verification
As widely known, computation using finite word length
leads to rounding and truncation errors [29, 64]. In the
present work, impairments present on a filter output, due
to coefficient rounding and arithmetic-operation results,
are considered. As shown in Fig. 2, the quantization error

E, due to the rounding of a number represented with l bits
of precision, is

−2−l−1 ≤ E ≤ 2−l−1. (11)

Onemay notice that the accuracy on the computation of
IIR and FIR filters is limited by the word-length specified
in the digital system realization. As already mentioned,
coefficient rounding changes pole and zero positions and
also modifies the frequency response, which cause varia-
tions on the filter output that can also be observed in time
domain.
Floating-point variables provide a better approxima-

tion of rational numbers, when compared with fixed-
point representations presenting the same number of bits,
since they cover a larger dynamic range; however, prac-
tical implementations of digital filters are typically real-
ized in fixed-point representation. Additionally, encoding
floating-point arithmetic into the BMC framework leads
to large formulas and, consequently, a high time and
memory consumption for verification. Considering that,
typical verification engines support fixed-point represen-
tation, using bit-vector and rational arithmetic. Regarding
the bit-vector arithmetic, which was applied to this work,
it assumes that integral and fractional number parts have
the same bit-widths, before and after the radix point.
Thus, for 64-bit double variables, 32-bits are used for rep-
resenting the fractional part, and the remaining 32-bits are
used to represent the integer one, including sign.
Based on what was presented above, the verification of

output error bound (defined by the designer) is proposed,
as opposed to the framework developed by Cox et al.
[20, 21], in which error verifications are not supported.
For this purpose, the output of a filter, implemented with
reduced-word-length fixed-point representation, is com-
pared with a reference output of the same structure, which

Fig. 9 a C code fragment of the digital filter. b Assembly instructions of the code fragment shown in a

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 13 of 20

was implemented using double precision variables. It is
important to notice that both models present quantiza-
tion errors; however, since in reference models full double
variables are used, the error amplitude is much lower than
in fixed-point ones. Thus, considering that the number
of precision bits ld in reference models is higher than in
designed models, the quantization error Er is given by

−2−l−1 + 2−ld−1 ≤ Er ≤ 2−l−1 − 2−ld−1. (12)

The expression above shows that the error, computed
with the proposed method, is affected by the precision of
the reference model. In the implemented system, 64-bit
fixed-point variables were used for the reference model,
with 32 precision bits. The experiments were executed on
models with less than 16 bits for the fractional part, which
provides a good approximation for error calculations.
For the reduced fixed-point models, the computed

values are saturated to the maximum representable
number on overflow, or to the minimum on under-
flow; the same input is applied to both models.
The input vector uses non-deterministic values from{
2k−1 − 2−l, 2−l, 0,−2−l, 2k−1}, that is, values for maxi-
mum and minimum amplitudes of the input signal. So,
errors due to quantization and saturation are explored.
During filter operation unrolling, the cumulative error

can increase beyond the quantization-error interval. The
following literal is then generated, in order to check
whether the output error is in accordance with an accept-
able margin:

lno_error ⇔ |y − yd| ≤ M · 2−l−1, (13)

where y is the output of the designed system, yd is the
output of the double precision system, and M 2−l−1 is
the tolerancemargin. The verification process searches for
the negation of this literal and, when a counterexample
is found, it indicates that the output error is higher than
expected for that filter realization.

Results and discussion
This section is split into five parts. The experimental setup
is described in “Experimental setup” Section, while the
other sections present verification results and considera-
tions for digital filter benchmarks, which are all realistic
examples extracted from the literature [2, 21, 29, 59].
The proposed methodology checks the actual C code

of digital filters, which are intended to be embedded
into micro-controllers and DSPs. Such an approach is
very close to real implementations, where specific C con-
structs (e.g., pointer arithmetic and comparisons) are used
to realize (1), which makes VCs harder to be checked.
Additionally, the present work innovates on exploring dif-
ferent verification techniques, which are used to detect
overflows and limit cycles, in digital filters.

It is worth noticing that the present work also pro-
poses a set of necessary checks, by exploiting state-of-
the-art bounded model checkers, with the goal of aiding
the choice of system representation and structure, while
meeting the design specifications.

Experimental setup
Table 3 describes some filters chosen with different design
types, number of feedback coefficients N, number of for-
ward coefficients M, input range, and word length. One
can notice that column Bits indicates the word-length for
the integer and fractional parts of fixed-point represen-
tations, including the sign. Besides, the word-length for
fixed-point representations is estimated based on both
the

∑ |hk| summation and the input range, in order to
obtain optimized filters, in terms of reduced number of
bits. The column Bound shows the number of consecu-
tive entries applied to the filter (filter function unwinding),
which is empirically determined to find violations of the
associated property, up to given bound. Indeed, for each
applied entry, the filter function is executed, in order to
compute output samples. From the verification perspec-
tive, all important information about the digital filters
benchmarks are described in Table 3.
In Table 3, filters from 1 to 11 are verified in three dif-

ferent realizations: Direct Form I (DFI), Direct Form II
(DFII), and Transposed Direct Form II (TDFII), in order to
investigate how filter structures can interfere in the occur-
rence of some failures. Many of the selected test cases
use second order structures, because such a realization is
widely used and can be applied as a building block to form
higher-order systems, as referred in “Fixed-point filters
realization” Section.
Regarding the error verification experiments, they were

fair enough to define a range larger than the quantization
error interval, as given by (11). Due to that, an acceptable
margin of two times the precision was fixed, that is, from
−2−l+1 to 2−l+1. Note that all filter operations are repre-
sented in our verification engine as fixed-point arithmetic.
The error verification only checks whether the output of a
filter, implemented with reduced-word-length fixed-point
representation, is within certain bounds, when compared
to a double-precision reference output.
When evaluating time constraints, restrictions related

to a 16MHz processor, operating on a system with sample
rate equal to 48 KHz, were considered. Such a rate was
adopted due to its use as a standard audio sampling rate,
commonly employed in professional equipment. One can
notice that the system sample rate does not interfere in
overflow and limit cycle conditions, because this is just a
consequence of the fixed-point arithmetic.
Regarding overflow and limit cycle verifications, results

for FIR filters are not presented here, since, in this kind
of system, such issues can be easily avoided. By definition,

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 14 of 20

Table 3 Tested digital filters

Filter N M
∑ |hk| Input Bits Bound

1 LP-IIR 2 1 2 [−1, 1] < 2, 4 > 6

2 LP-Butterworth-IIR 3 3 1.2 [−1.6, 1.6] < 2, 5 > 6

3 LP-IIR 3 1 4 [−1, 1] < 3, 4 > 6

4 LP-IIR 3 1 1.56 [−1, 1] < 2, 4 > 6

5 HP-ChebyshevI-IIR 3 3 1.33 [−1, 1] < 2, 6 > 6

6 BP-Elliptic-IIR 3 3 1.24 [−1, 1] < 2, 8 > 6

7 BS-Butterworth-IIR 3 3 1.81 [−1.1, 1.1] < 2, 8 > 6

8 BP-Elliptic-IIR 5 5 0.91 [−1.1, 1.1] < 1, 7 > 10

9 HP-Butterworth-IIR 5 5 1.58 [−1.27, 1.27] < 2, 6 > 10

10 BP-ChebyshevI-IIR 5 5 1.51 [−1.33, 1.33] < 2, 6 > 10

11 HP-Elliptic-IIR 7 7 5.39 [−1, 1] < 3, 11 > 14

12 HP-Cascade-IIR 6 6 12.4 [−1, 1] < 5, 5 > 14

13 BS-Cascade-IIR 9 9 2.45 [−1, 1] < 3, 5 > 19

14 LP-Parallel-IIR 6 6 16.6 [−1, 1] < 5, 5 > 13

15 LP-Cascade-IIR 6 6 7.64 [−1, 1] < 4, 4 > 13

16 Multiband-Parallel-IIR 9 9 2.75 [−1, 1] < 4, 4 > 19

17 LP-FIR 1 31 1.94 [−1, 1] < 2, 6 > 31

18 Multiband-FIR 1 9 2.18 [−1, 1] < 2, 6 > 13

19 Multiband-FIR 1 25 1.47 [−1, 1] < 2, 8 > 25

20 LP-WiFi-FIR 1 21 2.92 [−1, 1] < 3, 5 > 21

FIR filters are completely immune to limit cycles [2]
(there is no feedback), and overflows can be prevented
by applying a conservative criterion based on the filter-
impulse-response absolute sum, in order to determine the
word length. Indeed, FIR systems, checked for those prop-
erties, finished successfully or timed out without finding
a single counterexample. It is worth noticing that over-
flow checking for intermediate operations was enabled, in
order to guide a possible use of saturation arithmetic. As
a result, the number of VCs are substantially increased,
since it depends on the filter function unwinding bound.
For instance, if the unwinding bound is set to k, then the
verification engine produces k VCs to check for overflows,
which are harder to be checked by an SMT (or SAT) solver.
Here, DSVerifier6 was employed and configured to use

the SMT solver Z3 v4.0 [57], with the bit-vector arith-
metic enabled. Cox et al. [20, 21] observed that integer
arithmetic is identical to that of bit-vector, in terms of pre-
cision; however, there were tradeoffs in performance with
(slight) advantage to bit-vector arithmetic.
For each benchmark, the verification engine was

invoked by manually setting file name, timeout, and
bit-vector-arithmetic solver7. Note that array bounds,
pointer safety, and division by zero assertions are dis-
abled, since the present work is focused on checking
finite word-length problems, as previously described in

“Research design and methodology” Section. The above
ESBMC call is thus used for checking safety properties
related to arithmetic under and overflow, when <file>
refers, for instance, to verify_overflow.c. In order to check
for limit cycle, timing constraints, and quantization error,
the following files can be referenced by the above ESBMC
call, respectively: verify_limitcycle.c, verify_timing.c, and
verify_error.c. Each file contains the necessary filter calls
and assertions used for property verification.
All experiments were conducted on an otherwise idle

Intel Core i7 − 2600, with a clock of 3.40 GHz and 24 GB
of RAM, running Fedora 64-bits. For all digital filters, the
individual time limit has been set to 3600 s, except for cas-
cade/parallel systems and FIR filters, in which the timeout
is 7200 s. The presented elapsed times were measured
using the time command.

General results
The parameters related to the chosen digital filters are
used as inputs to the C filter-model. Tables 4, 5 and 6
summarize the results obtained with DSVerifier, by pre-
senting them as TRUE or FALSE, i.e., whether the verifi-
cation has finished successfully or not, respectively. The
verification time is also shown for each type of failure
assertion, and, when a particular verification exceeds the
related time limit, the test case is tagged as Timeout.

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 15 of 20

Table 4 Summary of results for the tested IIR filters

Filter Type
Overflow Limit cycle Timing Error

Result Time Result Time Result Time Result Time

1 LP-IIR DFI FALSE 3 FALSE 8 TRUE 1 TRUE 6

DFII FALSE 2 FALSE 13 TRUE <1 TRUE 4

TDFII FALSE 2 FALSE 8 TRUE <1 TRUE 4

2 LP-Butterworth-IIR DFI FALSE 2 TRUE 417 FALSE <1 TRUE 31

DFII FALSE 1 TRUE 709 FALSE 1 FALSE 5

TDFII TRUE 30 FALSE 447 FALSE <1 TRUE 32

3 LP-IIR DFI TRUE 10 FALSE 21 TRUE <1 TRUE 14

DFII TRUE 12 FALSE 55 TRUE 1 TRUE 10

TDFII TRUE 39 FALSE 135 TRUE <1 TRUE 12

4 LP-IIR DFI TRUE 4 TRUE 88 TRUE <1 TRUE 11

DFII TRUE 5 TRUE 106 TRUE <1 TRUE 9

TDFII TRUE 11 FALSE 101 TRUE <1 TRUE 10

5 HP-ChebyshevI-IIR DFI TRUE 10 TRUE 941 FALSE <1 TRUE 48

DFII TRUE 27 TRUE 1776 FALSE 1 TRUE 57

TDFII TRUE 14 FALSE 331 FALSE <1 TRUE 49

6 BP-Elliptic-IIR DFI TRUE 9 FALSE 37 FALSE 1 TRUE 53

DFII FALSE 2 FALSE 70 FALSE <1 FALSE 16

TDFII TRUE 11 FALSE 105 FALSE 1 TRUE 46

7 BS-Butterworth-IIR DFI FALSE 3 FALSE 437 FALSE <1 FALSE 17

DFII FALSE 2 FALSE 112 FALSE <1 FALSE 11

TDFII TRUE 117 FALSE 321 FALSE <1 TRUE 73

8 BP-Elliptic-IIR DFI FALSE 3 TRUE 8 FALSE 1 FALSE 168

DFII FALSE 2 TRUE 14 FALSE 1 FALSE 79

TDFII FALSE 2 TRUE 12 FALSE <1 FALSE 147

9 HP-Butterworth-IIR DFI FALSE 15 FALSE 1060 FALSE 1 FALSE 125

DFII FALSE 4 FALSE 1506 FALSE 1 FALSE 145

TDFII Timeout 3600 FALSE 1485 FALSE <1 Timeout 3600

10 BP-ChebyshevI-IIR DFI TRUE 96 Timeout 3600 FALSE 1 FALSE 255

DFII FALSE 11 FALSE 2395 FALSE 1 FALSE 106

TDFII TRUE 139 FALSE 2092 FALSE <1 FALSE 238

11 HP-Elliptic-IIR DFI FALSE 12 Timeout 3600 FALSE 1 Timeout 3600

DFII FALSE 4 Timeout 3600 FALSE 1 Timeout 3600

TDFII FALSE 5 Timeout 3600 FALSE 1 Timeout 3600

Table 5 Summary of results for the tested cascade and parallel filters

Filter Type
Overflow Limit cycle Timing Error

Result Time Result Time Result Time Result Time

12 HP-Cascade-IIR TDFII Timeout 7200 Timeout 7200 FALSE 2 FALSE 1584

13 BS-Cascade-IIR DFII FALSE 259 Timeout 7200 FALSE 7 Timeout 7200

14 LP-Parallel-IIR DFII TRUE 911 FALSE 3656 FALSE 3 Timeout 7200

15 LP-Cascade-IIR DFII FALSE 261 FALSE 4059 FALSE 3 FALSE 189

16 Multiband-Parallel-IIR TDFII Timeout 7200 FALSE 6668 FALSE <1 Timeout 7200

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 16 of 20

Table 6 Summary of results for the tested FIR filters

Filter Type
Timing Error

Result Time Result Time

17 LP-FIR DFI FALSE 1 Timeout 7200

18 Multiband-FIR DFI FALSE 1 TRUE 7915

19 Multiband-FIR DFI FALSE 1 Timeout 7200

20 LP-WiFi-FIR DFI FALSE 1 Timeout 7200

One can notice that the proposed system is able to
detect failures in various digital filter types, which are
implemented with different structures, orders, or fixed-
point formats. However, the verification time tends to be
higher for high-order filters and long word-length for-
mats, since those lead to harder VCs. In particular, the
verification time tends to be higher when checking over-
flows, in filters that contain a high number of forward
and feedback coefficients, as can be seen from test case
9 onward. In addition, timeout events occurred when
checking for limit cycles, with digital filters that present
long word-length for the fractional part representation
(e.g., test case 11). The error verification also leads to high
verification times, since it needs to calculate the output
twice, that is, for fixed- and floating-point arithmetic for-
mats. Apart from that, time constraints are easily verified,
since this procedure consists of only checking the time
response of a sequential piece of code.
Another important observation regarding verification

times, as noted during tests conducted for validating the
proposed methodology, is that failing test cases tend to
be quickly checked. The main reason is that the model-
checking algorithm stops a verification procedure when-
ever it finds a counterexample; however, cases where no
defect is found tend to have high verification times, or
even produce a timeout. In such scenarios, a wide set of
non-deterministic inputs is applied, which generates veri-
fication conditions that are hard to be checked and makes
this procedure very time-consuming. That can be noticed,
for instance, on the limit cycle verification procedure for
test cases 9, 10, and 11, and also in test case 9, during the
overflow check. In the error verification of test case 9, the
result indicates a failure for Direct Form I andDirect Form
II implementations, in less or equal to 15 s; for the Trans-
posed Direct Form II, the verification gets a time-out,
without finding an error beyond the fixed limits. It indi-
cates that it is hard to find an input that produces a high
error value for this particular structure, which suggests
that such a realization may properly operate most of the
time; however, it cannot be guaranteed, since the model
checking did not finish.
The timing verification reported failures for all cases

with order higher than 2, which present more than 3 for-
ward or feedback coefficients. Actually, considering the
modeled structures implemented in C, only filters 1, 3, and

4 meet the time constraint requirements, when running
on the specified platform.

Filter-structure considerations
Although different filter structures lead to the same final
filters, as long as the same coefficients are used, the
internal computation procedures are completely different.
It can be seen, especially in overflow and limit cycle ver-
ifications, that a filter may fail or pass according to its
implementation structure. That occurs due to the order of
intermediate operations, which changes from one struc-
ture to another. The timing constraint verification is also
affected by the filter structure, since the number of addi-
tions and multiplications are different in each form. For
instance, test case 4 should not be implemented using the
Transposed Direct Form II, in order to avoid limit-cycle
occurrences. Regarding test cases 6 and 7; however, there
is no viable option, unless the designer uses some tech-
nique (see Section “Finite word-length effects in digital
filters”), in order to prevent limit cycles.
For instance, in test case 2, the verification detects over-

flow failures for the Direct Form I and Direct Form II
structures, in addition to a limit cycle failure for the
Transposed Direct Form II structure; the remaining prop-
erties finished successfully. On this particular case, the
designer intending to implement this filter, in Direct Form
I or II, would need to use an accumulator with a higher
number of bits for the integer part, two’s complement
arithmetic, or other technique, when saturation arith-
metic is employed, for preventing overflow. When using
the Transposed Direct Form II, the designer could mod-
ify the overflow mode of the system, in order to perform
saturation arithmetic for solving limit cycle oscillations.
The techniques to prevent overflow and limit cycle, as
referred by Proakis et al. in [2], generally increase noise
levels. As a result, after performing such modifications,
the designer should necessarily run the verification engine
another time, in order to ensure that the output error is
within an acceptable margin.
Table 5 describes the results obtained for filters imple-

mented in cascade and parallel forms. Those systems
use second order building blocks on their structures,
as mentioned in “Fixed-point filters realization” Section.
The results show that the number of bits, used on
those implementations, is not enough for avoiding prob-
lems caused by the reduced word-length, as overflow
and error violations are found in most cases. Here,
checking procedures for error, overflow, and limit cycle
are very time-consuming, due to the high order of
such systems. Given that, an alternative choice for the
test cases that timeout is, at least, ensuring the con-
formance of the second order blocks separately, since
those structures can be checked faster, as shown in
Table 4.

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 17 of 20

FIR filter results
The results collected from the FIR filter experiments are
described in Table 6. The high-order systems cause long
verification times, due to the search for a counterexample
that produces a high-output error. The timing verifica-
tions are also quickly performed, as in the other presented
cases. Multiband filters 18 and 19 were also verified for
these properties and, as can be seen in test case 19, the
timing failure indicates that the particular implementation
must be simplified.

Final considerations
Figure 10 shows a summary of all obtained results, clas-
sified by verification category. Figure 10a presents results
regarding arithmetic under- and overflows, which show
that DSVerifier was able to find property violations in
50 % of the benchmarks. In addition, only 8 % of the cases
timed out, due to the high number of generated VCs,
regarding the system under verification. In particular, a
VC is generated for each arithmetic expression of the dig-
ital filter implementation, considering non-deterministic
inputs.
Figure 10b presents results regarding limit cycle verifi-

cation. In summary, DSVerifier was able to find property
violations in 60 % of the benchmarks and timed out in
16 % of the them, given that limit cycle verifications of
high-order filters, with long word lengths, led to a large
state-space to be explored by the chosen SMT solver.
One can notice that the results of both categories do not
include verification of FIR filters, due to the already stated
reasons.

Figure 10c presents results regarding timing-constraint
verifications, which show that DSVerifier was able to find
timing violations in 79 % of the benchmarks. The ver-
ification of timing constraints is fast (in some cases, it
takes less than 1 s), and no benchmark, in this category,
timed out.
Finally, Fig. 10d presents results regarding quantiza-

tion errors, where DSVerifier was able to find property
violations in 33 % of the benchmarks and timed out in
24 % of them, for reasons previously stated for overflow
verification.
In summary, the presented results show that the pro-

posed verification methodology covers a large set of
checks, which are required by common designs, in order
to define the fixed-point representation format. Besides,
it is also useful in determining the filter structure for
system realization, i.e., in observing whether the system
implementation is feasible, given the project constraints.
It has also been shown that DSVerifier can be a very

effective tool for verifying digital filters, aiding DSP
engineers to automatically discover low-level properties
violations, which are hard to found by traditional sim-
ulation tools (e.g., MATLAB [65]), since they depend
on a set of input stimuli, in order to improve the state
space coverage, and require a significant manual inter-
vention from designers. In particular, simulations tools
[17, 66] might neglect some failures, due to low cov-
erage achieved during simulations (coverage problem)
[20, 21]. Our verification methodology then replaces
typical validation processes currently used by DSP
engineers.

Fig. 10 Summary of the results of all benchmarks, per verification category

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 18 of 20

Conclusions
In this work, a new approach to detect failures in fixed-
point digital filters, using state-of-the-art BMC tools,
was proposed. It allows the designer to formally check
a given implementation for a specific bit-width, in addi-
tion to define the word-length to properly represent
numeric data. In particular, the proposed approach sup-
ports the designer in detecting problems caused by the
finite word length, such as overflows, limit cycles, and
output error, in digital filters. The experimental results
show that failures can be detected in low and medium
order digital filters, with arbitrary bit width. However, the
verification of high order filters, with long word length,
tends to be a hard problem, due to the large state-space
exploration.
There is also a contribution with a new method based

on WCET analysis, together with BMC, which is used to
verify time constraints, in digital filters. Since the tested
digital-filter models are implemented in C language, the
proposed approach could also use other state-of-the-art
software verifiers for C programs, by taking advantage of
their robustness and efficiency. Additionally, the result-
ing filter C code (with specific word-length format) could
be implemented directly into DSPs or converted into
hardware description languages, which are supported by
typical FPGAs.
Finally, the tool set developed here, which was named

as DSVerifier, can help system designers, when defin-
ing adequate representation and structure, in order to
meet functional and performance requirements. However,
if such requirements are not met, then the user has to
manually modify the digital filter representation and/or
structure. In future work, the counterexample, generated
on the verification of a failing design, will be used to
automate fault localization [67], regarding digital filters
implementations.

Endnotes
1Available at http://dsverifier.org/.
2http://dsverifier.org/.
3The DSVerifier source code can be downloaded from

http://dsverifier.org/.
4http://www.dsverifier.org/downloads.
5In the GCC compiler, the mapping back to C code,

using the __asm (“block identifier”) function, can be
obtained by running gcc -O2 -S -c <file>.

6DSVerifier is an internal module for ESBMC and
CBMC, which is available at http://dsverifier.org/ ,
together with the benchmarks, so that other researchers
can reproduce the results

7In particular, the ESBMC tool was invoked as follows:
esbmc <file> -no-bounds-check
-no-pointer-check -no-div-by-zero-check
-timeout 1h -z3-bv.

Acknowledgements
This research was supported by CNPq 475647/2013-0 and FAPEAM
062.01722/2014 grants. Additionally, the authors would like to thank the
PPGEE/UFAM for supporting the development of this project.

Authors’ contributions
RA carried out the implementation of the DSVerifier approach and its
experimental evaluation; he also drafted the manuscript. MG carried out the
implementation of the ESBMC tool to support specific functions of the
DSVerifier approach; he also drafted the manuscript. LC carried out the
implementation of the ESBMC tool to support fixed-point arithmetic for digital
filters; he also drafted the manuscript. EL defined the verification algorithms
for overflow, limit cycle, and error; he also drafted the manuscript. WS
provided the background in digital signal processing; he also drafted the
manuscript. All authors read and approved the final manuscript.

Authors’ information
RA received the B.Sc. degree in electrical engineering from the Federal
University of Viçosa, Minas Gerais, Brazil, in 2007. He is currently working on the
MS degree in electrical engineering at the Federal University of Amazonas,
Brazil. He is also a senior researcher at Nokia Institute of Technology. He has a
background in electrical engineering with interests in systems verification,
PHY layer development, test and measurement systems.
MG was born in Manaus, AM, Brazil, in 1988, received the B.Sc. degree in
computer engineering and the M.Sc. degree in electrical engineering from the
Federal University of Amazonas (UFAM), in 2010 and 2013, respectively. He
worked developing mobile applications for Maemo and Meego in 2009 and
developing SBTVD (Brazilian Digital TV standard) in 2011. His work focuses on
software verification, bounded model checking, mobile applications
development, and embedded systems.
LC received the B.Sc. degree in electrical engineering and the M.Sc. degree in
informatics from the Federal University of Amazonas (UFAM), in 2005 and
2007, respectively. He received the Ph.D. degree in computer science from the
University of Southampton in 2011. Since 2011 he has been an adjunct
professor in the Electrical and Computer Engineering Department at UFAM.
His work focuses on software verification, model checking, satisfiability
modulo theories, and embedded systems.
EL received the B. Sc. degree in electrical engineering from the Federal
University of Amazonas (UFAM), Manaus, AM, Brazil, in 1999, and the M. Sc. and
D. Sc. degrees in electrical engineering from the Federal University of Rio de
Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ, Brazil, in 2004 and 2008, respectively.
Since 2016, he has been with the FPF Tech, Manaus, AM, Brazil, working with
digital TV, middleware and embedded systems. His research interests include
digital signal processing, channel/source coding, video/image processing,
embedded systems, and cognitive radio.
WS received the B.Sc. degree in electrical engineering from the Federal
University of Amazonas (UFAM), Manaus, AM, Brazil, in 2000. He received the
M.Sc. and D.Sc. degree in electrical engineering from the Federal University of
Rio de Janeiro (COPPE/UFRJ), Rio de Janeiro, RJ, Brazil, in 2004 and 2010,
respectively. Since 2006, he has been an adjunct professor in the Electrical and
Computer Engineering Department (DEC) at UFAM. His research interests are
in the fields of pattern recognition, digital signal processing and data
compression.

Competing interests
The authors declare that they have no competing interests.

Author details
1Nokia Institute of Technology, Manaus, Amazonas, Brazil. 2University of
Southampton, Southampton, UK. 3Federal University of Amazonas, Manaus,
Amazonas, Brazil. 4FPF Tech, Manaus, Amazonas, Brazil.

Received: 22 October 2015 Accepted: 5 May 2016

References
1. Institute of Electrical and Electronics Engineers (2008) IEEE standard for

floating-point arithmetic (IEEE Std 754-2008). IEEE, New York
2. Proakis JG, Manolakis DG (1996) Digital signal processing: principles,

algorithms, and applications. Prentice Hall, Upper Saddle River

http://dsverifier.org/
http://dsverifier.org/
http://dsverifier.org/
http://www.dsverifier.org/downloads
http://dsverifier.org/

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 19 of 20

3. Parker SR, Hess SF (1971) Limit-cycle oscillations in digital filters. IEEE Trans
Circuit Theory 18(6):687–697

4. Bauer P, Leclerc LJ (1991) A computer-aided test for the absence of limit
cycles in fixed-point digital filters. IEEE Trans Signal Process
39(11):2400–2410

5. Shafic EM, Sandberg IW (1995) A study of bounds on limit cycles in digital
filters. Circ Syst Signal Process 14(6):725–734

6. Campo J, Cruz-Roldan F, Utrilla-Manso M (2006) Tighter limit cycle
bounds for digital filters. IEEE Signal Process Lett 13(3):149–152

7. Claasen TACM, Mecklenbrauker WFG, Peek JBH (1976) Effects of
quantization and overflow in recursive digital filters. IEEE Trans Acoust
Speech Signal Process 24(6):517–529

8. Vaidyanathan PP, Liu V (1987) An improved sufficient condition for
absence of limit cycles in digital filters. IEEE Trans Circuits Syst
34(3):319–322

9. Ahn CK (2013) IOSS criterion for the absence of limit cycles in interfered
digital filters employing saturation overflow arithmetic. Circ Syst Signal
Process 32(3):1433–1441

10. Kawamata M (2008) On the absence of limit cycles in state-space digital
filters with minimum L2-sensitivity. IEEE Trans Circuits Syst II Exp Briefs
55(1):4650

11. Ahn CK (2011) Criterion for the elimination of overflow oscillations in
fixed-point digital filters with saturation arithmetic and external
disturbance. Int J Electron Commun 65(9):750–752

12. Constantinides GA, Cheung PYK, Luk W (2000) Roundoff-noise shaping in
filter design. In: IEEE International Symposium on Circuits and Systems,
Geneva, May 2000. Proceedings of ISCAS 2000, vol 4. IEEE, Geneva,
Switzerland. pp 57–60

13. Henzel N (2005) Digital filter design with constraints in time and
frequency domains. In: 4th International Conference on Computer
Recognition Systems, Rydzyna Castle, Poland, May 2005. Advances in Soft
Computing, vol 30. Springer, Rydzyna Castle, Poland. pp 169–176

14. SYNOPSYS® (2013) SPW. http://www.synopsys.com/Systems/
BlockDesign/DigitalSignalProcessing/Pages/Signal-Processing.aspx.
Accessed 20 Nov 2013

15. MathWorks® (2013) Fixed-point designer. http://www.mathworks.com/
products/simfixed. Accessed 20 Nov 2013

16. Wang CC, Shi C, Brodersen RW, Marković D (2011) An automated
fixed-point optimization tool in MATLAB XSG/SynDSP environment. ISRN
Signal Process:1–17

17. Sung W, Kum KL (1995) Simulation-based word-length optimization
method for fixed-point digital signal processing systems. IEEE Trans Signal
Process 43(12):3087–3090

18. Nguyen HN, Menard D, Sentieys O (2011) Novel algorithms for
word-length optimization. In: European Signal Processing Conference,
Barcelona, Spain, September 2011. Proceedings of EUSIPCO 2011.
EURASIP, Barcelona, Spain. pp 1944–1948

19. Menard D, Rocher R, Sentieys O (2008) Analytical fixed-point accuracy
evaluation in linear time-invariant systems. IEEE Trans Circ Syst I Reg
Papers 55(10):3197–3208

20. Cox A, Sankaranarayanan S, Chang BYE (2012) A bit too precise? Bounded
verification of quantized digital filters. In: 18th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
Tallinn, Estonia, April 2012. Lecture Notes in Computer Science, vol 7214.
Springer, Heidelberg. pp 33–47

21. Cox A, Sankaranarayanan S, Chang BYE (2014) A bit too precise?
Verification of quantized digital filters. Softw Tools Technol Transfer
16(2):175–190

22. Biere A (2009) Bounded model checking. In: Handbook of Satisfiability.
IOS Press, Amsterdam, The Netherlands

23. Barrett CW, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo
theories. In: Handbook of Satisfiability. IOS Press, Amsterdam, The
Netherlands

24. Cordeiro L, Fischer B, Marques-Silva J (2012) SMT-based bounded model
checking for embedded ANSI-C software. IEEE Trans Softw Eng
38(4):957–974

25. Cordeiro L, Fischer B (2011) Verifying multi-threaded software using
SMT-based context-bounded model checking. In: International
Conference on Software Engineering, Honolulu, USA, May 2011.
Proceedings of ICSE 2011. ACM, Honolulu, USA. pp 331–340

26. Abreu RB, Cordeiro LC, Filho EBL (2013) Verifying fixed-point digital filters
using SMT-based bounded model checking. In: XXXI Brazilian

Telecommunications Simposyum, Fortaleza, Brazil, September 2013.
Proceedings of SBrT 2013. Sociedade Brasileira de Telecomunicações,
Fortaleza, Brazil. pp 1–5

27. Bessa I, Abreu R, Chaves Filho JE, Cordeiro L (2014) SMT-based bounded
model checking of fixed-point digital controllers. In: 40th Annual
Conference of the IEEE Industrial Electronics Society, Dallas, UA, October
2014. Proceedings of IECON 2014. IEEE, Dallas, USA. pp 295–301

28. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs.
In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Barcelona, Spain, March 2004. Lecture Notes in
Computer Science, vol 2988. Springer, Heidelberg. pp 168–176

29. Oppenheim AV, Schafer RW, Buck JR (1999) Discrete-time signal
processing. 2nd ed. Prentice Hall, Upper Saddle River

30. Gevers M, Li G (1993) Parametrizations in control, estimation, and filtering
problems: accuracy aspects. Springer-Verlag, London

31. Mills W, Mullis C, Roberts RA (1978) Digital filter realizations without
overflow oscillations. IEEE Trans Acoust Speech Signal Process
26(4):334–338

32. Hilaire T (2011) Towards tools and methodology for the fixed-point
implementation of linear filters. In: Digital Signal Processing Workshop
and Signal Processing Education Workshop, Sedona, USA, January 2011.
Proceedings of DSP/SPE 2011. p 488493

33. Jackson LB, Kaiser JF, McDonald HS (1968) An approach to the
implementation of digital filters. IEEE Trans Audio Electroacoust
AU-16(3):413–421

34. Dattorro J (1988) The implementation of recursive digital filters for
high-fidelity audio. J Audio Eng Soc 36(11):851–878

35. Brubaker T, Gowdy J (1972) Limit cycles in digital filters. IEEE Trans Autom
Control 17(5):675–677

36. Hanselmann H (1987) Implementation of digital controllers—a survey.
Automatica 23(1):7–32

37. Yamaki S, Abe M, Kawamata M (2008) On the absence of limit cycles in
state-space digital filters with minimum L2-sensitivity. IEEE Trans Circuits
Syst II Exp Briefs 55(1):46–50

38. Auer E (1987) Digital filter structures free of limit cycles. In: IEEE
International Conference on Acoustics, Speech, and Signal Processing,
Dallas, USA, April 1987. Proceedings of ICASSP 1987, vol 12.
IEEE, Dallas, USA. pp 904–907

39. Ritzerfeld JHF, Mollova GS (1997) Controlled rounding in low noise digital
filter structures. In: ProRISC Workshop on Circuits, Systems and Signal
Processing, Mierlo, The Netherlands, September 1987. Proceedings of the
ProRISCWorkshop on Circuits, Systems and Signal Processing. pp 433–437

40. Kwan H (1985) A multi-output second-order digital filter without limit
cycle oscillations. IEEE Trans Circuits Syst 32(9):974–975

41. López JA, Caffarena G, Carreras C, Nieto-Taladriz O (2008) Fast and
accurate computation of the roundoff noise of linear time-invariant
systems. IET Circ Devices Syst 2(4):393–408

42. Jackson L (1970) Roundoff-noise analysis for fixed-point digital filters
realized in cascade or parallel form. IEEE Trans Audio Electroacoust
18(2):107–122

43. Hilaire T, Ménard D, Sentieys O (2007) Roundoff noise analysis of finite
word length realizations with the implicit state-space framework. In: 15th
European Signal Processing Conference, Poznan, Poland, September
2007. Proceedings of EUSIPCO 2007. EURASIP, Poznan, Poland.
pp 1019–1023

44. Merz F, Falke S, Sinz C (2012) LLBMC: Bounded model checking of C and
C++ programs using a compiler IR. In: Verified Software: Theories, Tools,
Experiments, Philadelphia, USA, January 2012. Lecture Notes in Computer
Science, Vol 7152. Springer, Heidelberg. pp 146–161

45. Cordeiro L, Morse J, Nicole D, Fischer B (2012) 19th International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, Tallinn, Estonia, March 2012. Lecture Notes in Computer Science,
vol 7214. Springer, Heidelberg. pp 534–537

46. Morse J, Cordeiro L, Nicole D, Fischer B (2013) Handling unbounded loops
with ESBMC 1.20. In: 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, Rome, Italy,
March 2013. Lecture Notes in Computer Science, vol 7795. Springer,
Heidelberg. pp 619–622

47. Morse J, Ramalho M, Cordeiro L, Nicole D, Fischer B (2014) ESBMC 1.22 -
(Competition Contribution). In: 20th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, Grenoble,

http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/Pages/Signal-Processing.aspx
http://www.synopsys.com/Systems/BlockDesign/DigitalSignalProcessing/Pages/Signal-Processing.aspx
http://www.mathworks.com/products/simfixed
http://www.mathworks.com/products/simfixed

Abreu et al. Journal of the Brazilian Computer Society (2016) 22:1 Page 20 of 20

France, April 2014. Lecture Notes in Computer Science, vol 8413. Springer,
Heidelberg. pp 405–407

48. Carlson J, Hakansson J, Pettersson P (2005) SaveCCM: An analysable
component model for real-time systems. In: International Workshop on
Formal Aspects of Component Software, Macao, China, October 2005, vol
160. Proceedings of FACS 2005. Electr. Notes Theor. Comput. Sci., Macao
China. pp 127–140

49. Tripakis T, Yovine S, Bouajjani A (2005) Checking timed Buchi automata
emptiness efficiently. Form Methods Syst Des 26(3):267–292

50. Jensen K, Kristensen LM (2009) Coloured Petri nets: modelling and
validation of concurrent systems. Springer, Berlin, Germany

51. Brayton RK, Mishchenko A (2010) ABC: An academic industrial-strength
verification tool. In: 22nd International Conference on Computer-Aided
Verification, Edinburgh, July 210. Lecture Notes in Computer Science, vol
6174. Springer, Edinburgh, Scotland. pp 24–40

52. Ismail H, Bessa I, Cordeiro L, de Lima Filho EB, Chaves Filho E (2015)
DSVerifier: A bounded model checking tool for digital systems. In: 22nd
International SPIN Symposium on Model Checking of Software,
Stellenbosch, South Africa. Lecture Notes in Computer Science, vol 9232.
Springer, Heidelberg. pp 126–131

53. MathWorks® (2013) Open filter design and analysis tool. http://www.
mathworks.com/help/dsp/ref/fdatool.html. Accessed 21 Nov 2013

54. Carletta J, Veillette R, Krach F, Fang Z (2003) Determining appropriate
precisions for signals in fixed-point IIR filters. In: Design Automation
Conference, Anaheim, USA, June 2003. Proceeding of the Design
Automation Conference. ACM, Anaheim, USA. pp 656–661

55. Beyer D (2015) Software verification and verifiable witnesses—(Report on
SV-COMP 2015). In: 21st International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, London, UK,
April 2015. Lecture Notes in Computer Science, vol 9035. Springer,
London, UK. pp 401–416

56. Brummayer R, Biere A (2009) Boolector: An efficient SMT solver for
bit-vectors and arrays. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, York, UK, March
2009. Lecture Notes in Computer Science, vol 5505. Springer, Heidelberg.
pp 174–177

57. de Mouram LM, Bjorner N (2008) Z3: An efficient SMT solver. In: 14th
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, Budapest, Hungary, April 2008. Lecture Notes in
Computer Science, vol 4963. Springer, Heidelberg. pp 337–340

58. Balakrishnan V, Boyd S (1992) On computing the worst-case peak gain of
linear systems. Syst Control Lett 19(4):265–269

59. Diniz PSR, da Silva EAB, Netto SL (2010) Digital signal processing: systems
analysis and design. 2nd ed. Cambridge University Press, Cambridge, UK

60. Texas Instrument™ (2013) MSP430G2231 Mixed signal controller. http://
www.ti.com/lit/ds/symlink/msp430g2231-ep.pdf. Accessed 21 Nov 2013

61. GNU (2015) The GNU C reference manual. http://www.gnu.org/software/
gnu-c-manual/. Accessed 15 June 2015

62. Kim S, Patel HD, Edwards SA (2009) Using a model checker to determine
worst-case execution time. Technical Report. Computer Science
Department, Columbia University

63. Texas Instrument™ (2013) Code Composer Studio™Integrated
Development Environment for MSP430. http://www.ti.com/tool/
ccstudio-msp430. Accessed 19 Nov 2013

64. Akbarpour B, Tahar S (2007) Error analysis of digital filters using HOL
theorem proving. J Appl Log 5(4):651–666

65. Davis TA (2010) MATLAB primer. 7th ed.. CRC Press, Washington, USA
66. Luengo D, Oses D, Martino L (2014) Monte Carlo limit cycle

characterization. In: IEEE International Conference on Acoustics, Speech
and Signal Processing, Florence, Italy, May 2014. Proceedings of ICASSP
2014. IEEE, Florence, Italy. pp 8043–8047

67. Könighofer R, Bloem R (2011) Automated error localization and correction
for imperative programs. In: International Conference on Formal Methods
in Computer-Aided Design, Austin, USA, October 2011. Proceedings of
FMAC. IEEE, Austin, USA. pp 91–100

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.mathworks.com/help/dsp/ref/fdatool.html
http://www.mathworks.com/help/dsp/ref/fdatool.html
http://www.ti.com/lit/ds/symlink/msp430g2231-ep.pdf
http://www.ti.com/lit/ds/symlink/msp430g2231-ep.pdf
http://www.gnu.org/software/gnu-c-manual/
http://www.gnu.org/software/gnu-c-manual/
http://www.ti.com/tool/ccstudio-msp430
http://www.ti.com/tool/ccstudio-msp430

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	Contributions

	Background and literature review
	Verification of digital filters
	Fixed-point filters realization
	Finite word-length effects in digital filters

	Bounded model checking (BMC)
	Related work on model-checking

	Research design and methodology
	Illustrative example

	Methods
	Arithmetic underflow and overflow verification
	Limit cycle verification
	Time-constraint verification
	Error verification

	Results and discussion
	Experimental setup
	General results
	Filter-structure considerations
	FIR filter results
	Final considerations

	Conclusions
	Endnotes
	Acknowledgements
	Authors' contributions
	Authors' information
	Competing interests
	Author details
	References

