
Souza et al. Journal of the Brazilian Computer Society 2014, 20:17
http://www.journal-bcs.com/content/20/1/17

RESEARCH Open Access

Optimizing metric access methods for
querying and mining complex data types
Jessica Andressa de Souza1*, Humberto Luiz Razente2 and Maria Camila N Barioni2

Abstract

Background: There are several application scenarios that can take advantage from the efficient processing of
similarity operations in complex data types, such as multimedia data. Among them, it is possible to mention the
execution of more complex query types (e.g., similarity queries) and several well-known data mining algorithms
(e.g., data clustering) that are directly based on similarity computations. In order to speed up the similarity-based
comparisons performed by these approaches, it is possible to store the dataset in specialized data structures known
as metric access methods (MAM).

Methods: In this article we present four node split policies that can be employed in the construction of M-tree, the
pioneer dynamic MAM, and of Slim-tree, the M-tree successor.

Results: These policies allow faster tree construction, as they result in better distribution of elements on the tree
nodes and require less distance calculations when compared with the previously proposed ones. Furthermore, trees
built with these policies have shown to be more efficient for techniques that require similarity computations, such as
nearest neighbors queries and data clustering algorithms.

Conclusion: The experimental results show that trees built with the proposed policies outperform those built with
the original ones with regard to the number of disk accesses, the amount of distance calculations, and the time
required to run the queries.

Keywords: Metric access methods; Similarity queries; Multimedia indexing; Data mining

Background
Since the beginning of commercial computer systems
half a century ago, the increase in the amount of data
demanded the development of systems tailored to effi-
ciently store, represent, and manipulate them. Once the
Database Management Systems (DBMS) emerged as a
solution to this question, the researchers turned their
attention to another important question: how to use the
gathered data to get valuable information. In response
to this, several data mining approaches were proposed
to couple with this issue. Among them it is possible
to mention the following: frequent pattern mining, data
classification, and data clustering [1].
Nowadays, the rate of data generation is even higher and

so is the complexity of the available data [2]. Therefore,

*Correspondence: jessicasouza@usp.br
1Instituto de Ciências Matemáticas e de Computação, USP, Trabalhador
Saocarlense, 400, São Carlos, Sao Paulo, Brazil
Full list of author information is available at the end of the article

the need for more efficient tools to allow both query-
ing [3] and mining [4] large complex datasets is still an
open question. Considering the multimedia data types,
for example, the traditional querying approach based on
attribute matching is not suitable. This fact has motivated
the development of querying approaches based on the
concept of similarity among complex data elements [5].
There are several examples of querying approaches that
dealt with this issue in the scientific literature, such as the
similarity selection algorithms (e.g., k-nearest neighbor
selection and range selection) [6], the similarity join algo-
rithms (e.g., k-nearest neighbor join, k-closest neighbor
join, join around, and range join) [7], and the diversifica-
tion of similarity selections [8].
The high cost imposed by the similarity-based

approaches is related to both the feature vectors employed
to represent the data and the distance calculations
computed by the algorithms [9]. In order to speed up
the similarity-based comparisons performed by these

© 2014 Souza et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: jessicasouza@usp.br
http://creativecommons.org/licenses/by/2.0

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 2 of 14
http://www.journal-bcs.com/content/20/1/17

approaches, it is possible to store the dataset in special-
ized data structures known as metric access methods
(MAM). As many data mining approaches, such as data
clustering, are based on similarity comparisons, they can
also greatly benefit from the efficient processing of these
operations in a MAM.
In the last decades, several MAM were proposed aim-

ing at reducing the number of distance calculations, the
number of disk accesses, and the total time spent to
compute distance-based queries. At first, these meth-
ods were tailored to provide efficient similarity queries
processing. There were no concerns about the effective-
ness for the data mining approaches based on similarity
comparisons.
Among the MAM, the ones based on ball partitioning

may result in balanced hierarchies. The hierarchy contains
two types of structures: index and leaf nodes. Each index
node stores a set of elements and their respective cover-
ing radii, where each pair < element, radius > defines
a ball that encompasses all the elements in the branch it
represents. During traversal, the triangle inequality prop-
erty may be used to determine if there is an intersec-
tion of a ball with a query specification and therefore
prunes branches that do not intersect. Finally, a leaf node
contains data elements and references to the data they
represent.
Many proposed MAM are not dynamic or are not

suitable for secondary memory. M-tree [10] is the first
balanced dynamic ball partitioning metric access method
based on fixed-size disk pages. Its balance is guaranteed
by the bottom-up construction, where a page overflow
results in a node split, recursively updating the ancestors
of the node. No periodic global reorganization is required
when dealing with insertions and deletions. An overview
about MAMmay be found at [9,11].
The major issue related to MAM performance is the

overlap among nodes. As far as the overlap increases,
the efficiency of these structures decreases, as more
nodes may be covered by a query region during a
search operation. Although the M-tree, its successor
the Slim-tree [12] and other MAM proposed, had dealt
with this issue in the proposal of node splitting poli-
cies for the tree insertion process, we identified some
shortcomings that led us to the proposal of new node
split policies. The design of these policies took into
account two requirements: MAM efficiency for query-
ing and mining and also MAM effectiveness for mining
processes.
Although we started to address this issue in a previ-

ous paper [13], there are new aspects that we carried
out herein. In [13] we presented three new split policies
together with an initial set of experiments that showed
their superiority over the original ones when performing
similarity queries in ball-partitioning-based MAM such

as M-tree and Slim-tree. This article integrates the con-
cepts introduced in our previous paper and extends it
presenting: a more detailed description of the node split
policies presented in [13], a new node split policy, and
the results obtained with an exhaustive set of experi-
ments that was conducted with the aim of evaluating
the impact in processing both similarity queries and data
clustering processes when employing different node split
policies on the construction of the MAM that supports
them.

Related work
Over the past two decades, several works have pursued
the development of strategies aiming to reduce the overlap
among nodes in dynamic MAM construction. Examples
of works that dealt with this issue proposing node split-
ting policies are [10,12,14,15]. The work presented in
[10] deals with node splitting by applying MinMax in the
construction of the M-tree MAM. This algorithm finds
the pair of elements that result in smaller node coverage
requiring O(n3) distance calculations on the number of
elements in a node. A more efficient algorithm was later
employed by the Slim-treeMAM [12]. Its strategy consists
in employing the minimum spanning tree (MST) algo-
rithm as a node split policy, reducing the complexity to
O(n2 · log(n)) distance calculations. In addition to that,
the work proposed in [12] also defines an evaluation met-
ric to measure the overlap among nodes (called fat-factor)
and presents an algorithm to reduce this overlap (called
Slim-down).
Another split policy for the M-Tree MAM restricted to

multidimensional data was presented in [14]. It is based on
the choice of central elements from partitioned regions to
promote as node representatives, which results in smaller
overlaps. As it uses the k-means algorithm to compute
these representatives, it cannot be employed in generic
metric spaces.
CM-tree adopts a different strategy when splitting a

node [15]. It employs a clustering approach that splits a
node in two or possibly more nodes, recursively propa-
gating the updates or splits up to the root. It also stores a
distance matrix in each node with the pairwise distances
of each pair of elements. During a search, the algorithm
prunes branches based on both the distance matrix val-
ues and the triangle inequality. The price paid to store
the matrix in each node is compensated by not comput-
ing these distances, especially if a data element occupies
a large amount of bytes and if the distance function is
expensive.
Other approaches that have been explored to buildmore

efficient MAM include [16-18]. The work of [16] presents
two new techniques to allow dynamic insertions to M-
Tree. The first is a forced reinsertion strategy that avoids

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 3 of 14
http://www.journal-bcs.com/content/20/1/17

the split of a leaf node that reached its storage capacity.
The algorithm removes some elements from the over-
flowed node and reinserts them, hoping these elements
will be placed into more suitable leaves. Finally, if the
elements are reinserted in the same node, the node is
split. The second strategy works on leaf selection. Instead
of a single-way descent to the leaf (that may not find
the optimal node to hold an element) and the multi-way
leaf selection (that may result in linear scan), the authors
propose a hybrid-way algorithm that finds the best
candidates at each level, reducing the traversal. The draw-
back of this strategy is that it increases both the num-
ber of distance calculations and disk accesses during
the insertion. During query execution, both techniques
result in the reduction on the number of disk accesses
and distance calculations when compared to M-tree.
Among the factors that influenced these reductions are
the increase of node occupation and the decrease of node
overlap.
The use of a bulk load operation based on a static

dataset to build an optimized Slim-tree is proposed in
[17]. It builds the MAM hierarchy of a dataset in a top-
down approach with reduced node overlapping, resulting
in better query performance. The method may be used to
recreate a low-performance index. The latter work men-
tioned above [18], presents EGNAT, a disk-based MAM
that indexes data using hyperplanes instead of ball parti-
tioning, resulting in an unbalanced structure with no over-
lapped regions. Compared to M-tree, EGNAT accesses
more disk pages at search time, but on the other hand,
computes fewer distances. A summary of the main fea-
tures of the works described previously is presented in
Table 1.

Table 1 Optimization strategies for efficient MAM
construction

Work Strategy Data domain Resultant
MAM

[10] Node splitting Generic metric Balanced
policy data space

[12] Node splitting Generic metric Balanced
policy data space

[14] Node splitting Multidimensional Balanced
policy data space

[15] Node splitting Generic metric Balanced
policy data space

[16] Dynamic Generic metric Balanced
reinsertions data space

[17] Bulk load Generic metric Balanced
operation data space

[18] Hyperplane Generic metric Unbalanced
partitioning data space

The development of approaches to make data clus-
tering algorithms, which are based on similarity com-
parisons, feasible for large-scale datasets has also been
pursued for the data mining research community over
the last decades. Among them, the use of sampling
techniques has proved to be especially useful for data
clustering methods that perform several iterations con-
sidering different initializations, such as CLARANS [19]
and PAM [2]. Variants of these algorithms have been
proposed in [20,21] respectively. In these works the algo-
rithms focus on relevant parts of the dataset as the
clustering process is performed on a sample dataset
obtained from pages of specialized data structures that
allow the indexing of multidimensional data. The for-
mer uses the R*-tree [22] and the latter employs the
Slim-tree [12] to develop the algorithm called PAM-
SLIM.
The strategy adopted by the PAM-SLIM algorithm,

for example, is based on the assumption that each level
of the Slim-tree indirectly divides the data space into
a number of clusters equal to the number of elements
stored at each level. The representative elements stored
in the index nodes summarizes the information about
the elements in the tree low levels and, thus, they can
be viewed as approximate cluster centers on each level
of the tree. This information is employed by PAM-
SLIM to compose the sample dataset to cluster the
data. It is important to note that the quality of the
sample dataset is affected by the features of the tree
regarding the distribution of the elements on the tree
nodes.

Fundamental concepts
The time spent to run a query is a basic measure when
evaluating an index structure. Considering MAM, time
is directly related to the computation of distances and
disk page accesses. Depending on the nature of data, dis-
tance calculations may impact time as much as randomly
accessing disk pages.
In order to provide pruning opportunities when per-

forming similarity queries, MAM employ distance func-
tions that obey the properties defined by the metric
space algebra [11]. Formally, a metric space is a pair <

S, d() >, where S is the data domain and d() is a metric
distance function that complies with the following proper-
ties: identity: d(s1, s1) = 0; symmetry: d(s1, s2) = d(s2, s1);
non-negativity: 0 < d(s1, s2) < ∞ if s1 �= s2; and triangu-
lar inequality: d(s1, s2) ≤ d(s1, s3) + d(s3, s2), ∀ s1, s2, s3 ∈
S. It is important to note that vector datasets with any Lp
distance function, such as the Euclidean distance (L2), are
special cases of metric spaces.
The basic idea adopted by MAM in order to organize

the data elements in its hierarchical structure consists in
dividing the data space into regions using representatives

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 4 of 14
http://www.journal-bcs.com/content/20/1/17

to which the other elements in each region will be asso-
ciated with. The elements of each region are stored in a
node that has a covering radius. Only elements within this
radius are associated with the representative.
Briefly, the construction approach employed by bottom-

up MAM, such as M-tree and Slim-tree, is performed as
described following. For each new element to be inserted,
it is necessary to traverse the tree from the root to the
leaves in order to find the leaf node with a coverage radius
that encompass this element. If more than one node quali-
fies to host the new element, a choose subtree policy must
be used.
On the other hand, if no node qualifies to host the new

element, the node that has the closest representative of
the new element is selected. This process is applied recur-
sively to all levels of the tree until it reaches a leaf node
where new elements are actually inserted. The elements
are inserted in a node up to its capacity. When another
element must be inserted in a full node, a new node is cre-
ated (split) and the elements are distributed between the
two nodes according to a node split policy. One element
of each split node is promoted to the immediate upper
level, which is done recursively. The elected elements are
the nodes’ representatives, and they are associated with a
radius that covers the respective nodes. Figure 1 presents
an illustration of a node split process.
The node split is the main step during the construc-

tion of MAM, and, as stated previously, it occurs when
there is a node overflow. It runs in main memory dur-
ing the insertion of a new element. Thus, the smaller
the complexity on the number of distances needed,
the faster the method. Also, a strategy may advance or
postpone other splits and certainly determines the over-
lap among nodes. An illustration of this issue can be seen

in Figure 2 in which (b) presents an overlap region greater
than (a).
The overlap degree of a MAM can be evaluated using

two fat-factor measures defined in [12]: the relative fat-
factor and the absolute fat-factor.

• Absolute fat-factor: it computes the amount of
elements that are inside the intersected regions, which
are defined by nodes in the same metric tree level.
This measure is calculated as shown in Equation 1:

fat(T) = Ic − H .N
N

.
1

M − H
, (1)

where T is a metric tree with height H, N data
elements and M nodes,M ≥ 1. Ic denotes the total
number of node accesses required to answer a point
query for each of the N elements stored in the metric
tree. The value of the absolute fat-factor will always
be in the range [0, 1]. The value zero indicates a tree
with no overlapping and the value 1 implies a tree
with all the nodes overlapped.

• Relative fat-factor: it allows the comparison of
different MAM built with the same dataset. In order
to do so, it takes into consideration the height and
the total number of nodes of the minimum tree.
Among all possible trees, the minimum tree is the
one with the minimum height Hmin possible and the
minimum number of nodesMmin. Equation 2
presents the definition of this measure:

rfat(T) = Ic − Hmin.N
N

.
1

Mmin − Hmin
, (2)

a

b

Figure 1 Illustration of a metric access method structure. (a) The insertion of an element in the root page caused overflow. (b) Root page was
split and page 2 was created. One element of each node was promoted to the upper level (page 3) together with a covering radius.

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 5 of 14
http://www.journal-bcs.com/content/20/1/17

a b
Figure 2 An illustration of different split policies and the resulting overlap among nodes. Both (a) and (b) present the same data elements.

where T is a metric tree, Hmin = ⌈
logc N

⌉
denotes

the minimum height of the tree and the minimum
number of nodesMmin = ∑Hmin

i=1
⌈
N/Ci⌉, where C is

the number of elements that can be stored in a node.
The relative fat-factor value will always be greater
than zero. The higher the value, the worse is the
overlap among the nodes of the metric tree.

During a search, overlapped nodes may not be pruned,
leading to the access of more branches of the structure.
Thus, the development of strategies that minimize the
overlap after node split during the constructions of a
MAM is essential to fine-tune the structures and to allow
scaling to huge datasets.
An ideal split policy must select two elements as rep-

resentatives and their respective coverage radii, defining
balls, partitioning the data elements into two sets, creat-
ing branches with the minimum possible overlap, aiming
at efficient queries. A simple split policy (random) selects
two random elements as the representatives and then dis-
tributes the node elements by minimizing the coverage
radii up to the capacity of the nodes. It will be used in the
experiments as a baseline.
M-tree MinMax is considered to produce the best set of

nodes as it minimizes the node coverage radii. However, it
does not guarantee to minimize the global overlap of the
structure. It considers all possible pairs of the node ele-
ments as potential representatives. For each pair, it assigns
the remaining elements of the node to one of the repre-
sentatives. The pair which minimizes the covering radius
is chosen.
Slim-tree MST split consists in separating the node ele-

ments in two clusters by removing one of the longest edges
of a MST, followed by the selection of the central element
in each cluster to be promoted as the node representa-
tive. It is important to note thatMAMare index structures
where each node is stored on a fixed-size disk page. Thus,
an unequalized split may lead to a new split after few
insertions.

Methods
We present new split policies for M-tree and Slim-tree
that consider the distribution of the elements of a full
node S into two new nodes, S, and S,,, aiming at low-
ering the global overlap of the structure. We argue that
maximizing the free space in both nodes created after
a split postpones future splits. A node created after a
split with few bytes left for newly promoted elements
or new elements has higher probability of being split
again, resulting in the increase of the global overlap.
Our policies are based on known heuristics and may
be employed by several MAM, such as M-tree and its
descendants.

Maximum dissimilarity
This policy was proposed due to the hypothesis that it
is possible to get smaller overlap by distributing the set
of elements ∈ S with regard to the pair of most dis-
similar elements in this set. Thus, it starts by finding
a pair of elements such as their distance is maximized
argmax d(s1, s2) ∈ S. This phase of the algorithm is
based on the pivot selection of [23]. The two far apart
elements are obtained by randomly selecting an element
s0 ∈ S (step 1) and finding the element s1 that is the
farthest from s0 (step 2). Then, s2 is selected as the far-
thest from s1 (step 3). The elements s1 and s2 are reported
as the desired pair of representative elements (step 4).
Although the two middle steps (2 and 3) can be repeated
a number of times, our experiments showed no signifi-
cant increase in the resulting quality when additional steps
are performed. Thus, in our experiments we kept three
iterations.
The second phase of this policy divides the set S into

two groups. The elements closer to s1 are set to the first
group and the elements closer to s2 are set to the sec-
ond group. The next phase chooses a central element
to be promoted as the node representative. The maxi-
mum dissimilarity (MD) policy is depicted in Algorithm 1.
Although this policy requires few linear scans on the node

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 6 of 14
http://www.journal-bcs.com/content/20/1/17

elements, the execution time is O(n2) on the number of
node elements due to the selection of the representatives.
The strategy adopted by the MD policy is equivalent to
creating a hyperplane that is equidistant to s1 and s2, sep-
arating the node elements into two groups, as shown in
Figure 3.

Algorithm 1Maximum dissimilarity policy
Require: dataset S

Find two far apart elements s1 and s2 in the border of S
Divide the node elements ∈ S in two groups regarding
their distances to s1 and s2
Select the medoid of each group as the representatives
for S, and S„ respectively
Assign each node element ∈ S to its proper node (S, or
S„) according to the closest medoid
Report S, and S„ as the two new nodes

Path distance sum
This policy aims at avoiding the lack of balance on the
number of elements after a MST split [12]. It is based on
the sum of distances of a traversal of the MST based on
Prim’s algorithm to split the set. The idea is to remove
the edge after achieving a threshold computed as half
of the sum of distances from the whole traversal. The
goal is to select two clusters such that the intra-group
dissimilarity be minimized, resulting in smaller coverage
radii while keeping balance on the number of elements
in each cluster. Then the next step chooses a central ele-
ment to be promoted as the node representative. Figure 4
presents the idea of the path distance sum (PDS) policy,
and Algorithm 2 illustrates its main steps. The execution
time of this policy is O(n2 · log n) on the number of node
elements.

Algorithm 2 Path distance sum policy
Require: dataset S and threshold

Build the MST on the elements ∈ S
Divide the node elements ∈ S in two groups
while the sum of distances in the MST traversal ≤
threshold do

Assign the elements to the first group
end while
Assign the remaining elements to the second group
Select the medoid of each group as the representatives
for S, and S„ respectively
Assign each node element ∈ S to its proper node (S, or
S„) according to the closest medoid
Report S, and S„ as the two new nodes

s
1

s
2 s

1

s
2

Figure 3 New split strategy where node is split based on a
hyperplane. Elements s1 and s2 are the selected representatives.
Blue and red elements represent different groups.

Reference element
This policy divides the node elements based on a refer-
ence element, by sorting the distances from each element
to the reference. The goal is to use this ranked list to split
the elements in two sets. The policy starts by selecting the
farthest element (reference) from a randomly chosen ele-
ment. The first set is composed of the n/2 elements closer
to the reference, and the other elements are assigned to
the second set. Then, it chooses two new representatives
for S, and S„ as the medoids of two sets. After the rep-
resentatives are selected, the other elements are assigned
to their closer representatives. The main steps of the ref-
erence element (RE) policy are illustrated in Algorithm 3.
The RE policy is equivalent to split the elements with an
arc, as shown in Figure 5. Finding the reference element
requires a linear scan on the node elements. However, due
to the selection of the representatives, the execution time
is O(n2) on the number of node elements.

Algorithm 3 Reference element policy
Require: dataset S and threshold

Select a reference element as the farthest element s1 ∈ S
from a random element s0 ∈ S
Build a ranked list R of the elements ∈ S regarding their
distances to s1
Divide the node elements ∈ R in two groups
while the amount of elements ≤ threshold do

Assign the elements to the first group
end while
Assign the remaining elements to the second group
Select the medoid of each group as the representatives
for S, and S„ respectively
Assign each node element ∈ S to its proper node (S, or
S„) according to the closest medoid
Report S, and S„ as the two new nodes

Reference element+

This policy is a variation of the RE policy. Unlike the
RE policy, the reference element+ (RE+) tries to ensure a

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 7 of 14
http://www.journal-bcs.com/content/20/1/17

Figure 4 New split strategy.MST split based on the sum of
distances obtained during traversal. Blue and red elements represent
different groups.

more balanced distribution of the elements between the
two nodes S, and S„. In order to do so, it changes the
last assignment step of the original RE policy restricting
it to the size of the two nodes. Each one of them must
have up to half the cardinality of the original node S.
Algorithm 4 presents the steps employed by the RE+ pol-
icy. Its execution time is alsoO(n2) on the number of node
elements.

Algorithm 4 Reference element+ policy
Require: dataset S and threshold

Select a reference element as the farthest element s1 ∈ S
from a random element s0 ∈ S
Build a ranked list R of the elements ∈ S regarding their
distances to s1
Divide the node elements ∈ R in two groups (S, and S„)
while the amount of elements ≤ threshold do

Assign the elements to the first group S,
end while
Assign the remaining elements to the second group S„
Select the medoid of each group as the representatives
for S, and S„ respectively
Report S, and S„ as the two new nodes

Results and discussion
The three sets of experiments presented herein were
designed with the intent to evaluate MAM built with the

four node split policies regarding both querying and min-
ing complex datasets. Our intention was to discuss node
splitting policies that could be employed to build access
methods for generic metric data spaces. This feature
guided the selection of the baseline approaches employed
in the experiments. The results obtained with our poli-
cies were compared with the former ones proposed for
generic metric data spaces, which are MinMax, MST, and
Random (see Table 1). All the policies evaluated were
implemented within the same platform, using the C++
language into the Arboretum MAM library in order to
obtain a fair comparison [24].
In order to cope with the querying issues, we ana-

lyzed the behavior of all the strategies considering the
global tree overlap (see ‘Analysis of the global tree
overlap’ section) and the impact on the index performance
while running nearest neighbor queries (see ‘Analysis
of similarity queries’ section). In addition to the effi-
ciency evaluation of data clustering processes supported
by MAM built with these new policies, we also evalu-
ated their effectiveness (see ‘Analysis of data clustering’
section).
The experiments were run on an Intel Core i5 (3.2 GHz)

with 4 GB of RAM, SATA hard disk of 250 GB (7,200
rpm) and GNU/Linux OS. All the strategies were imple-
mented in C++ using the same framework to allow a fair
comparison.
In order to validate the proposed strategies, we

employed synthetic and real datasets. We created sev-
eral synthetic datasets with Gaussian distribution, varying
the number of elements from 100,000 to 500,000 and the
number of dimensions from 8 to 128. These datasets will
be referenced such as this example: S100E16D for the
synthetic dataset with 100,000 elements composed of 16
dimensions. The trees were built based on the Euclidean
metric (L2) and with disk page size compatible with data
dimensionality.
The real dataset employed is based on the COPhIR

dataset [25] due to its size and availability. The dataset is
composed of several features extracted from images. We
employed the features extracted from 1 million images
based on the Scalable Color extractor, composed of 64

reference a

b

0.6

1.0
0.7

a c d b
 threshold

> threshold

threshold

sort by distance

c

d

a

b

c

d

Figure 5 New split strategy. Split based on a reference element.

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 8 of 14
http://www.journal-bcs.com/content/20/1/17

dimensions. This dataset order was randomly defined
prior to the running of the experiments.

Analysis of the global tree overlap
In these experiments, we present the results for the three
main parameters: the global overlap, the number of dis-
tance calculations, and the time spent to build the struc-
tures. The notion of volume is not available in generic
metric spaces; thus, it is not possible to compute the vol-
ume of an intersection of balls. In order to verify the
quality (i.e., the effectiveness) of the resulting indexes,
we computed the absolute and relative overlap factors
(fat-factors), following the guidelines and measurement
definitions from [12] that were presented in ‘Fundamental
concepts’ section. The efficiency was measured by the
number of distance calculations and by the total time
spent.
Instead of the volume, the fat-factor allows to evalu-

ate the amount of elements that are inside intersected
regions defined by nodes in the same level of a MAM.
The lower the fat-factor value the lower the overlap.
The absolute fat-factor is a measurement in the range
[0, 1], where zero indicates a structure without overlap
and one indicates the worst possible structure. This mea-
sure takes into consideration the total number of nodes
of the structure; thus, it is not suitable to compare the
overlap of two structures built with different split strate-
gies, as they may be built with different number of nodes.
The comparison of trees that store the same elements
can be done by the relative fat-factor, which is com-
puted based on the minimum theoretical tree (a tree

built with minimum height and minimum number of
nodes).
The number of distance calculations is shown in

Figure 6. Figure 7 presents the relative fat-factors and
Figure 8 the build times of all trees for each split strategy.
In summary, we can draw the following observations

from the graphs showed in Figures 6 and 7. When com-
pared to MinMax, it is possible to verify that all the
proposed policies required fewer distance computations
in order to build the trees, although we observe a slight
increase in the overlap factor for some of them. For
example, analyzing the results presented in the graph of
Figure 7b, we observe that the tree built with the MD pol-
icy for the S500E16D dataset presented an overlap factor
1.7% inferior requiring only 8.2% of the distance calcula-
tions performed by MinMax. Considering the S100E16D
dataset, we observe that the tree built with the PDS policy
required only 6.2% of the distance calculations performed
by MinMax, whereas the increase in the overlap factor
achieved 5.6%. The RE policy required only 6.2% of the
distance calculations performed byMinMax, although the
increase in the overlap factor reached 3.9%. The RE+ pol-
icy also showed a gain in efficiency requiring only 5.2% of
the distance calculations performed by MinMax, whereas
the increase in the overlap factor reached 24.5%.
Particularly with respect to the behavior of the RE+ pol-

icy when compared to the MinMax, it is important to
note that as the amount of both data and dimensions of
the dataset increases, the difference in the overlap factor
for the trees built with these two policies decreases. For
example, considering the S500E128D (Figures 6e and 7e)

MinMax MST MD PDS RE RE+ Random

1e+006

1e+007

1e+008

1e+009

S100E
8D

S200E
8D

S300E
8D

S400E
8D

S500E
8D

1e+006

1e+007

1e+008

1e+009

S100E
16D

S200E
16D

S300E
16D

S400E
16D

S500E
16D

1e+006

1e+007

1e+008

1e+009

S100E
32D

S200E
32D

S300E
32D

S400E
32D

S500E
32D

cba

1e+006

1e+007

1e+008

1e+009

1e+010

S100E
64D

S200E
64D

S300E
64D

S400E
64D

S500E
64D

d

1e+006

1e+007

1e+008

1e+009

1e+010

S100E
128D

S200E
128D

S300E
128D

S400E
128D

S500E
128D

e

Figure 6 Distance calculations. (a-e) The respective numbers of distance calculations, in log scale. Graphs (a) 8 dimensions, (b) 16 dimensions,
(c) 32 dimensions, (d) 64 dimensions, and (e) 128 dimensions.

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 9 of 14
http://www.journal-bcs.com/content/20/1/17

MinMax MST MD PDS RE RE+ Random

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S100E
8D

S200E
8D

S300E
8D

S400E
8D

S500E
8D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S100E
16D

S200E
16D

S300E
16D

S400E
16D

S500E
16D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S100E
32D

S200E
32D

S300E
32D

S400E
32D

S500E
32D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S100E
64D

S200E
64D

S300E
64D

S400E
64D

S500E
64D

0

0.2

0.4

0.6

0.8

1

1.2

1.4

S100E
128D

S200E
128D

S300E
128D

S400E
128D

S500E
128D

cba

ed

Figure 7 Overlap analysis. (a-e) The relative fat-factors for each split strategy. Graphs (a) 8 dimensions; (b) 16 dimensions, (c) 32 dimensions,
(d) 64 dimensions, and (e) 128 dimensions.

dataset, the RE+ policy showed an increase in the overlap
factor of 1.5%, whereas it requires only 3% of the distance
calculations performed by MinMax.
Another important remark is that, in general, the trees

built with the MD policy were the ones that presented

the lowest overlap factor. Moreover, for higher dimen-
sional datasets, this policy outperforms the best classical
policy (MinMax). Compared to MinMax, the decrease in
the overlap factor was up to 22.4% for the 128 dimensions
datasets requiring only 3.8% of the distance calculations

1

10

100

1000

S100E
8D

S200E
8D

S300E
8D

S400E
8D

S500E
8D

1

10

100

1000

S100E
16D

S200E
16D

S300E
16D

S400E
16D

S500E
16D

1

10

100

1000

S100E
32D

S200E
32D

S300E
32D

S400E
32D

S500E
32D

10

100

1000

10000

S100E
64D

S200E
64D

S300E
64D

S400E
64D

S500E
64D

MinMax MST MD PDS RE RE+ Random

10

100

1000

10000

S100E
128D

S200E
128D

S300E
128D

S400E
128D

S500E
128D

cba

ed

Figure 8 Build times for each tree. Graphs (a) 8 dimensions, (b) 16 dimensions, (c) 32 dimensions, (d) 64 dimensions, and (e) 128 dimensions.
The horizontal axis presents the datasets ranging from 100,000 to 500,000 elements. The results in the time axis are in log scale.

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 10 of 14
http://www.journal-bcs.com/content/20/1/17

performed by it. These results corroborate the statements
made in the background section and also the assumptions
made for the development of the work presented herein
(see ‘Related work’ and ‘Fundamental concepts’ sections).
When compared to MST, the former policy that is con-

sidered as the one that led to the best trade-off between
efficiency and effectiveness, it is possible to observe that
all the trees built with the proposed policies presented a
lower overlap factor. For example, for the MD, PDS, RE,
and RE+ policies, the overlap factor was reduced up to
48.4%, 48.1%, 50.7%, and 41.2%, respectively. Regarding
the efficiency issue, the number of distance computations
required by the proposed strategies was equivalent to the
MST. It was observed a slight increase up to 19.9% for
the MD strategy, 6.1% for the PDS strategy, and 8.4% for
the RE strategy. On the other hand, the RE+ policy was the
one that needed less distance computations requiring only
64.9% of the distance calculations performed by MST for
the S100E64D dataset (Figures 6d and 7d).
Table 2 shows the results obtained with the experiments

performed with the COPhIR dataset. Analyzing the effec-
tiveness issue, it is possible to verify that all the trees built
with the proposed strategies presented a lower overlap
factor when compared toMST and also that they required
a number of distance calculations with the same order of
magnitude. It is worth to note that when compared to
MinMax, the tree built with the MD strategy presented
a lower overlap factor and required much less distance
computations. Observing the results achieved with all the
experiments performed, it is possible to conclude that
all the strategies presented the same behavior with both
synthetic and real datasets.

Analysis of similarity queries
The graphs presented in this section show the behavior of
the split policies for three main parameters regarding the
analysis of the actual cost of similarity queries: the aver-
age number of distance calculations, the average number
of disk accesses, and the average number of time to exe-
cute the queries. The results present the average of 100

Table 2 Measures regarding the tree constructions for the
COPhIR experiments

Strategy Absolute Relative Distances Time (s)
fat-factor fat-factor

Random 0.126 0.212 67,239,671 1,077

MST 0.047 0.113 98,384,355 2,875

MinMax 0.046 0.078 1,581,570,838 3,272

MD 0.046 0.077 92,460,796 2,232

PDS 0.047 0.080 92,519,725 3,131

RE 0.041 0.069 92,289,401 3,087

RE+ 0.051 0.076 86,895,027 2,235

k-nearest neighbor queries for each value of k using dis-
tinct sets of randomly selected query centers. This set of
experiments was performed using the branch-and-bound
algorithm of the k-nearest neighbor query defined in [26].
The values of k varied from 10 to 100 elements for the
COPhIR dataset.
Figure 9 presents the results obtained for this set

of experiments. Regarding the average number of disk
accesses (Figure 9a), we can notice that, in general, the
results related to the MST policy were the worst ones.
This behavior is explained by the fact that the trees con-
structed with the MST result in a greater number of
nodes. Analyzing this figure, it is also possible to verify
that only the results obtained for the Random policy were
worse than the ones achieved by this policy. As expected,
the trees built with the Random policy usually present a
high overlap factor, which led to the need to perform a
large number of disk accesses and distance computations
when performing queries. Therefore, the time spent to
execute the queries is also high.
When examining all the parameters tested in conjunc-

tion, it is possible to conclude that the results obtained
with all the policies proposed outperformed the ones
achieved by both MST and MinMax. When compared to
MinMax, if we observe the results obtained considering
that k equals to 50, the tree built with the PDS policy
required 4% fewer disk accesses and 12.7% fewer distance
computations, the tree built with the RE policy required
12.2% fewer disk accesses and 15.2% fewer distance com-
putations, the tree built with the MD policy required 2%
fewer disk accesses and 4.3% fewer distance computa-
tions, and the tree built with the RE+ policy required 2.9%
fewer disk accesses and 3.2%more distance computations.
Compared toMST, if we observe the results obtained con-
sidering that k equals to 80, the tree built with the PDS
strategy required 22.5% fewer disk accesses and 14.9%
fewer distance computations, the tree built with the RE
strategy required 29% fewer disk accesses and 17.3% fewer
distance computations, the tree built with theMD strategy
required 20.9% fewer disk accesses and 6.7% fewer dis-
tance computations, and the tree built with the RE+ policy
required 21.8% fewer disk accesses and 0.2% more dis-
tance computations. Particularly with respect to the RE+
policy, it is important to note that the gain in efficiency in
disk access surpassed the need for a greater number of dis-
tance computations. This fact can be observed in Figure 9c
that shows that the time required for the RE+ policy to
execute the queries was inferior than the ones required for
both MST and MinMax.

Analysis of data clustering
In this set of experiments, we employed the PAM-SLIM
algorithm with the aim at analyzing the impact on the
behavior of data clustering processes when employing

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 11 of 14
http://www.journal-bcs.com/content/20/1/17

cba

Figure 9 Nearest neighbor queries, COPhIR dataset with 1 million elements. (a) Disk accesses. (b) Distance calculations. (c) Total time.

different node split policies on the construction of the
MAM that supports the clustering algorithm. To evaluate
the effectiveness of the clusters obtained by the PAM-
SLIM algorithm executed with different MAM configura-
tions, we computed the average distance of the resulting
clustering, i.e., the average distance of all elements from
their medoids (smaller values for average distance indicate
better clustering). This is the standard measure employed
in the scientific literature in order to evaluate the quality
of the clustering obtained by the k-medoid-based algo-
rithms. The efficiency was measured by the number of
distance computations. It is worth noting that the effi-
ciency graphs are in log scale for the number of distance
calculation axis.
Figures 10, 11, 12 present the effectiveness and efficiency

results obtained when applying the PAM-SLIM algorithm
with different MAM configurations for the following
three datasets: S300E64D, S500E64D, and a subset of the
COPhIR dataset with 500,000 elements, respectively. The
values for k (number of clusters asked) varied from 5 up
to 20 and are presented in the x-axis of the graphics.
Considering the results presented in Figure 10, the

RE+ policy was the one that presented the best trade-off

between efficiency and effectiveness. If we observe only
the graph related to the clustering quality (Figure 10a),
it is possible to verify that besides the Random and the
MST policies, the quality of the clusters obtained from the
PAM-SLIM algorithm, considering the other node-split
policies, was practically the same. However, if we observe
the correspondent graphs of efficiency (Figure 10b), the
PAM-SLIM algorithm execution with the RE+ policy
was the one that presented the smallest number of dis-
tance computations, in general. For example, consider-
ing the results obtained when k was 15, the RE+ policy
showed 90.1% less distance computations than the PDS
policy, 89.3% less distance computations than the MST
policy, 88.7% less distance computations than the RE pol-
icy, 85.7% less distance computations than the MinMax
policy, 83.6% less distance computations than the MD
policy, and 65.7% less distance computations than the
Random policy.
Similar results were obtained for the S500E64D (see

Figure 11). The RE+ policy was again the one that pre-
sented the best trade-off between efficiency and effec-
tiveness. Except the Random and the MST policies, the
effectiveness of the clusters obtained from the PAM-SLIM

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

k5 k10 k15 k20
1e+007

1e+008

1e+009

1e+010

k5 k10 k15 k20

a b

MinMax MST MD PDS RE RE+ Random

Figure 10 Graphs of the analysis of data clustering for the S300E64D. (a) Quality of the groups. (b) Distance calculations (the results in the
y-axis are in log scale).

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 12 of 14
http://www.journal-bcs.com/content/20/1/17

8.4

8.6

8.8

9

9.2

9.4

9.6

9.8

k5 k10 k15 k20
1e+007

1e+008

1e+009

1e+010

1e+011

k5 k10 k15 k20

a b

MinMax MST MD PDS RE RE+ Random

Figure 11 Graphs of the analysis of data clustering for the S500E64D. (a) Quality of the groups. (b) Distance calculations (the results in the
y-axis are in log scale).

algorithm, considering the other node-split policies was
equivalent (see Figure 11a). In general, the smallest values
for the number of distance computations were obtained
by the RE+ policy (see Figure 11b). Considering the results
obtained when k was 15, this policy showed 93.4% less
distance computations than the MST policy, 91.9%
less distance computations than the RE policy, 90.2%
less distance computations than the MD policy, 90.1% less
distance computations than the PDS policy, 85.2% less dis-
tance computations than the MinMax policy and 18.8%
less distance computations than the Random policy.
When examining the results obtained with a real dataset

(see Figure 12), it is possible to verify that the number
of distance computations performed by the RE+ policy
remained with the same order of magnitude, or even less
when compared with other policies. Among the newly
proposed node-split policies, this policy showed a higher
number of distance computations with respect to the
MD and the RE policies just when k was set to 5. Com-
pared to the former policies, the RE+ policy presented a
smaller number of distance computations for all values of
k when compared to MST and also smaller numbers of
distance computations for large values of k (15 and 20)
when compared to MinMax. For example, when k was

set to 15, this policy required 68.5% and 35.1% less dis-
tance computations than MST and MinMax, respectively.
Regarding the clustering quality, except from the Random
policy, all the other policies presented almost the same
effectiveness.

Conclusions
When thinking of supporting both querying and mining
large complex datasets in an integrated environment, it
is important to provide means not only to built efficient
MAM but also MAM that do not degrade the effective-
ness of mining processes. The four node split policies
presented herein, for M-tree and Slim-tree, meet these
requirements.
Our policies are guided by the observation that a node

created after a split with few bytes left for newly pro-
moted elements or new elements has higher probability
of being split again, resulting in the increase of the over-
lap among the nodes. The experiments show that the
new split policies build more efficient trees in less time.
Considering the COPhIR dataset, for example, when com-
pared to MinMax, the RE policy required 6% less build
time and 15.2% fewer distance computations to process 50
nearest neighbor queries.

1e+008

1e+009

1e+010

1e+011

k5 k10 k15 k20
80

85

90

95

100

105

k5 k10 k15 k20

a b

MinMax MST MD PDS RE RE+ Random

Figure 12 Graphs of the analysis of data clustering for the COPhIR dataset. (a) Quality of the groups. (b) Distance calculations (the results in
the y-axis are in log scale).

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 13 of 14
http://www.journal-bcs.com/content/20/1/17

Even though reducing the time spent to build the trees,
the lower resultant fat-factor may benefit query execution
by reducing the number of distance calculations and disk
accesses to run, for instance, nearest neighbor queries. In
addition to the gain in efficiency also observed for data
clustering, the effectiveness of the resulting clustering
remained the same for all the evaluated policies. Among
future works we intend to combine the proposed poli-
cies with dynamic reinsertion and compare with the other
optimization strategies for efficient MAM construction
mentioned in this article.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JAS, HLR, and MCNB participated in the definition of the split policies and in
the design of the experiments. JAS was responsible of coding and of
executing the experiments. All authors helped to draft the manuscript and
also read and approved its final version.

Authors’ information
JAS received her B.Sc. degree in Information Systems from the Universidade
Federal de Grande Dourados, Brazil in 2010 and the M.Sc. degree in Computer
Science from the Universidade Federal do ABC, Brazil in 2012. She is currently a
Ph.D. candidate in Computer Science from the Universidade de São Paulo at
São Carlos, Brazil. Her research interests include multimedia data mining,
indexing structures, and semi-supervised clustering. HLR received his B.Sc.
degree in Computer Science from the Universidade Federal do Mato Grosso,
Brazil in 2000 and M.Sc. and Ph.D. in Computer Science in 2004 and 2009 at
Universidade de São Paulo at Sao Carlos, Brazil. He is currently an assistant
professor in the Department of Computing at the Universidade Federal de
Uberlândia. His research interests include access methods for complex data,
similarity searching, multimedia databases, and information visualization.
MCNB received her B.Sc. degree in Computer Science from the Federal
University of Uberlandia, Brazil in 2000 and M.Sc. and Ph.D. in Computer
Science in 2002 and 2006 at Universidade de São Paulo at Sao Carlos, Brazil.
She is currently an assistant professor in the Department of Computing at the
Universidade Federal de Uberlândia. Her research interests include multimedia
databases, multimedia data mining, indexing methods for multidimensional
data, and information visualization.

Acknowledgements
This work has been supported by CNPq (Conselho Nacional de
Desenvolvimento Científico e Tecnológico) under grant Universal
479930/2011-2, by FAPEMIG (Fundação de Amparo à Pesquisa de Minas
Gerais) under grant CEX-APQ-01290-12, by FAPESP (Fundação de Amparo à
Pesquisa do Estado de São Paulo) under grant 2011/16067-1, by CAPES
(Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), by NIC.br
(Núcleo de Informação do Ponto BR) and by PROPP/UFU (Pró-Reitoria de
Pesquisa e Pós-Graduação/Universidade Federal de Uberlândia).

Author details
1Instituto de Ciências Matemáticas e de Computação, USP, Trabalhador
Saocarlense, 400, São Carlos, Sao Paulo, Brazil. 2Faculdade de Computação,
Universidade Federal de Uberlândia, Av. João Naves de Avila, 2121, Uberlândia,
Minas Gerais, Brazil.

Received: 27 January 2014 Accepted: 26 August 2014

References
1. Zaki MJ, Meira W Jr (2014) Data mining and analysis - fundamental

concepts and algorithms. 1st edn. Cambridge University Press, New York
2. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. 3rd

edn. Morgan Kaufmann, San Diego

3. Silva YN, Aref WG, Larson P-Å, Pearson S, Ali MH (2013) Similarity queries:
their conceptual evaluation, transformations, and processing. VLDB J
22(3):395–420. doi:10.1007/s00778-012-0296-4

4. Kriegel H-P, Kröger P, Renz M, Schubert M (2010) Metric spaces in data
mining: applications to clustering. SIGSPATIAL Special 2(2):36–39.
doi:10.1145/1862413.1862423

5. Barioni MCN, Kaster DS, Razente HL, Traina AJM, Traina-Jr. C (2010)
Querying multimedia data by similarity in relational DBMS. In: Yan L, Ma Z
(eds) Advanced database query systems: techniques, applications and
technologies. IGI Global, Hershey, pp 323–359.
doi:10.4018/978-1-60960-475-2.ch014

6. Papadopoulos AN, Manolopoulos Y (2005) Nearest neighbor search: a
database perspective. Series in computer science. Springer, Heidelberg.
p 170

7. Silva YN, Aref WG, Ali MH (2010) The similarity join database operator. In:
International conference on data engineering (ICDE). IEEE, Long Beach,
pp 892–903. doi:10.1109/ICDE.2010.5447873

8. Vieira MR, Razente HL, Barioni MCN, Hadjieleftheriou M, Srivastava D,
Traina C, Tsotras VJ (2011) On query result diversification. In: International
conference on data engineering (ICDE). IEEE, Hanover, pp 1163–1174.
doi:10.1109/ICDE.2011.5767846

9. Samet H (2006) Foundations of multidimensional and metric data
structures. Morgan Kaufmann, San Francisco

10. Ciaccia P, Patella M, Zezula P (1997) M-tree: an efficient access method for
similarity search in metric spaces. In: International conference on very
large data bases (VLDB). Morgan Kaufmann, Athens, pp 426–435

11. Zezula P, Amato G, Dohnal V, Batko M (2006) Similarity search: the metric
space approach. Advances in database systems, vol. 32. Springer,
Heidelberg

12. Traina C Jr, Traina AJM, Faloutsos C, Seeger B (2002) Fast indexing and
visualization of metric datasets using Slim-trees. IEEE Trans Knowl Data
Eng 14(2):244–260. doi:10.1109/69.991715

13. de Souza JA, Razente HL, Barioni MCN (2013) Faster construction of
ball-partitioning-based metric access methods. In: Symposium on applied
computing (SAC). ACM, Coimbra, pp 8–12. doi:10.1145/2480362.2480365

14. Lim S-H, Ku K-I, Kim K, Kim Y-S (2006) A node split algorithm reducing
overlapped index spaces in m-tree index. In: International conference on
data engineering workshops (ICDEW). IEEE, Atlanta, pp 15–23.
doi:10.1109/ICDEW.2006.14

15. Aronovich L, Spiegler I (2007) CM-tree: a dynamic clustered index for
similarity search in metric databases. Data Knowl Eng 63(3):919–946.
doi:10.1016/j.datak.2007.06.001

16. Skopal T, Lokoc J (2009) New dynamic construction techniques for
M-tree. J Discrete Algorithm 7(1):62–77. doi:10.1016/j.jda.2008.09.013

17. Vespa TG, Traina C Jr, Traina AJ (2010) Efficient bulk-loading on dynamic
metric access methods. Inf Syst 35(5):557–569. doi:10.1016/j.is.2009.07.002

18. Navarro G, Uribe-Paredes R (2011) Fully dynamic metric access methods
based on hyperplane partitioning. Information Systems 36(4):734–747.
doi:10.1016/j.is.2011.01.002

19. Ng RT, Han J (1994) Efficient and effective clustering methods for spatial
data mining. In: 20th International conference on very large data bases
(VLDB). Morgan Kaufmann, Santiago, pp 144–155

20. Ester M, Kriegel H-P, Xu X (1995) Knowledge discovery in large spatial
databases: focusing techniques for efficient class identification. In:
International symposium on advances in spatial databases. Lecture notes
in computer science, vol. 951. Springer, Portland, pp 67–82.
doi:10.1007/3-540-60159-7_5

21. Barioni MCN, Razente H, Traina AJM, Traina C Jr (2008) Accelerating
k-medoid-based algorithms through metric access methods. J Syst
Software 81(3):343–355. doi:10.1016/j.jss.2007.06.019

22. Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an
efficient and robust access method for points and rectangles. In: ACM
SIGMOD international conference on management of data. ACM, Atlantic
City, pp 322–331. doi:10.1145/93597.98741

23. Faloutsos C, Lin K-I (1995) Fastmap: a fast algorithm for indexing,
data-mining and visualization of traditional and multimedia datasets. In:
ACM international conference on management of data (SIGMOD). ACM,
San Jose, pp 163–174. doi:10.1145/568271.223812

24. GBDI-ICMC-USP (2014) GBDI arboretum library. Available on
[http://www.gbdi.icmc.usp.br/downloads/arboretum/]. Accessed 01
September 2014

http://www.gbdi.icmc.usp.br/downloads/arboretum/

Souza et al. Journal of the Brazilian Computer Society 2014, 20:17 Page 14 of 14
http://www.journal-bcs.com/content/20/1/17

25. Bolettieri P, Esuli A, Falchi F, Lucchese C, Perego R, Piccioli T, Rabitti F
(2009) CoPhIR: a test collection for content-based image retrieval. CoRR.
abs/0905.4627v2

26. Roussopoulos N, Kelley S, Vincent F (1995) Nearest neighbor queries. In:
ACM SIGMOD international conference on management of data. ACM,
San Jose, pp 71–79. doi:10.1145/223784.223794

doi:10.1186/s13173-014-0017-5
Cite this article as: Souza et al.: Optimizing metric access methods for
querying and mining complex data types. Journal of the Brazilian Computer
Society 2014 20:17.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

	Abstract
	Background
	Methods
	Results
	Conclusion
	Keywords

	Background
	Related work
	Fundamental concepts

	Methods
	Maximum dissimilarity
	Path distance sum
	Reference element
	Reference element+

	Results and discussion
	Analysis of the global tree overlap
	Analysis of similarity queries
	Analysis of data clustering

	Conclusions
	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author details
	References

