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DNA-methylation measures of biological aging
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Abstract

Self-control is a personality dimension that is associated with better physical health and a longer lifespan. Here, we
examined (1) whether self-control is associated with buccal and saliva DNA-methylation (DNAmM) measures of bio-
logical aging quantified in children, adolescents, and adults, and (2) whether biological aging measured in buccal
DNAm is associated with self-reported health. Following preregistered analyses, we computed two DNAmM measures
of advanced biological age (principal-component PhenoAge and GrimAge Acceleration) and a DNAmM measure

of pace of aging (DunedinPACE) in buccal samples from the German Socioeconomic Panel Study (SOEP-G[ene],
n=1058, age range 0-72, Mage:42.65) and saliva samples from the Texas Twin Project (TTP, n=1327, age range 8-20,
/\/Iage: 13.50). We found that lower self-control was associated with advanced biological age in older adults (Pheno-
Age Acceleration f=—.34, [~ .51,—.17], p<.001; GrimAge Acceleration 3=—.34, [-.49,—.19], p<.001), but not young
adults, adolescents or children. These associations remained statistically robust even after correcting for possible
confounders such as socioeconomic contexts, BMI, or genetic correlates of low self-control. Moreover, a faster

pace of aging and advanced biological age measured in buccal DNAm were associated with self-reported disease
(PhenoAge Acceleration: B=.13 [.06, .19], p<.001; GrimAge Acceleration: §=.19 .12, .26], p <.001; DunedinPACE:
£=.09[.02,.17], p=.01). However, effect sizes were weaker than observations in blood, suggesting that customization
of DNAm aging measures to buccal and saliva tissues may be necessary. Our findings are consistent with the hypoth-
esis that self-control is associated with health via pathways that accelerate biological aging in older adults.

Keywords Self-control, DNA-methylation, Pace of aging, Biological aging, Health, Life span

*Correspondence:

Laurel Raffington

raffington@mpib-berlin.mpg.de

Full list of author information is available at the end of the article

©The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or

other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco
mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-024-01637-7&domain=pdf

Willems et al. Clinical Epigenetics (2024) 16:22

Introduction

Self-control is a dimension of personality that encom-
passes the ability to delay gratification, inhibit behavioral
impulses, and regulate the expression of emotions. Self-
control has been proposed to be a key behavioral media-
tor of both environmental and genetic risk factors for
aging-related morbidity and mortality [10, 11, 17, 39, 40,
54]. Individual differences in self-control arise early in the
life course and are associated with myriad health-relevant
behaviors and exposures, including sleep, substance use,
nutrition, exercise, and socioeconomic attainments [8, 24,
37, 60]. These behaviors and exposures have, in turn, been
associated with a faster pace of biological aging across
multiple physiological systems [42, 43, 63]. Little work,
however, has directly investigated whether self-control is
related to biological aging, which describes the gradual
decline in system integrity across tissues and organs that
occurs with advancing chronological age [27, 32].

Recently, DNA-methylation (DNAm) measures have
been developed to quantify processes of biological aging.
DNAm is a stable epigenetic marker that underpins the
lifelong maintenance of cellular identity and a dynamic
developmental process that changes with age and envi-
ronmental inputs [33]. Specifically, DNAm measures
have been developed to quantify accelerated biologi-
cal age and mortality risk (e.g., GrimAge and PhenoAge
Acceleration [30, 34]; as well as the pace of aging across
18 physiological systems measured repeatedly in the
same people (i.e., DunedinPACE, [5].

Recent research based on blood samples suggests that
lower self-control is associated with accelerated biologi-
cal age and earlier mortality as indicated by GrimAge
Acceleration in 17-50 years old adults [21, 29]. Moreo-
ver, in a five decade prospective study, children with
lower self-control later experienced a faster pace of aging
in midlife as indicated by analyses of physiological bio-
markers [53]. As adults, they were also less attentive to
practical health information, less consistent in imple-
menting positive health behaviors, and exhibited less
positive expectancies about aging. Additionally, those
individuals’ self-control in midlife was associated with
their pace of aging even after accounting for their self-
control in childhood. This suggests that self-control may
exert differential influences on aging processes at differ-
ent points in the life span. It remains unexplored when
in the life course associations of self-control with biologi-
cal aging may become visible; it could take decades until
the aging consequences of low self-control arise. DNAm
quantifications of biological aging in cohorts of varying
ages can help address this question.

While DNAm measures of biological aging are typi-
cally developed using blood DNA, buccal and saliva
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DNA are also commonly collected, particularly in
younger cohorts. Buccal and saliva can be sampled via
postal kits and this procedure has substantially higher
participation rates than blood sampling (e.g., saliva 72%
vs. blood 31%, [19]. Previous findings provide evidence
for good saliva-blood cross-tissue correspondence.
Blood, saliva and buccal are partially composed of the
same cell types: Blood samples consist of 100% immune
cells, saliva in children consist of approximately ~ 35%
epithelial cells and ~ 65% immune cells [38], and buccal
cells in adults consist of ~80% epithelial cells and ~20%
immune cells [59, 65]. While statistical corrections
for people’s cell composition are common, immune
cell DNAm may be particularly sensitive to early life
exposures and aging-related inflammatory processes
that can affect multiple tissues, including neurons
[7]. Additionally, DNAm measures computed in both
blood and saliva tissues from the same persons show
high cross-tissue rank-order stability [47, 48]. More
research is needed to assess the applicability of blood-
based DNAm measures particularly to buccal tissue, for
which cross-tissue rank-order stability appears to be
lower than saliva [50].

Here, we examined (1) whether self-control is asso-
ciated with buccal and saliva DNAm measures of bio-
logical aging (DunedinPACE, GrimAge Acceleration,
and PhenoAge Acceleration) quantified in children,
adolescents, and adults, and (2) whether biological
aging measured in buccal DNAm is associated with
self-reported health. Buccal DNA was collected from
participants in the German Socioeconomic Panel Study
(SOEP-Glene], n=1058, age range 0-72, M,,,=42.65)
and saliva DNA from participants in the Texas Twins
Project (TTP, n=1327, 8-20, M,,.=13.50). We further
tested whether associations differed by chronological
age and remained after statistical correction for socio-
economic contexts, body mass index, and smoking,
which are commonly associated with DNAm measures
of biological aging [46—48], as well as a genetic correlate
of low self-control (i.e., a polygenic score of externaliz-
ing problems, [26]. We employed principal-component-
based versions of PhenoAge and GrimAge Acceleration
to increase reliability [23]. We preregistered our study
and highlight where our measures or analyses deviated
from our plan (https://osf.io/5sejf, Additional file 1:
Table S1). We report standardized beta parameters with
95% confidence intervals. We report nominal p values
taking p <.05 as a threshold, and note if results remain
significant after Benjamini—Hochberg False-Discovery-
Rate method correction (FDR, [6]).
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Results

(1) Lower self-control is associated with accelerated bio-
logical age in buccal tissue from older participants,
but not younger adults, adolescents, or children.

First, we examined whether self-control was associated
with DNAm measures of biological aging. In SOEP-G,
we found that lower self-control (as measured by the
Brief Tangney Self-control Scale [56], n=333) was asso-
ciated with more advanced PhenoAge and GrimAge
Acceleration but not with a faster DunedinPACE (Phe-
noAge = —.13 [-.25,—.01], p=.03; GrimAge = —.15
[-.26,—.04], p=.01; DunedinPACE = —.06 [-.17, .04],
p=.25). These associations did not survive FDR correc-
tion for multiple comparisons. In TTP, children and ado-
lescents’ self-control was not significantly associated with
saliva DNAm measures of biological aging (see Fig. 1,
Additional file 1: Tables S2 and S3).

Next, according to our pre-registered analysis plan,
we examined whether the association between self-con-
trol and DNAm measures of biological aging differed by
chronological age in SOEP-G. We regressed measures of
biological aging on self-control, chronological age, and
the interaction between self-control and age. We found
that the association between self-control with Pheno-
Age and GrimAge Acceleration, but not DunedinPACE,
was significantly moderated by chronological age (Phe-
noAge = —.20 [-.34,—.05], p<.01; GrimAge = —.17
[-.28,—.06], p<.01; DunedinPace f= —.10 [—.24, .03],
p=.14). These interaction terms remained significant
after FDR correction. Accordingly, lower self-control
was associated with accelerated biological age in older
participants.

To further characterize this age interaction, we strati-
fied participants into older and younger participants
by mean split (M,,=57.02). Among older participants
(aged 57-72 years, n=140), lower self-control was asso-
ciated with more advanced PhenoAge and GrimAge
Acceleration (PhenoAge = —.34, [-.51,—.17], p<.001;
GrimAge f=—.34, [-.49,—.19], p<.001; see Fig. 1).
In contrast, among younger participants (aged 19-56,
n=193), self-control was not associated with Pheno-
Age or GrimAge Acceleration (PhenoAge =.06, [—.09,
.21], p=.45; GrimAge f=.03, [-.19, .12], p=.66). The
association between self-control and DunedinPACE was
not statistically significant in younger or older partici-
pants (younger =.02 [—.14, .17], p=.84; older f= —.17,
[-.35, .00], p=.06; see Fig. 1).

We have previously found that socioeconomic disad-
vantage is associated with accelerated buccal PhenoAge
and GrimAge and a faster DunedinPACE in SOEP-G [50]
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as well as a faster saliva DunedinPACE, but not acceler-
ated PhenoAge or GrimAge, in a subsample of TTP chil-
dren [47, 48]. Therefore, we tested whether associations
of self-control and DNAm measures of biological aging
were accounted for by socioeconomic contexts.

We found that the association of self-control with Phe-
noAge and GrimAge Acceleration remained statistically
significant after controlling for socioeconomic contexts
in SOEP-G (see Additional file 1: Table S4). In contrast to
a previous analysis of #=600 TTP children, which found
an association only with DunedinPACE, socioeconomic
disadvantage was also associated with accelerated Grim-
Age in the current sample of n=1327 TTP children, even
after statistical correction for smoking, BMI, and puber-
tal timing (= -.13 [-.19,—.07], p<.001, Additional
file 1: Table S5).

Additionally, associations of self-control with Pheno-
Age and GrimAge Acceleration in SOEP-G remained sta-
tistically significant after controlling for BMI, and genetic
correlates of low self-control (see Additional file 1: Tables
S6 and S7). (There were no self-reported smokers in the
subsample that had data available on both self-control
and DNAm measures.) Risk preference, which consisted
of just one response item and was weakly correlated with
the Brief-Tangney Self-control scale (r=.07, p<.05), was
not associated with DNAm biological aging measures
(see Additional file 1: Table S8).

In sum, lower self-control was associated with acceler-
ated biological age in older participants, but not younger
adults, adolescents, or children.

(2) A faster pace of aging and accelerated biological age
measured in buccal DNAm are associated with worse
self-reported health.

Next, non-preregistered analyses evaluated whether
buccal DNAm measures of biological aging were associ-
ated with self-reported disease and self-reported health
in SOEP-G (1n=797). These analyses focused on SOEP-G
as the TTP consists of children and adolescents that are
generally in good health. The moderate-to-strong cor-
relation coefficient (r=—.64, 95% Cl=-.67 to-—.6l,
p<.001) between self-reported disease and self-reported
general health indicates that both measures are tapping
into a common domain (i.e., health), but nevertheless
capture unique components of health and well-being.
While self-reported disease assesses people’s current
state of physical disease (higher scores indicate higher
disease burden), self-reported health assesses whether
people can live their life without any limitations due to
physical and/or mental health problems (higher scores
indicate better health; scale is reverse coded in Fig. 2).
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Fig. 1 Associations between self-control and DNA-methylation measures of biological aging. Note The age group split presented in our

findings serve to illustrate the significant interactions, as the regression analyses employ age as a continuous variable. DNAm-aging measures

and self-control are scaled, and principal-component-based versions of PhenoAge and GrimAge Acceleration were used. Self-control was measured
with the BTS in SOEP-G and with the grit scale in TTP. See Additional file 1: Fig. S1 for associations of DNAm with attention problems and impulsivity

measures in TTP

We found that accelerated biological age and faster
pace of aging were significantly associated with more
self-reported disease (PhenoAge Acceleration: $=.13
[.06, .19], p<.001; GrimAge Acceleration: f=.19 [.12,
.26], p<.001; DunedinPACE: f=.09 [.02, .17], p=.01).
Accelerated biological age, but not pace of aging, was
also associated with worse health, as indicated by self-
reported general physical and mental health (See Fig. 2;

PhenoAge Acceleration: f=—.12 [-.19,-.05], p<.001;
GrimAge Acceleration: f=—.14 [-.21,—.07], p<.001;
DunedinPACE: f=—-.00 [-.08, .07], p=.967). These
results remained significant after FDR correction. There
were no significant interaction effects with age (see Addi-
tional file 1: Table S9).

Next, we tested whether associations of buccal DNAm
measures of biological aging with health were statistically
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Fig. 2 Standardized associations between buccal DNAmM measures of biological aging and health in SOEP-G (principal-component-based
versions of PhenoAge and GrimAge Acceleration were used). Higher levels of self-reported disease indicate worse health. For illustration purposes,
self-reported health was reverse coded such that higher levels also reflect worse health

accounted for by socioeconomic contexts, BMI, and
smoking. We found that the association between Duned-
inPACE and self-reported disease severity was accounted
for by BMI and socioeconomic contexts (see Additional
file 1: Table S10 and S11). Associations between Pheno-
Age and GrimAge Acceleration with self-reported dis-
ease severity and health remained statistically significant
after accounting for BMI, smoking and socioeconomic
contexts (see Additional file 1: Table S10 and S11).
Finally, we examined whether buccal DNAm measures
of biological aging statistically accounted for associations

of self-control with health (n=333). GrimAge Accel-
eration statistically accounted for 9% of the associations
between self-control and self-reported disease sever-
ity and health, respectively, in the total sample (indirect
effect f=—-.02, [-.04,—.00], p=.03, see Table 1). We
repeated these analyses for older participants only, for
whom self-control was associated with PhenoAge and
GrimAge Acceleration (see above). Among older par-
ticipants, GrimAge Acceleration statistically accounted
for 26% of the association between self-control and
self-reported disease severity (indirect effect 5= —.07,

Table 1 Indirect path estimates of DNA-methylation measures of biological aging statistically accounting for associations of self-

control with health

Accelerated biological age

Pace of aging

PhenoAge acceleration

GrimAge acceleration

DunedinPACE

B 95% Cl p B 95% Cl p B 95% Cl p
Self-control — disease severity
Total effect -.22 [-.28,—-.16] <.001 -.22 [-.28,—-.16] <.001 -.22 [-.28,—-.16] <.001
Direct effect -.21 [-.27,-.15] <.001 -.20 [-.27,-.14] <.001 -.22 [-.28,-.15] <.001
Indirect effects -.01 [-.03,.02] 09 -.02 [-.04,-.00] .03 —-.01 [-.02,01] 47
Self-control— health
Total effect 22 [.15,.29] <.001 22 [.15,.29] <.001 22 [.15,.29] <.001
Direct effect 21 [.14,.28] <.001 21 [.14,.27] <.001 22 [.15,.29] <.001
Indirect effects 01 [-.00, .03] .10 .02 [.00, .03] .04 -.00 [-.01,.01] 85

Bold estimates significant at the p <.05 level
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[-.14,—.01], p=.03, see Additional file 1: Table S12).
These indirect pathways were significant at the nominal p
value, but not survive FDR correction. Importantly, these
mediation analyses are based on cross-sectional data and
thus do not allow for causal inference.

Discussion

We examined (1) whether self-control is associated with
buccal and saliva DNAm measures of biological aging
quantified in children, adolescents, and adults, and (2)
whether biological aging measured in buccal DNAm is
associated with self-reported health. First, we found that
lower self-control was associated with more advanced
biological aging in older participants (57-72 years), but
not young adults, adolescents or children. The associa-
tion between self-control with PhenoAge and GrimAge
Acceleration in older participants remained statistically
significant after controlling for socioeconomic contexts,
BMI, smoking, and genetic correlates of self-control. Sec-
ond, our results indicated that both advanced biological
age and a faster pace of aging measured in buccal DNAm
were associated with more self-reported disease. While
the association between DunedinPACE and self-reported
disease severity was accounted for by BMI, smoking
and socioeconomic contexts, PhenoAge and GrimAge
Acceleration were related to self-reported disease after
accounting for BMI, smoking and socioeconomic status.
PhenoAge and GrimAge Acceleration were also related
to self-reported health, over and above covariate control.
Our finding that DunedinPACE is only related to our dis-
ease measure but not our health measure might indicate
it is more sensitive to measures of physical than mental
health.

Thus, despite low-to-moderate cross-tissue corre-
spondence across blood and buccal measures (PhenoAge
Accel. r=.25, GrimAge Accel. r=.48, DunedinPACE.
r=.31; [50], buccal DNAm measures of biological aging
appear to capture aging processes relevant to disease and
health. But, effect sizes were weaker than observations in
blood (GrimAge and health in buccal 5=.10-.20 versus
blood 5=.10-.50, [15, 16, 25, 31, 36]. Thus, customiza-
tion of DNAm aging measures to buccal tissues may be
necessary to maximize their utility.

Collectively, our findings are consistent with the
hypothesis that self-control is associated with health via
pathways that accelerate biological aging in midlife and
older age. Among older SOEP-G participants, buccal
GrimAge Acceleration statistically accounted for 26% of
the association between self-control and self-reported
disease severity and health. Among younger SOEP-G and
Texas Twin participants, self-control was not associated
with biological aging. The effects of self-control-related
behaviors on biological aging are likely to accumulate
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over time, thus, the aging consequences of low self-con-
trol may not be visible in the first few decades of life,
when people are generally healthy. Moreover, findings
from a prospective birth cohort study suggest that self-
control in childhood compared to self-control in midlife
shows lower rank order stability and may exert independ-
ent influences on later life aging [53].

We acknowledge limitations. First, our study is based
on cross-sectional data and can therefore not make
inferences about the direction of the effects between
self-control, biological aging, and health. We cannot
disentangle whether differences in self-control cause
accelerated aging and worse health or, in reverse, worse
health causes lower self-control and advanced biological
aging. Similarly, age differences in associations between
self-control and biological aging could arise from devel-
opmental differences or cohort effects related to genera-
tional differences (e.g., environmental toxicants, social
structures). Second, our findings are likely to be some-
what tissue specific. It is possible, for example, that self-
control is associated with the pace of aging in younger
samples when DNAm is quantified in blood rather than
saliva. In order to take full advantage of buccal and saliva
DNA samples, DNAm algorithms developed in these
tissues may be needed. Third, our measures of self-con-
trol were limited and differed between the two cohorts.
Future research measuring self-control across inform-
ants, ages, and situations is important to tap into the
broader range of real-world capacities that comprise this
umbrella construct.

In conclusion, we find that self-control is associated
with buccal DNA-methylation measures of biological
aging in midlife and older adulthood in a health-relevant
manner. If the cross-sectional findings reported here are
found to be causal, then interventions that are successful
in increasing self-control might extend the health span
[18]. Alternatively, people’s proximate environments can
be manipulated to put less demand on individual self-
control behaviors [52].

Methods

Participants

SOEP-G

The Socioeconomic Panel (SOEP) is an ongoing popula-
tion-based, multi-generational survey study. Parts of the
SOEP are the “SOEP core” and the “SOEP-Innovation
Sample (SOEP-IS), which are two independent random
samples of German Households. The SOEP core consists
of a broad set of standard survey questions on socioeco-
nomic and sociodemographic background, SOEP-IS sup-
plements this by incorporating data gathered through
special questions and experimental modules. In total,
SOEP-IS includes 6,576 participants, who were invited
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to participate in buccal DNA genotyping as part of the
“gene subsample” (SOEP-G; [28]). In total, there are poly-
genic indices available for 7=2,063 adults (M, =56.13,
SD,e.=18.72, 54% female), with 98% of participants
showing high genetic similarity to European reference
groups (see [28]).

Based on the availability of funds, residual frozen DNA
samples of n=1128 of the SOEP-G sample were selected
for DNA-methylation analyses. The inclusion criteria
were as following: (1) samples from children and adoles-
cents with residual DNA samples holding at least 50 ng
of DNA, (2) adults with extending age distribution past
18 years, that had at least 250 ng of DNA left, had a call
rate of at least 0.975, and did not have participating chil-
dren in the dataset to maximize number of households,
and (3) match between genetic sex and self-reported sex
(see [49] for more details). This resulted in the availabil-
ity of DNA-methylation data for »=1058 participants
(Mg =42.42, SD,,,=21.17, 58% female), for whom poly-
genic scores are also available (see above).

TTP

The Texas Twin Project (TTP) is an population-repre-
sentative longitudinal study investigating children and
adolescents in the greater metropolitan areas of Aus-
tin, Texas [20]. It has polygenic and DNAm data avail-
able for #=1327 children and adolescents (M, . =13.50,

age
SD,e.=3.10, 48% females, 34.6% monozygotgic twins,
58.9% dizygotic twins). Participants self-identified as
White (59.5%), Hispanic/Latinx-only (10.7%), Black/
African-American (10.4%), Asian (8.5%), and Hispanic/

Latinx-White (7.8%).

Measures

Measures are described in Table 2 and include descrip-
tion of the deviation from our preregistration if applica-
ble. Descriptives are presented in Table 3.

Genotyping

SOEP-G

A detailed description of the genetic data in SOEP-G can
be found in [28]. In short, genotyping was conducted
using the Illumina Infinium Global Screening Array-24
v3.0 BeadChips. Genotypes were subject to quality con-
trol excluding participants with sex-gender mismatch,
with per-chromosome missingness of more than 50%,
and with excess heterozygosity/homozygosity.

The Haplotype Reference Consortium reference panel
(r.1.1) for imputation was used with imputation accu-
racy (R2) greater than 0.1. Approximately 66% of the
imputed SNPs were rare with minor allele frequencies
(MAF) smaller than 0.01 and~24% SNPs were com-
mon. The average imputation accuracy in the data was
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0.66, with higher imputation accuracy for common SNPs
(MAF>0.05) with an average imputation accuracy of
0.92. To control for population stratification, the first 20
principal components (PCs) were computed for individu-
als with high genetic similarity to European reference
groups, based on~160,000 approximately independent
SNPs with imputation accuracy>70% and MAF>0.01
[28].

TTP

The DNA samples were genotyped using the Illumina
Infinium PsychArray at the University of Edinburgh,
which assays ~ 590,000 single nucleotide polymorphisms
(SNPs), insertions-deletions (indels), copy number vari-
ants (CNVs), structural variants, and germline variants
across the genome. Genotypes were subjected to qual-
ity control. Briefly, samples were excluded when the call
rate was<98% and when there was inconsistent report-
ing between biological and self-reported sex. Variants
were excluded if more than 2% of the data was missing.
Untyped variants were imputed on the Michigan Impu-
tation Server, with genotypes being phased with Eagle
v2.4 and imputed with Minimac4 (v1.5.7), using the
1 K Genomes Phase 3 v5 panel as a reference panel [4].
Thresholds for minor allele frequency (MAF <1e—3) and
Hardy—Weinberg Equilibrium (HWE p value<le—6)
were be applied. Imputed genotypes with poor imputa-
tion quality (INFO score <.90) were excluded.

Preprocessing methylation data

SOEP-G

Data collection Buccal swabs and Isohelix IS SK-1S Dri-
Capsules were used to collect DNA data. DNA extraction
and methylation profiling were conducted at the Eras-
mus Medical Center in the Netherlands by the Human
Genomics Facility (HuGe-F).

DNA-methylation data Methylation levels were
assessed using the Infinium MethylEPIC vl manifest
B5 kit at 865,918 CpG sites (Illumina, Inc., San Diego,
CA). All samples were from the same batch. DNAm pre-
processing was conducted using Illumina’s GenomeS-
tudio software and the packages ‘minfi, ‘ewastools’ and
‘EpiDISH’ in open-source R version 4.2.0 [3, 22, 51, 66].
Data cleaning took place in three steps.

First, 20 control metrics were generated in GenomeS-
tudio (see BeadArray Controls Reporter Software Guide
from Illumina). Samples were flagged and excluded when
falling below the Illumina-recommended cutoffs, includ-
ing (1) all types of poor bisulfite conversion and all types
of poor bisulfite conversion background, (2) all types of
bisulfite conversion background < 0.5, (3) all types of poor
specificity, (4) all types of poor hybridization (excluded
n=43). Second, unreliable data points were identified
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Table 3 Descriptives for main variables of interest in DNAm
subsamples of SOEP-G and TTP

Variable n Mean sD
SOEP-G

Brief Tangney Self-Control Scale 333 336 0.56
(BTS)

Risk Preference 829 5.58 2.28
Household Income (Euro) 1044 3318.07 1859.59
Household income/persons 1044 1497.82 827.05
household

Max education household (years) 1042 13.34 276
Age (years) 1058 4265 21.18
Sex 610 females

Self-reported smoking 87 smoke

Body Mass Index (BMI) 876 26.73 5.95
Self-reported Disease Severity 797 257 0.98
Self-reported Health 797 4.19 0.85
DunedinPACE 1058 1.64 (AN
PhenoAge 1058 99.15 18.81
GrimAge 1058 74.30 159
TTP

Attention problems 1159 0.76 041
Impulsivity 638 10.72 3.31
Grit 702 26.06 430
Household Income (Euro) 733 152,303 266,504
Max education household (years) 819 17.50 262
Age (years) 1327 1346 3.1
Sex 1327 647 females
Self-reported smoking 645 58 smokers

Body Mass Index (BMI) 1317 20.38 5.02
Pubertal development 1271 2.60 092
DunedinPACE 1327 1.14 0.16
PhenoAge 1327 42.78 9.57
GrimAge 1327 43.10 3.56

We compared participants who filled in the BTS to those who did not fill in

this questionnaire. Those who filled in the BTS were slightly older and did not
smoke, but did not significantly differ on other demographics such as education,
income, BMI and gender (see Additional file 1: Table S13). For the demographics
separately for older and younger participants (see “Results” section 1), see
Additional file 1: Table S14. See Raffington et al. [50] for a discussion on inflated
means in buccal DNA-methylation measures of biological aging

resulting from low fluorescence intensities. Probes with
only background signal in a high proportion of samples
(proportion of samples with detection p value>.01 is>.1)
and probes with a high proportion of samples with low
bead numbers (proportion of samples with bead num-
ber<3 is>0.1) were removed. Additionally, cross-reac-
tive probes for Epic arrays and probes with SNPs at the
CG or single base extension were also removed [35, 45].
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Third, we corrected for background noise and color dye
bias (with ‘PreprocessNoob’ in minfi, [61], accounted for
probe-type differences (with ‘BMIQ’ in minfi, [58] and
estimated cell composition using robust partial correla-
tions (with ‘HEpiDisch’ in EpiDISH). In order to call the
sample a ‘buccal sample’ we set a threshold of 0.5 for epi-
thelial cell proportions [49].

TTP

Methylation profiling was conducted by Edinburgh Clini-
cal Research Facility, using the Infinium Methylatio-
nEPIC BeadChip kit (Illumina, Inc., San Diego, CA) to
assess methylation levels at 850,000 methylation sites.
Briefly, preprocessing was conducted with the ‘minfi’
package in R version 4.0.4 [3, 51]. Within-array nor-
malization was performed to address array background
correction, red/green dye bias, and probe type I/II cor-
rection. To correct for background correction and dye-
bias equalization, we applied minfi’s “preprocessNoob”
[61]. Data cleaning took place in three steps. CpG probes
were excluded if (1) detection p >.01, (2) there were fewer
than 3 beads in more than 1% of the samples, (3) they
were in cross-reactive regions. Samples were excluded
if (1) there was mismatch between self-reported and
methylation estimated sex, (2) they showed low intensity
probes as indicated by the log of average methylation and
their detection p was>.01 in>10% of their probes. In R
we estimated composition of the immune and epithelial
cell types in the samples using “BeadSorted.Saliva.EPIC”
within “ewastools” in R, and surrogate variable analyses
were used to correct for batch effects (3 batches) using
the “combat” function in the SVA package.

Statistical analyses

Analyses were conducted in R version 4.4.2 and Mplus
8.9 statistical software [41, 57]. To correct for depend-
ency of observations due to clustering in families (SOEP-
G for the PGI analyses) and due to repeated measures
within individuals and multiple twin pairs within families
(in TTP), we used a sandwich estimator to estimate clus-
ter-robust standard errors. All models included age, gen-
der, and an age-by-gender interaction as covariates, and
all variables of interest were standardized for interpreta-
tion purposes. We report nominal p values taking p <.05
as a threshold, and additionally note if results remain sig-
nificant after Benjamini—Hochberg False-Discovery-Rate
method (FDR, [6]) correction. See Table 2 and Additional
file 1: Table S1 for a list of preregistered analyses and
measures and deviations if applicable.



Willems et al. Clinical Epigenetics (2024) 16:22

Supplementary Information
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Additional file 1: Table S1. List of preregistered analyses (see https://osf.
io/5sejf/), deviations, and results if not reported in main text. Table S2.
Associations of self-control measures with saliva DNAmM measures of
biological aging measures in TTP. Table S3. Associations with saliva
DNAm measures of biological aging and Self-control*Age interaction in
TTP. Table S4. Associations of DNAm measures of biological aging with
self-control and SES in SOEP-G. Table S5. Associations Between Socioeco-
nomic disadvantage and saliva DNAm measures of biological aging in TTP.
Table S6. Associations of DNAm measures of biological aging and self-
control in SOEP-G and BMI. Table S7. Associations of DNAmM measures of
biological aging and self-control in SOEP-G and PGl-Externalizing (PGI-Ext).
Table S8. Associations of DNAmM measures of biological aging and risk-
taking. Table S9. Associations testing the interaction effect of age*DNAm
measures of biological aging on health in SOEP-G. Table $10. Associations
between DNAmM measures of biological aging and self-reported disease
and health including BMI and Smoking in SOEP-G. Table S11. Associations
between DNAmM measures f biological aging and self-reported disease
and health including SES in SOEP-G. Table S12. Indirect path estimates of
DNA-methylation measures of biological aging statistically accounting for
associations of self-control with health. Table S13. Comparing participant
who filled in the Brief Tangney Self-control scale to those who did not

at key demographics in SOEP-G. Table S14. Descriptives for main vari-
ables of interest in DNAm subsamples of SOEP-G for older and younger
participants. Figure S1. Associations between self-control and DNA-
methylation measures of biological aging in TTP. DNAm-aging measures
and self-control measures are scaled. Figure S2. Graphical representation
of indirect path estimates of DNA-methylation measures of biological
aging statistically accounting for associations of self-control with health
and disease. Figure S3. Path estimates of DNA-methylation measures of
biological aging statistically accounting for associations of self-control
with health and disease.
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